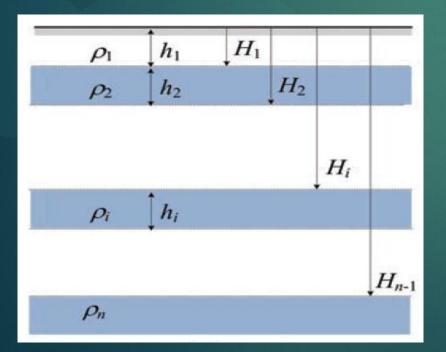
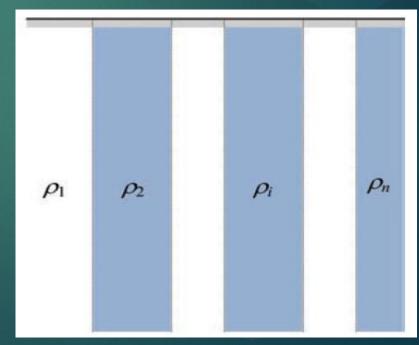
PUESTA A TIERRA EN INSTALACIONES DE ALTA TENSIÓN

Parte 5 – Modelado del terreno

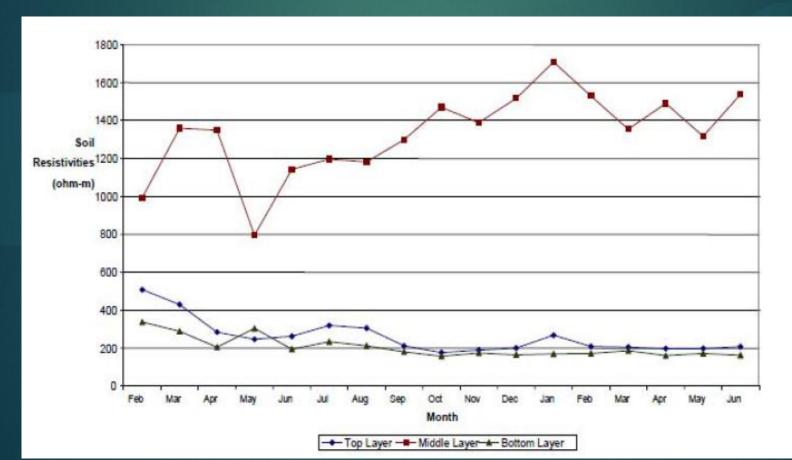
FERNANDO BERRUTTI AÑO 2015

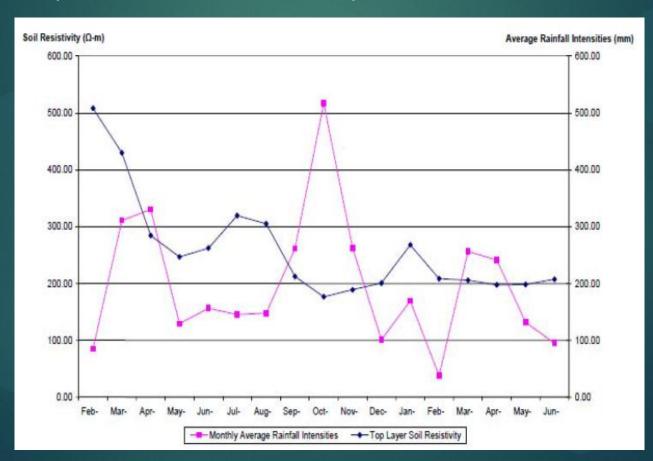

Importancia de la medida de resistividad del suelo


► El modelo de resistividad de suelo es la base del diseño de cualquier sistema de tierras, y conlleva una importante incertidumbre.

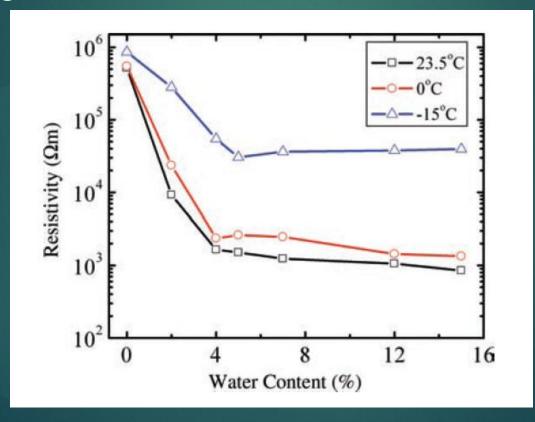
- La resistividad varía con la profundidad (estratificación horizontal), y ocasionalmente hay variaciones laterales (estratificación vertical).
- Afectación por condiciones estacionales: temperatura, humedad, salinidad.

Importancia de la medida de resistividad del suelo


A partir de las medidas y determinación de modelo estratificado se obtiene un modelo de <u>resistividad homogénea</u>.

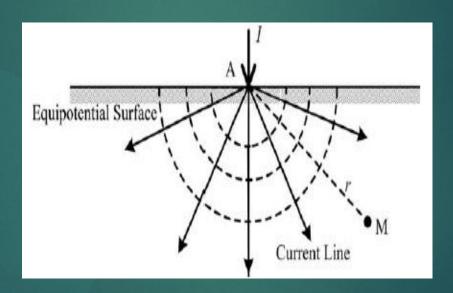

Variación de resistividad en el tiempo

Ejemplo de resistividad en suelo de tres capas medida en un lapso de 18 meses.

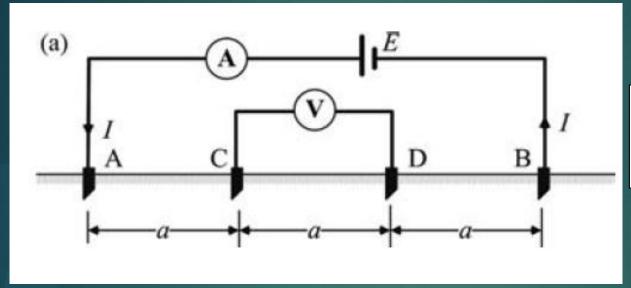

Variación de resistividad con las precipitaciones

Efecto sobre la capa superior de precipitaciones en un lapso de 18 meses.

Variación de resistividad con contenido de agua

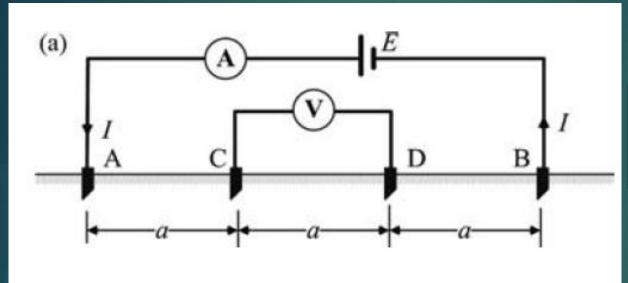

Efecto de la temperatura y el contenido de agua sobre la resistividad de la arena.

Medida de resistividad


Potencial generado por la inyección de corriente en un suelo de resistividad ρ:

$$V = \frac{\rho I}{2\pi r}$$

A partir de esta consideración teórica, se puede fundamentar la medición por el método de Wenner.

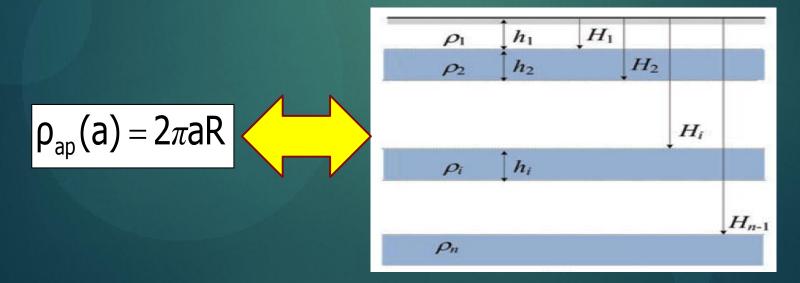

Medida de resistividad Wenner en suelo uniforme

$$V = \frac{\rho I}{2\pi r}$$

- Se inyecta corriente entre los terminales A-B y se mide la diferencia de potencial C-D.
- La distancia entre todos los electrodos es a.
- ▶ El telurímetro devuelve la medida $R = V_{CD}/I$.

Medida de resistividad Wenner e<u>n suelo uniforme</u>

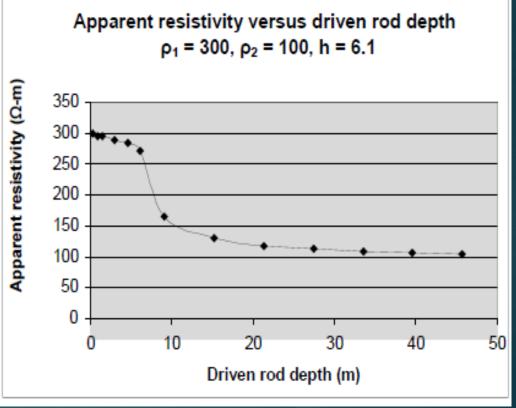
$$V = \frac{\rho I}{2\pi r}$$


$$V_{C} = \frac{\rho I}{2\pi} \left(\frac{1}{a} - \frac{1}{2a} \right) = \frac{\rho I}{2\pi} \frac{1}{2a}$$

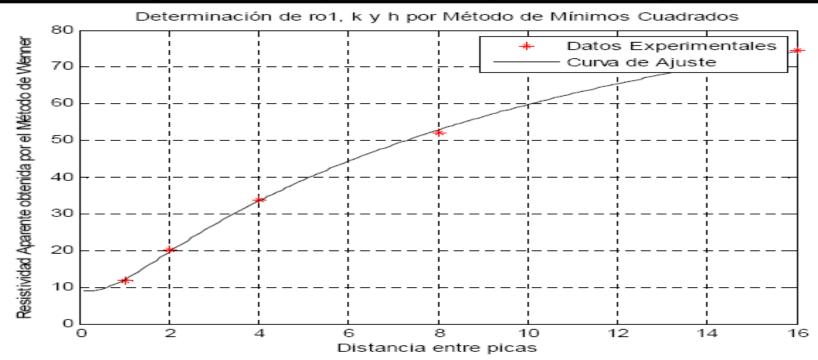
$$V_{D} = \frac{\rho I}{2\pi} \left(\frac{1}{2a} - \frac{1}{a} \right) = -\frac{\rho I}{2\pi} \frac{1}{2a}$$

$$V_{CD} = \frac{\rho I}{2\pi} \frac{1}{a} \quad \Rightarrow \quad \rho = 2\pi a \frac{V_{CD}}{I}$$

Medida de resistividad Wenner en suelo genérico

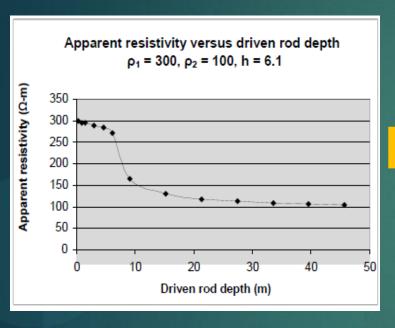

- ¿Qué sucede en el caso que se tomen medidas en un suelo general?
- ¿Qué significado tiene la expresión de la resistividad?

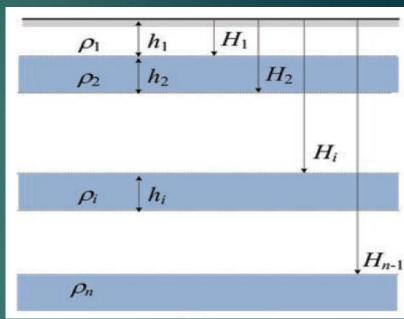
Medida de resistividad Wenner en suelo genérico


Rod depth m (ft)	ρ_1 = 300, ρ_2 = 100, h = 6.1 m (20 ft)		
	Resistance (Ω)	Apparent resistivity (Ω-m)	
0.3 (1.0)	647.60	299.3	
0.9 (3.0)	270.60	296.5	
1.5 (5.0)	177.10	294.7	
3.0 (10.0)	97.63	290.0	
4.5 (15.0)	67.85	284. 5	
6.1 (20.0)	50.82	272.6	
9.1 (30.0)	21.77	165.8	
15.2 (50.0)	10.91	129.7	
21.3 (70.0)	7.41	118.4	
27.4 (90.0)	5.64	112.5	
33.5 (110.0)	4.57	108.9	
39.6 (130.0)	3.84	106.1	
45.7 (150.0)	3.32	104.2	

$$\rho_{ap}(a) = 2\pi aR$$

Medida de resistividad

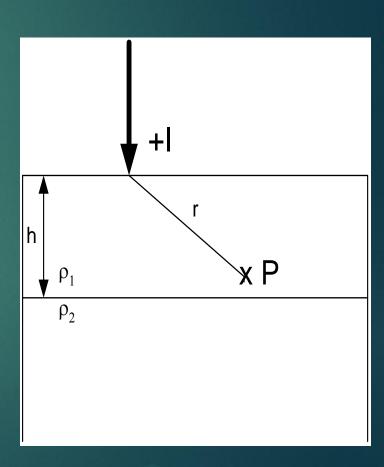

	Resistividad			
Distancia	Direccion 1	Direccion 2	Direccion 3	Media
1.00 m	11.53 Ωm	12.10 Ωm	12.00 Ωm	11.88 Ωm
2.00 m	20.11 Ωm	19.29 Ωm	21.36 Ωm	20.25 Ωm
4.00 m	33.68 Ωm	33.05 Ωm	34.43 Ωm	33.72 Ωm
8.00 m	51.77 Ωm	50.27 Ωm	54.29 Ωm	52.11 Ωm
16.00 m	88.97 Ωm	51.77 Ωm	82.44 Ωm	74.39 Ωm


Medida de resistividad Wenner en suelo genérico

- A partir de la curvas de ρ_i(h), <u>y si no existen medidas que denoten importantes estratificaciones verticales</u>, se puede deducir una única curva ρ(h).
- ► A partir de esta, se deducen la cantidad de capas, la profundidad de cada una: (ρ_i, h_i) .
- Por último, se realiza la reducción al modelo de resistividad aparente utilizando el método de Endrenyi (ρ_i,h_i) → ρ_{ap}

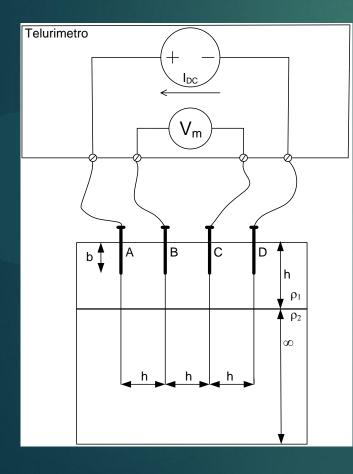
Medida de resistividad Wenner en suelo genérico

 $ho_{\sf ap}$


Endrenyi

Caso particular. Suelo de dos capas

Método de Tagg.


$$V_{p} = \frac{I \times \rho_{1}}{2\pi} \left[\frac{1}{r} + 2 \sum_{n=1}^{\infty} \frac{K^{n}}{\sqrt{r^{2} + \left(2nh\right)^{2}}} \right]$$

$$K = \frac{\rho_2 - \rho_1}{\rho_2 + \rho_1}$$

Caso particular. Suelo de dos capas

Método de Tagg.

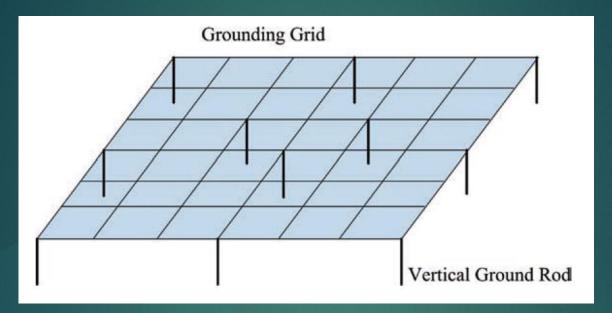
$$V_{\text{BC}} = \frac{I \times \rho_1}{2 \, \pi \, h} \left\{ 1 + 4 \sum_{n=1}^{\infty} \left[\frac{K^n}{\sqrt{1 + (2n)^2}} - \frac{K^n}{\sqrt{4 + (2n)^2}} \right] \right\}$$

$$\rho(h) = 2\pi hR$$

$$M(h) = \frac{\rho(h)}{\rho_1} = 1 + 4\sum_{n=1}^{\infty} \left[\frac{K^n}{\sqrt{1 + (2n)^2}} - \frac{K^n}{\sqrt{4 + (2n)^2}} \right]$$

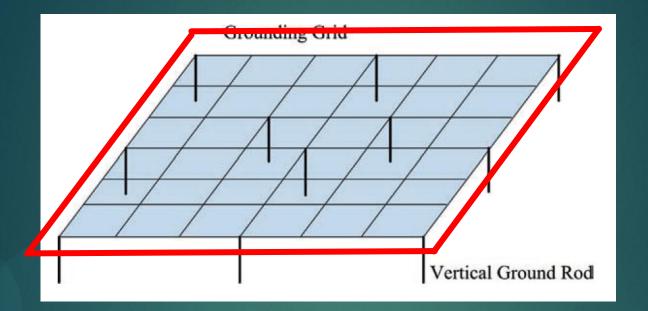
Medida de resistividad Alcance del modelado

El suelo puede ser representado mediante una resistencia y como un dieléctrico con un determinado punto de disrupción.


Los cálculos se abordan para garantizar integridad personal frente a corrientes de cortocircuito (50 Hz), por lo tanto, <u>es posible</u> modelar el terreno como resistencia.

Mallas de tierra Modelado

- Estrictamente, los conductores de la malla deben modelarse por un circuito Π – RLC.
- Dado que el cortocircuito es un fenómeno de baja frecuencia, se desprecia el término LC, por lo que los conductores se modelan solamente como una resistencia.


Como el medio y los conductores se modelan como resistencias, la impedancia de puesta a tierra se asume como una resistencia pura.

Mallas de tierra

- Arreglo de conductores de cobre desnudo dispuestos horizontalmente y soldados en intersecciones.
- Grilla rectangular 2.5m y 10m dependiendo del área.
- Generalmente soldadas jabalinas en el perímetro.
- Enterradas entre 0.5m y 1.5m.
- Recubierta con piedra partida entre 10cm y 20cm.

Mallas de tierra

- Anillo perimetral unido a la malla, situado entre 1.0m y
 1.5m para la minimización de tensiones transferidas.
- Salvo en casos especiales, se utiliza el cobre: alta conductividad, alta resistencia a la corrosión y alto punto de fusión.

¿Cómo se calcula la resistencia?

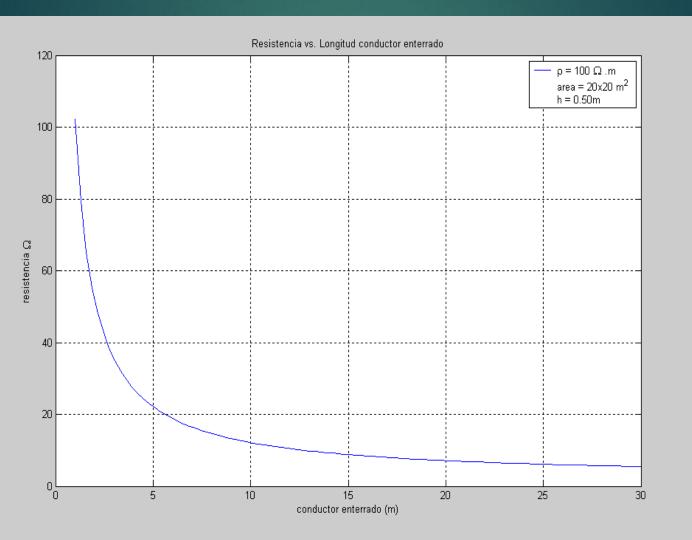
Un sistema ideal de puesta a tierra, debería tener una resistencia prácticamente nula. Con esto, se asegura que el GPR sea muy pequeño y por lo tanto la tensión de contacto nula.

Sin embargo, <u>una resistencia alta, no es sinónimo de mal diseño en alta tensión, cuando se prioriza la seguridad personal.</u>

 \blacktriangleright Valores usuales: 1-10 Ω para sistemas hasta 60kV.

 $< 5\Omega$ para sistemas >60kV.

Sin embargo, un valor de resistencia pequeño, sigue siendo un factor importante cuando se consideran:


- 1) Las tensiones transferidas hacia afuera del perímetro de la estación.
- 2) La aislación de los equipos electrónicos o de comunicaciones que forman parte de la instalación.

Varias posibles expresiones para estimar la resistencia de puesta a tierra según IEEE-80:

FORMULA DE SVERAK:

$$R_g = \rho \left[\frac{1}{L} + \frac{1}{\sqrt{20A}} \left(1 + \frac{1}{1 + h\sqrt{20/A}} \right) \right]$$

- ► Factores determinantes:
 - 1) La resistividad aparente del terreno.
 - 2) El área ocupada por el sistema de PAT.
- Observar la limitada influencia de L.

Mallas de tierra Dimensionado

Los conductores deben soportar sin fundirse la máxima corriente de cortocircuito prevista:

$$A_{mm^2} = I \sqrt{\frac{\frac{t_c a_r \rho_r 10^4}{TCAP}}{Ln \left[1 + \left(\frac{T_m - T_a}{K_0 + T_a}\right)\right]}} \label{eq:amm2}$$

- ► El proceso de calentamiento de los conductores se supone adiabático, es decir, que no se irradia calor hacia el suelo.
- Secciones típicas para mallas de tierra: entre 35mm² y 120mm².

Mallas de tierra Dimensionado

I = corriente rms en kA

A = sección de conductor en mm²

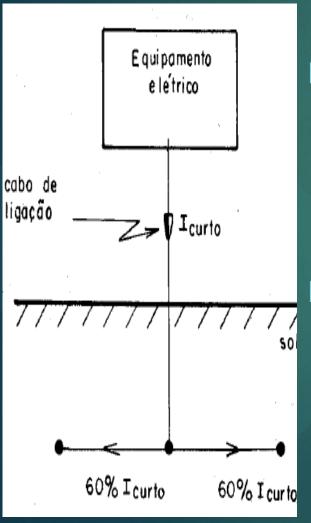
T_m = máxima temperatura en °C

T_a = temperatura ambiente en °C

T_r = temperatura de referencia para los materiales en °C

 a_0 = coeficiente térmico de la resistividad a 0° C

 a_r = coeficiente térmico de la resistividad a T_r


 $\rho_r = la resistividad del conductor a T_r en \mu\Omega - cm$

 $K_0 = 1/a_0$

t_c = tiempo de circulación de la corriente en s

TCAP = factor de capacidad térmica en J/cm³/^oC

Mallas de tierra Dimensionado

Dimensionado de los conductores conforme a la distribución de la corriente de cortocircuito.

 Observar que en este caso, no aplica el "Split Factor" en la corriente de cortocircuito calculado.