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a b s t r a c t

We put forward a methodological approach aimed at guiding ontologists in choosing which relations to
reify. Our proposal is based on the notions of aggregation, generalisation and participation as used in con-
ceptual modelling approaches for database design in order to represent situations that, normally, would
require non-binary relations or complex integrity constraints. In order to justify our approach, we provide
mathematical definitions of the constructs that we propose and use them to analyse the extent to which
they can be implemented in languages such as OWL. A number of results are also proved that attest to the
soundness of the methodological guidelines that we propose. The feedback received from using the
method in a real-word situation is that it offers a more controlled use of reification and a closer fit
between the resulting ontology and the application domain as perceived by an expert.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

A well-known limitation of OWL 2 (Web Ontology Language) is
that only binary relations between classes can be represented [1–
4]. In practice, relations of arbitrary arity are quite common and
they have to be represented in OWL in an indirect way by coding
them as classes.1 In the literature on Description Logic (DL) [5],
the class codifying a relation q is called the reification of q.2

As any codification, reification requires extra work in addition
to ‘simple’ modelling, which can make it quite impractical (and
unintuitive), especially when performed by people who are not ‘ex-
perts’: extra classes, predicates, individuals and axioms [6] need to
be introduced and, as the number of classes increases, ontologies
can become very difficult to read and understand, mainly because
this additional information often masks the concepts and struc-
tures that it encodes. That is, there is a mismatch between the layer
of abstraction at which domain modellers work and that of the rep-
resentation where information is encoded, which is particularly

harmful when we want to extend and reuse ontologies. Ontologies
that are simple and easy to read are also more likely to be reused.

In this paper we detail and expand on a method of Ontology
Engineering that we introduced in [7] for simplifying ontologies.
Our method is inspired by notions previously proposed in database
modelling and construction for increasing the ‘‘understandibility of
relational models by the imposition of additional semantic struc-
ture’’ [8]: aggregation and generalisation [9] and dependencies be-
tween relations [10]. Although, in ontologies, the technical
problems that arise are not necessarily the same as those of rela-
tional databases, the methodological issues are similar in the sense
that the solution to our problem lies first of all in helping modellers
to conceptualise the real world in a way that can lead to a better
representation, and then offering them a mechanism for imple-
menting these semantic structures in ontologies. By ‘better’ we
mean a more controlled use of reification and a closer fit between
the resulting ontology and the real-world domain as perceived by
an expert. Our method also makes ontologies easier to extend, in
particular to reuse existing reifications when adding new relations
to an ontology, which is essential for supporting an incremental
process of ontology engineering.

Having this in mind, we start by motivating the problem using
the case study that led us to investigate the representation of n-ary
relationships – an ontology of 16th-century Italian altarpieces [11].
In Section 3, we discuss a formal, set-theoretical notion of aggrega-
tion and the way that it can be implemented in ontologies through
reification. Then, in Section 4, we show how aggregation as a
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modelling abstraction and a new notion of dependency called par-
ticipation allows us to reduce the arity of a relation.3 We also dis-
cuss how these concepts can be used effectively in a number of
situations that are recurrent in domains such as that of altarpieces
to decide which relations should be reified. Finally, in Section 5,
we show how further simplification can be achieved through a
mechanism of generalisation.

2. Motivation

In order to illustrate some of the problems that may arise from
the limitations of having to encode n-ary relations through reifica-
tion and the method that we propose to minimise them, we use the
Ontology of Altarpieces [13] – a joint project between the Depart-
ments of Computer Science and History of Art and Film at the Uni-
versity of Leicester. This case study is a good example of a domain
in which n-ary relations arise quite naturally and frequently. There
are a fair number of 16th-century altarpieces in Italy [11], each
with a rich set of variations in the way they depict the subject mat-
ters, which is precisely what motivated this project as the typical
tool of the art expert – the spreadsheet – is not powerful enough
to analyse their properties.4

Suppose that we want to express the following knowledge as
produced in natural language by an art expert:

Joseph is holding the flowering staff in the altarpiece called ‘‘The
Marriage of the Virgin’’ by Raphael

The natural representation of this domain property is in terms
of a relation holds of arity 3:

(raphael⁄marriageofvirgin,
joseph,
floweringstaff) 2 holds

where raphael⁄marriageofvirgin is an identifier for the altar-
piece ‘‘The Marriage of Virgin’’ painted by Raphael. In the ontology
of altarpieces, we follow the traditional practice of art historians
(the domain experts) and use identifiers of the form painter

⁄title for altarpieces where painter is the name of the painter
and title is the designation of the picture.5

Fig. 1 shows an entity-relationship (ER) diagram for the rela-
tionship holds of which the triple above is an instance. The corre-
sponding relation cannot be represented in OWL unless we code
it as a class Reifholds of individuals that represent the tuples –
the reification of the relation [5]. For example, we can create an
individual h1 that represents the tuple:

(raphael⁄marriageofvirgin,
joseph,
flowering staff)

This individual then needs to be connected to each component of
the tuple using the role names Altarpiece, Figure and Object

as shown in Fig. 2, which in OWL Manchester syntax can be repre-
sented as follows:

Class: Reifholds

ObjectProperty: altarpiece

ObjectProperty: figure

ObjectProperty: object

Individual: h1

Types: Reifholds

Facts: altarpiece raphael⁄marriageofvirgin,
figure joseph,
object floweringstaff

However, reifying holds is not necessarily the right decision that
a modeller should make. In order to understand why, consider that
subsequent additions of triples leads to the following extension of
the relationship holds.

holds¼
fðraphael �marriageofvirgin;joseph;floweringstaffÞ;
ðraphael �marriageofvirgin;joseph;ringÞ;
ðcorregio �foursaints;peter;keysÞ;
ðcorregio �foursaints;peter;bookÞ;
ðroselli �madonnaandsaints;catherine;palmÞ;
ðroselli �madonnaandsaints;catherine;bookÞ;
ðdabrescia �madonnaandchild;catherine;swordÞ;
ðdabrescia �madonnaandchild;catherine;palmÞg

Through reification, we end up with 8 individuals, each coding one
of the triples, and 24 assertions for establishing the connections de-
picted in Fig. 2. A simple inspection of the triples suggests that a
simpler representation could be achieved by coding instead the
pairs

Fig. 1. ER diagram: holds as a relationship of arity 3.

Fig. 2. Representation of a triplet through reification.

3 Our notion of participation differs from the notion of participation used in the ER
model which relates an entity with a relation [12].

4 One of the queries we are interested in is in finding out the names and painters of
the altarpieces that satisfy certain description. For example, what are the altarpieces
that have someone holding a flowering staff?

5 If the painter is not known, we associate with it a special individual anonymous1,
anonymous2, etc. If a painter had two paintings under the same title such as
‘‘Coronation of the Virgin’’ by Lorenzo Monaco in the National Gallery, we enumerate
the titles such as coronationofvirgin1 and coronationofvirgin2.
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(raphael⁄marriageofvirgin, joseph),
(corregio⁄foursaints, peter),
(roselli ⁄ madonnaandsaints, catherine),
(dabrescia ⁄ madonnaandchild, catherine)

say, with four individuals:

raphael⁄marriageofvirgin⁄joseph
corregio⁄foursaints⁄peter
roselli ⁄ madonnaandsaints ⁄ catherine,
dabrescia ⁄ madonnaandchild ⁄ catherine

respectively, and then use a binary relation to represent holds:

dholds ¼
{(raphael⁄marriageofvirgin⁄joseph, floweringstaff),
(raphael⁄marriageofvirgin⁄joseph, ring),
(corregio⁄foursaints⁄peter, keys),
(corregio⁄foursaints⁄peter, book),
(roselli⁄madonnaandsaints⁄catherine, palm),
(roselli⁄madonnaandsaints⁄catherine, book),
(dabrescia⁄madonnaandchild⁄catherine, sword),
(dabrescia⁄madonnaandchild⁄catherine, palm)}

The main simplification arises from the fact that we were able
to transform the ternary relation holds into a binary relation
dholds, which does not need to be reified: it can be represented di-

rectly in OWL through a role.
In addition to saving on the number of individuals (4 instead of

8) and assertions (8 role assertions for the reification instead of
24),6 we argue that this simplification can be justified in methodo-
logical terms as it brings the representation closer to the domain. In-
deed, a conceptual model of the whole domain would reveal a richer
semantic structure that is not captured in the simple diagram given
in Fig. 1. More precisely, a wider conceptual model of the domain of
altarpieces as depicted in Fig. 3 shows that the entities
Altarpieces; Figures and Objects are involved in more complex rela-
tionships. On the one hand, holds is actually a binary relationship be-
tween Objects and the ‘aggregation’ of a relationship hasFigure
between Altarpieces and Figures (the aggregation is depicted by a
box surrounding the relationship subdiagram, which is the notation

usually adopted in conceptual modelling approaches). On the other
hand, hasFigure has a ‘descriptive attribute’ (functional relationship)
that returns the location of the figure in the altarpiece – one of
right, left, center, top, bottom, heaven or earth.

In summary, the simplification discussed above corresponds,
effectively, to reifying hasFigure and representing holds as a binary
relation as depicted in Fig. 3. Our purpose in this paper is, precisely,
to investigate how far the reification of hasFigure can be taken to
represent the aggregation of the relation as understood in concep-
tual modelling and how this and other constructions (such as
descriptive attributes) that have been proposed by the database
community 30 years ago can be used for developing simpler and
reusable ontologies from conceptual models. To state the obvious,
one should not take a blind approach to the representation of the
domain and reify relations as they come: the complexity of the
ontologies thus generated would be even beyond skilled computer
scientists, let alone domain experts. As in database design, one
should build a conceptual model of the domain before starting cod-
ing in OWL or any other language, and follow a sound methodol-
ogy, as outlined in this paper, to generate or reuse code.

3. Aggregation in set theory vs reification in OWL

Aggregation, as defined in [8], refers to an abstraction in which
a relationship between objects is regarded as a higher-level object.
The intention, as stated therein, was to adapt cartesian product
structures (as proposed by Hoare for record structures in program-
ing languages [14]) to be used in the context of relational models.
Although a formal definition was not given therein as a semantics
for the abstraction, we found it useful to advance one so that, on
the one hand, we can be precise about our usage of the term
and, on the other hand, we can relate it to the mechanism of
reification.

3.1. Aggregation and reification of binary relations

In this section, we propose a formalisation for the notions of
aggregation and reification of binary relations. It may seem
strange that we define these notions for binary relations when
the motivation for the paper is the representation of non-binary
ones. The reasons for doing so are twofold. On the one hand,
the case of binary relations is simpler and easier to understand.
On the other hand, and more importantly, the method we pro-
pose shows that, sometimes, it is convenient to reify binary
relations as a means of simplifying the representation of non-
binary ones, as illustrated in the previous section. Something
similar happens in [15] where, in some cases, a ternary relation
is not directly reified but represented indirectly by reifying a
binary relation.

We start by defining the concept of aggregation in the context
of Set Theory and then that of reification in the context of OWL.
We then analyse the extent to which aggregations can be imple-
mented in OWL as reifications.

Definition 1 (Aggregation of a binary relation). Let D1;D2 # D be
sets and q # D1 � D2 be a binary relation. An aggregation of q over
D is a set Dq # D together with two (total) functions r1 and r2

(called attribute functions) from Dq to D1 and D2, respectively, such
that the following conditions hold:

1. For all r 2 Dq; hr1ðrÞ;r2ðrÞi 2 q – i.e., there is no ‘junk’ in Dq.
2. For all hx1; x2i 2 q, there exists r 2 Dq such that r1ðrÞ ¼ x1 and

r2ðrÞ ¼ x2 – i.e., the aggregation covers the whole relation q.
3. For all r1; r2 2 Dq, if r1ðr1Þ ¼ r1ðr2Þ and r2ðr1Þ ¼ r2ðr2Þ then

r1 ¼ r2 – i.e., there is no ‘confusion’: every tuple of the relation
has a unique representation as an aggregate (see Fig. 4).

6 There are an additional 8 role assertions for representing the relation itself but
these are ‘natural’ in the sense they do not arise from a reification. Still, this would
mean a total of 16 assertions instead of 24.

Fig. 3. ER diagram: holds reduced to a binary relation through an aggregation.
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Note that the aggregation is the set Dq together with the
attribute functions r1 and r2, i.e. the whole structure hDq;r1;r2i.

Throughout the paper, we use the Greek alphabet for metavari-
ables ranging on sets and relations in Set Theory. Capital letters
D;C . . . are used for sets and lower case letters q;r . . . for relations.

It is easy to see that aggregations are unique up to isomorphism.

Example 1. Consider the following binary relation:

hasPainted ¼fðraphael;marriageofvirginÞ;
ðcorregio;foursaintsÞ;
ðroselli;madonnaandsaintsÞ;
ðdabrescia;madonnaandchildÞg

An aggregation of hasPainted is the set

Altarpieces ¼
fraphael � marriageofvirgin;
corregio � foursaints;
roselli � madonnaandsaints;
dabrescia � madonnaandchildg

together with the attribute functions painterset and picture-

nameset defined by:

painterðraphael � marriageofvirginÞ ¼ raphael;

picturenameðraphael � marriageofvirginÞ ¼
marriageofvirgin;

..

.

Note that we could have used a1, a2, a3 and a4 as an alterna-
tive notation for the four altarpieces shown in Altarpieces (or any
another similar encoding), together with the corresponding attri-
bute functions, because aggregations are unique up to
isomorphism.

Example 2. Consider the following binary relation:

hasFigure ¼
fðraphael � marriageofvirgin;josephÞ;
ðcorregio � foursaints;peterÞ;
ðroselli � madonnaandsaints;catherineÞ;
ðdabrescia � madonnaandchild;catherineÞg

An aggregation of hasFigure is the set

FiguresinAltarpieces ¼
fraphael � marriageofvirgin � joseph;
corregio � foursaints � peter;
roselli � madonnaandsaints � catherine;
dabrescia � madonnaandchild � catherineg

together with the attribute functions altarpiece and figure defined
by:

altarpieceðraphael � marriageofvirgin � josephÞ ¼
raphael � marriageofvirgin;

figureðraphael � marriageofvirgin � josephÞ ¼
joseph;

..

.

Example 3. In order to represent polyptych altarpieces such as
‘‘The Birth of the Virgin’’ by Lorenzetti, we divide the set Altarpieces
of altarpieces in two disjoint subsets, the set OAltarpieces of one-
field altarpieces and the set MAltarpieces of polyptych (many-field)
altarpieces that can have any number of panels (or fields). We fol-
low the convention of [11] and we enumerate the fields clockwise
from left to right, top to bottom. For example, the altarpiece by
Lorenzetti has three fields: field1, field2 and field3. We asso-
ciate fields with many-field altarpieces by means of a relation
hasField # MAltarpieces� Fields which in the example would be:

hasField ¼
fðlorenzetti � birthofvirgin;field1Þ;
ðlorenzetti � birthofvirgin;field2Þ;
ðlorenzetti � birthofvirgin;field3Þg

The set FieldsinAltarpieces defined by

florenzetti � birthofvirgin � field1;
lorenzetti � birthofvirgin � field2;
lorenzetti � birthofvirgin � field3g

is an aggregation of hasField together with the attributes maltarpiece
and field defined in the obvious manner.

The following proposition says that an aggregation of a relation
is as expressive as the relation: it stores the same information,
which can be retrieved by the attribute functions.

Proposition 1. Let q be a binary relation. Every aggregation Dq of q
is isomorphic to q in the sense that there exists a unique function
W : Dq ! D1 � D2 such that pi �W ¼ ri ði ¼ 1;2Þ, where each pi is
the ith-projection of the Cartesian product D1 � D2.

It is trivial to prove that W is a bijection. Its inverse defines the
encoding of the relation, i.e. it assigns to each pair in the relation q
a unique element (aggregate) of the set Dq.

Informally, the reification of a relation q in OWL is a class Cq

representing the tuples of q [5,16]. In order to be able to analyse
the relationship between reification and aggregation, it is useful
to provide a concrete definition of how we use the notion of
reification:

Definition 2 (Reification of a binary relation). Let D1;D2 # D and
q# D1 � D2 be a binary relation. A reification of q in OWL is a
concept Cq together with two roles S1 and S2 (called attribute roles),
a role R, two concepts D1 and D2, and the following collection Tq of
axioms:

(func) > v6 1S1u 6 1S2

(domain) 9S1:> u 9S2: v Cq

(range) > v 8S1:D1 u 8S2:D2

(totality) Cq v 9S1:D1 u 9S2:D2

(contains) ðS1Þ�1 � S2 v R
(unique rep) Cq hasKeyðS1; S2Þ

Fig. 4. Unicity of the representation.
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Please note that the hasKey constructor of OWL-2 [17] is used
in the last axiom to ensure that any two named individuals rand r0

in Cq are equal if they satisfy S1ðr; s1Þ; S2ðr; s2Þ; S1ðr0; s1Þ and
S2ðr0; s2Þ. The importance of this axiom is discussed after the fol-
lowing example.

For the composition R � S of properties R and S, we follow the
convention used in OWL where R � Sðx; zÞ if Rðx; yÞ and Sðy; zÞ.
Please, note that this is different from the standard set-theoretical
way of writing composition (see, for instance, Proposition 1).

Example 4. Consider the relation hasPainted introduced in Exam-
ple 1. Since we identify altarpieces precisely through the name of
the painter and the designation of the picture, the class
Altarpieces correspond in a natural way to the reification of
hasPainted. In order to declare the concept Altarpieces to be the
reification of hasPainted in OWL, we need a role hasPainted, two
attributes roles Painter and PictureName, the attribute role
inversepainter inverse of Painter, two concepts Painters

and PictureNames, and the axioms of Definition 2. The axioms
are written in a user’s friendly syntax (OWL Manchester Syntax)
below.

ObjectProperty: painter

Characteristics: Functional

Domain: Altarpieces

Range: Painters

InverseOf: inversepainter

ObjectProperty: picturename

Characteristics: Functional

Domain: Altarpieces

Range: PictureNames

ObjectProperty: hasPainted

Domain: Painters

Range: PictureNames

SubPropertyChain: inversepainter � picturename

Class: Painters

Class: PictureNames

Class: Altarpieces

SubClassOf: painter some Painters and

picturename some PictureNames

HasKey: (painter,picturename)

Fig. 5 shows a diagram illustrating all the components involved
in the reification of the relation hasPainted. The reification itself is
the concept or class Altarpieces and the two attribute roles
Painter and PictureName.

We first discuss the importance of the axiom (contains) which
is expressed above as a property chain. Using this axiom, we only
have to introduce in OWL that the individual raphael⁄marria-
geofvirgin belongs to the class Altarpieces and the values for
the projections:

Individual: raphael⁄marriageofvirgin
Types: Altarpieces

Facts: painter raphael,

picturename marriageofvirgin

Then, OWL will be able to infer that raphael painted marria-

geofvirgin, i.e.

Individual: raphael

Fact: hasPainted marriageofvirgin

This inference is denoted by dotted arrow in Fig. 5.
It is worth discussing in more detail the importance of including

the last axiom – unique rep. In the following examples, we are
interested in queries that combine the reasoner with the closed
world assumption. For this, we are assuming the notion of certain
answer as in [18,19]. Intuitively, the certain answers to a query are
the answers which are known so far and are compatible with the
ontology. Formally, fðc1; c2ÞjO � qðc1; c2Þg where qðx; yÞ is a for-
mula with only 2 variables and O is an ontology. If we do not
ensure uniqueness of representation, a modeller (or different
people working over the same ontology) can perfectly well
introduce two individuals representing the same tuple without
the reasoner being able to infer that they are equal. In simple
terms, this means that, in the absence of the axiom, a query to
retrieve the original table may have repeated rows. This implies, in
particular, that queries may return incorrect answers. For instance,
if we want to query the number of altarpieces that have no
signature, we may count the same tuple more than once. Adding
the axiom unique rep allows us to do a more correct way of closed
world reasoning.

For another example, suppose that we want to express two
relationships – paintmedia and height – on the class Altar-

pieces. As depicted in Fig. 6, it is possible that two
representations

raphael � marriageofvirgin
raphaelmarriageofvirgin

of the same tuple of hasPainted have been accidentally intro-
duced. The individual raphael⁄marriageofvirgin got con-
nected by the predicate paintmedia to oil – representing the
fact that, Raphael’s Marriage of Virgin has been painted in oil –
and raphaelmarriageofvirgin by the predicate height to
170 – representing the fact that, the same painting is 170 cm
high.

A query can go awfully wrong if it does not take into account
the fact that the tuples can be duplicated. To clarify this point,
consider the query ‘‘Is there an altarpiece painted in oil and 170 cm
high?’’. The intuitive formulation of the query

Fig. 5. Altarpieces as the reification of hasPainted. Fig. 6. Two properties connected to two different representations of the same tuple.
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q1ðx1; x2Þ  paintmediaðr;oilÞu
heightðr;170Þu
Painterðr; x1Þu
PictureNameðr; x2Þ

will incorrectly return no answers because of the duplicated repre-
sentation. The following alternative formulation would take into ac-
count that tuples can be duplicated:

q2ðx1; x2Þ  paintmediaðr1;oilÞu
heightðr2;170Þu
Painterðr1; x1Þu
PictureNameðr1; x2Þu
Painterðr2; x1Þu
PictureNameðr2; x2Þ

This query will correctly return one answer which is x1 ¼ raphael

and x2 ¼ marriageofvirgin.
However, this formulation is no longer very intuitive, i.e. it

needs to anticipate the existence of multiple representations,
which is a problem of the representation that does not arise from
the domain of discourse. In summary, the inclusion of unique rep is
essential to ensure that we have a faithful representation of the
domain.

Example 5. Consider the relation hasFigure defined in Example 2.
The corresponding representation in OWL is achieved through
the reification of the relation hasFigure. We introduce the concept
FiguresinAltarpieces to represent this reification and add all
the corresponding axioms (see Definition 2). These axioms are
written in OWL Manchester syntax as follows:

ObjectProperty: altarpiece

Characteristics: Functional

Domain: FiguresinAltarpieces

Range: Altarpieces

InverseOf: inversealtarpieces

ObjectProperty: figure

Characteristics: Functional

Domain: FiguresinAltarpieces

Range: Figures

ObjectProperty: hasFigure

Domain: Altarpieces

Range: Figures

SubPropertyChain: inversealtarpieces � figure

Class: Figures

Class: FiguresinAltarpieces

SubClassOf: altarpieces some Altarpieces and

figure some Figures

HasKey: (altarpiece, figure)

Fig. 7 shows a diagram illustrating all the components involved in
the reification of hasFigure.

We follow the convention mentioned in Example 2 and the
tuple (raphael⁄marriageofvirgin, joseph) is represented by
the individual

raphael � marriageofvirgin � joseph

We also have to associate values with the attribute roles altar-

piece and figure:

Individual: raphael⁄marriageofvirgin⁄joseph
Types: FiguresinAltarpieces

Facts: altarpiece raphael⁄marriageofvirgin,
figure joseph

Example 6. Consider the relation hasField introduced in Example
3. For the reification of the relation hasField, we introduce the con-
cept FieldsinAltarpieces and add all the corresponding axi-
oms (see Definition 2). These axioms are written in OWL
Manchester syntax as follows:

ObjectProperty: maltarpiece

Characteristics: Functional

Domain: FieldsinAltarpieces

Range: MFieldAltarpieces

InverseOf: inversemaltarpieces

ObjectProperty: field

Characteristics: Functional

Domain: FieldsinAltarpieces

Range: Fields

ObjectProperty: hasField

Domain: MFieldAltarpieces

Range: Fields

SubPropertyChain: inversemaltarpieces � field

Class: Fields

Class: FieldsinAltarpieces

SubClassOf: maltarpiece

some MAltarpieces

and field some Fields

HasKey: (maltarpiece, field)

Fig. 8 shows a diagram illustrating all the components involved in
the reification of hasField.

We follow the same convention mentioned before and the tuple
(lorenzetti⁄birthofvirgin, field2) is represented by the
individual lorenzetti⁄birthofvirgin⁄field2. We also have
to associate values with the attribute roles maltarpiece and
Field:

Individual: lorenzetti⁄birthofvirgin⁄field2
Types: FieldsinAltarpieces

Facts: maltarpiece lorezetti⁄birthofvirgin,
field field2

Fig. 7. FiguresinAltarpieces: the reification of hasFigure. Fig. 8. FieldsinAltarpieces: the reification of hasField.

88 P. Severi et al. / Web Semantics: Science, Services and Agents on the World Wide Web 9 (2011) 83–98



Author's personal copy

We can now define more precisely how a reification relates to
the relation. Throughout the remainder of the paper, we use capital
letters C;D . . . for metavariables ranging over concepts or classes
and we use R; S; . . . for roles or properties.

Definition 3 (Faithful reification). Let q # D1 � D2 be a binary
relation. Given an interpretation I, we say that the reification
hCq;R;D1;D2; S1; S2i is faithful to q in relation to I iff
RI ¼ q; DI

1 ¼ D1; DI
2 ¼ D2, and hCI

q; S
I
1; S

I
2i is an aggregation of q.

Unfortunately, the axioms that are part of the reification (Defi-
nition 2) are not sufficient to guarantee that the reification is faith-
ful to q in relation to every interpretation:

� The first three axioms state that the role names S1 and S2 are
total functions from Cq to D1 and D2, respectively. However, a
limitation of OWL is that the reasoner does not show any incon-
sistency if we forget to define S1 or S2 for some element of Cq

(see [20]).
� The converse of R-contains, which would correspond to the sec-

ond condition of Definition 1, is as follows

ðR-inclusionÞ R v ðS1Þ�1 � S2

However, this axiom cannot be expressed in OWL in that way
because the right-hand side of the inclusion is not a role name
(see [3]).
� The axiom unique repis weaker than the third condition of Def-

inition 1 in the sense that the unicity of the representation is
not enforced for all individuals but only on those that are explic-
itly named in the ontology. This is because the hasKey con-
structor of OWL-2 is a weak form of key representation (the
so-called ‘‘EasyKey constraints’’) that is valid only for individu-
als belonging to the Herbrand Universe [17].

Summarising, reification is not only hard work (in the sense
that it requires the modeller to introduce a number of roles
and axioms that are ‘technical’, i.e. more related to the limita-
tions of the formalism and less specific to the domain of appli-
cation) but also prone to errors. Essentially, errors may arise if
the modeller forgets to enforce the properties that cannot be ex-
pressed in OWL.

3.2. Aggregation and reification of n-ary relations

Definition 1 can be generalised to relations of arbitrary arity and
to relations with ‘key attributes’ as originally introduced in [8]:

Definition 4 (Aggregation of a relation of arity n). Let D1; . . . ;Dn # D
and q# D1 � � � � � Dn be a relation. Let i1; . . . ; ik 2 f1; . . . ;ng. An
aggregation of q with keys {i1; . . . ; ik} over a universe D is a set
Dq # D together with n (total) functions r1; . . . ;rn from Dq to
D1; . . . ;Dn, respectively, such that:

1. For all r 2 Dq, we have that hr1ðrÞ; . . . ;rnðrÞi 2 q.
2. For all hx1; . . . ; xni 2 q, there exists r 2 Dq such that

r1ðrÞ ¼ x1; . . . ;rnðrÞ ¼ xn.
3. For all r1; r2 2 Dq, if ri1 ðr1Þ ¼ ri1 ðr2Þ; . . . ;rik ðr1Þ ¼ rik ðr2Þ then

r1 ¼ r2 – i.e., every tuple of the relation is uniquely identified
by its key attributes.

The functions ri1 ; . . . ;rik are called key attributes functions and
the remaining ones are called non-key attribute functions.

Proposition 1 has a trivial generalisation to the n-ary case:

Proposition 2. Let q # D1 � � � � � Dn be a relation and
i1; . . . ; ik 2 f1; . . . ;ng. Then, every aggregation Dq of q with keys
fi1; . . . ; ikg is isomorphic to q in the sense that there exists a unique
function W : Dq ! D1 � . . .� Dn such that pi �W ¼ riði ¼ 1; . . . ;nÞ.

The existence of an aggregation with given keys cannot always
be guaranteed:

Proposition 3. An aggregation exists for a relation q# D1 � � � � � Dn

with keys {i1; . . . ; ik} iff

� q is a partial function from Di1 � . . .� Dik into Dj1 � � � �Djn�k
, where

the set fj1; . . . ; jn�kg is the complement of fi1; . . . ikg;
� there is an embedding (injective function) of the domain of q in D,

i.e. the universe is large enough to represent the relation.

Note that, in the conditions of this proposition, if the universe iD
contains the Cartesian product D1 � � � � � Dn, then q is an aggrega-
tion of itself where the attribute functions are the Cartesian projec-
tions pi. The reason we define the concept of aggregation is that
the Cartesian product is not a construct of OWL (or, indeed, DL)
and, therefore, one needs to resort to mechanisms like reification
to encode relations.

Example 7. We consider the example of holds given in Section 2.
An aggregation of holds is the set

Dholds ¼ fh1 ;h2 ;h3 ;h4 ;h5 ;h6 ;h7 ;h8g

together with the attribute functions altarpiece, figure and object de-
fined by:

altarpieceðh1Þ ¼ raphael � marriageofvirgin;
figureðh1Þ ¼ joseph;

objectðh1Þ ¼ floweringstaff

..

.

Example 8. As an example of a relation where only a subset of the
attributes are key is isLocated the key attributes being altarpiece
and figure. Consider the following definition of isLocated:

isLocated ¼
fðraphael � marriageofvirgin;joseph;rightÞ;
ðcorregio � foursaints;peter;leftÞ;
ðroselli � madonnaandsaints;catherine;leftÞ;
ðdabrescia � madonnaandchild;catherine;rightÞg

Note that the third component is functional on the first two
ones. The set FiguresinAltarpieces defined in Example 2 is an aggre-
gation of isLocated. The non-key attribute ! locationset is defined
in the obvious manner.

We now generalise Definition 2 to relations of arbitrary arity.
The main difference is that, for non-binary relations, we cannot
use an atomic role R for representing the relation. For this reason,
the axiom R-contains has to be dropped.

Definition 5 (Reification of a relation of arity n). Let D1; . . . ;Dn # D
and q# D1 � � � � � Dn be a relation. Let i1; . . . ; ik 2 f1; . . . ;ng. A
reification of q in OWL with keys fi1; . . . ; ikg is a concept Cq together
with roles S1; . . . ; Sn (called attribute roles), domains D1; . . . ;Dn, and
the following collection Tq of axioms:

(func) > v6 1S1 u . . .u 6 1Sn

(domain) 9S1:> u . . . u 9Sn:> v Cq

(range) > v 8S1:D1 u . . . u 8Sn:Dn

(totality) CR v 9S1:D1 u . . . u 9Sn:Dn

(unique rep) Cq hasKeyðSi1
; . . . ; Sik

Þ
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We call Si1 ; . . . ; Sik the key attribute roles of the reification and the
rest are the non-key attribute roles.

Example 9. For the reification of holds, we introduce the concept
Reifholds, three roles Altarpiece, Figure and Object and the axi-
oms of Definition 5 (see also Fig. 9). These axioms are written in
OWL Manchester Syntax as follows:

ObjectProperty: altarpiece Characteristics:

Functional

Domain: Reifholds

Range: Altarpieces

ObjectProperty: figure

Characteristics: Functional

Domain: Reifholds

Range: Figures

ObjectProperty: object

Characteristics: Functional

Domain: Reifholds

Range: Objects

Class: Objects

Class: Reifholds

SubClassOf: altarpiece some Altarpieces and

figure some Figures and

object some Objects

HasKey: (altarpiece, figure, object)

Example 10. For the reification of the relation isLocated from
Example 8, we introduce the concept ReifisLocated, the key
attribute roles altarpiece, Figure, and the non-key attribute
role Location (see also Fig. 10). The axioms of Definition 5 are
written in OWL Manchester Syntax as follows:

ObjectProperty: altarpiece

Characteristics: Functional

Domain: ReifisLocated

Range: Altarpieces

ObjectProperty: figure

Characteristics: Functional

Domain: ReifisLocated

Range: Figures

DataProperty: location

Characteristics: Functional

Domain: ReifisLocated

Range: Locations

Class: Locations

Class: ReifisLocated

SubClassOf: altarpiece some Altarpieces and

figure some Figures and

location some Locations

HasKey: (altarpiece,figure)

Notice that, in this example, we used the same role names
altarpiece and Figure as in Examples 5 and 9. Strictly speaking,
this is an abuse of notation and we should use different role names
if the concepts ChasFigure; Cholds and CisLocated are all different. We will
discuss this example again in the next section.

4. Participation dependency

In this section, we put forward a methodological approach
aimed at guiding the modeller in the use of reification based on
the concepts formalised in the previous section. The method is
based on the usage of the semantic primitive of aggregation as
used in conceptual modelling precisely for representing situations
that, normally, would require non-binary relations or complex
integrity constraints [12].

The notion of aggregation allows us to reduce the arity of a rela-
tion. This reduction can be performed without losing information if
the relations satisfy certain dependencies. The notion of inclusion
dependency, which is typical in databases [10], is too weak to en-
sure that arity reduction preserves information. Because of this, we
introduce a new notion of dependency called participation. We
illustrate the approach with some examples that are representative
of the situations that we have encountered in the altarpieces
project.

4.1. Relationships amongst relationships

A recurrent situation in database modelling is the use of aggre-
gation in order to reduce certain ternary relationships to binary
ones [12]. Using ER diagrams, the method can be explained in
terms of evolving situations such as the one depicted in Fig. 1 to
the one depicted in Fig. 3. More specifically, the method consists
in identifying a binary relationship – hasFigure in the case at hand
– such that the ternary relationship – holds – can be expressed as a
binary relationship between the aggregation of the former and the
remaining domain – Objects (see Fig. 3).

Following this methodological principle, instead of reifying
holds, we reify hasFigure. Because hasFigure is a binary relation,
we represent it by a role hasFigure and consider the reification
of hasFigure as in Example 5, which we name FiguresinAltar-

pieces. The relation holds is represented as an object property
whose domain is FiguresinAltarpieces and whose range is
Objects. This can be expressed in OWL Manchester syntax as
follows:

ObjectProperty: holds

Domain: FiguresinAltarpieces

Range: Objects

The result is depicted through the following diagram:

FiguresinAltarpieces ��������!holds
Objects

At the level of individuals, we add assertions such as:

Individual: raphael⁄marriageofvirgin⁄joseph
Facts: holds floweringstaff

The methodological question is, then: What is the property
that allows us to reduce the arity of a relation? The answer that
we provide to this question is based on the key concept of

Fig. 9. Representation of holds as a relation of arity 3.

Fig. 10. Reification of isLocated as a relation of arity 3.
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‘participation’. Intuitively, a relation q0 participates in another
relation q if the projection of q on some of its components is in-
cluded in q0.

Definition 6 (Participation in a relation of arity 3). Let D1;D2;

D3 # D;q0# D1 � D2 be a binary relation and q # D1 � D2 � D3 a
ternary relation. We say that q0 participates in q if the following
condition (called participation constraint) is satisfied:

� For all x 2 D1; y 2 D2; z 2 D3, if ðx; y; zÞ 2 q then ðx; yÞ 2 q0.

Similarly, we can define when q0# D2 � D3 or # D1 � D3

participates in q. The relation q0 is called the participating relation.
We also say that there is a participation dependency between q0 and
q when q0 participates in q.

Notice that our notion of participation differs from the one used
in the ER model [12], which refers to the participation of an entity
set in a relation, not of a relation in another relation. Furthermore,
in the ER model, the participation constraint usually refers to the
‘total participation’ of an entity D1 in a relation q , i.e. for all
x 2 D1 there exist y; z such that ðx; y; zÞ 2 q.

Example 11. The relation hasFigure participates in the relation
holds because the participation constraint holds:

if ðx; y; zÞ 2 holds then ðx; yÞ 2 hasFigure for all x; y; z: ð1Þ

From the point of view of the database relational model, the no-
tion of participation is a restricted form of inclusion dependency
between relations [10]. More precisely, if q0 participates in q then
there is an inclusion dependency between q0 and q. However, the
converse is not true: not all inclusion dependencies are participa-
tion dependencies. The stronger concept of participation depen-
dency is needed to ensure that the arity of a relation can be
reduced without losing information as we show in the next
proposition.

Proposition 4. Let q0 participate in q and let Dq0 be an aggregation of
q0 with attributes r1 and r2. Then, the ternary relation q is
isomorphic to a binary relation between the aggregation Dq0 and D3,
which we call the reduction of q by Dq0 .

Proof. The reduction of q by Dq0 is the relation bq # Dq0 � D3 defined
by: bq ¼ fðr; zÞjðr1ðrÞ;r2ðrÞ; zÞ 2 qg

It follows from the fact that q0 participates in q and Proposition
1 that q and bq are isomorphic. h

Definition 7 (Arity reduction of a relation). We say that the ternary
relation q reduces to a binary relation r if r ¼ bq.

We now show that it is always possible to reduce the arity of a
ternary relation.

Proposition 5. For any ternary relation q there exist a binary relation
r such that q reduces to r.

Proof. Suppose q # D1 � D2 � D3. Trivially, q0 ¼ D1 � D2 partici-
pates in q and by Proposition 4 we have that q reduces to r ¼ bq
where bq is the reduction of q by Dq0 . h

There are more ways of reducing the arity of a relation than the one
shown in the proof above. Since D2 � D3 and D1 � D3 also participate
in q, we could have aggregated any of these two relations instead of
D1 � D2. We will show examples where there are more participating
relations than those three.

As discussed in Section 3, aggregation can be (partially) imple-
mented in OWL through the mechanism of reification. Taking this
forward to participation, if q0 participates in q, we can reify q0 and
represent the reduction bq as a role R whose domain is Cq0

Cq0 ��������!
R

D3

For example, in order to represent the relation holds in OWL, we
represent its reduction dholds using the reification of hasFigure.

In summary, the method that we propose for guiding reification
consists in analysing which relations participate in other relations:
if q0 participates in q then, instead of reifying the whole relation q,
we should consider reifying the participating relation q0 and repre-
sent q as a role whose domain is Cq0 . If q0 participates in yet an-
other relation, say q00, that relation does not need to be reified
either and we can reuse instead the reification Cq0 of q0.

For example, hasFigure participates in many relations other than
holds – e.g. wears. All the corresponding relations can be repre-
sented in OWL as object properties whose domain is
FiguresinAltarpieces. That is, wears can be represented as a
role wears whose domain is FiguresinAltarpieces and whose
range is Objects, which can be written in OWL Manchester syntax
as follows:

ObjectProperty: wears

Domain: FiguresinAltarpieces

Range: Objects

The corresponding diagrammatic representation is:

FiguresinAltarpieces ��������!wears
Objects

The advantage of reusing reifications is clear. The axioms for
expressing that FiguresinAltarpieces is the reification of
hasFigure (see Example 5) have to be introduced only once,
thus avoiding the replication that a blind approach to representa-
tion would entail. By choosing to reify the participating relation,
we do not only reduce the number of reifications but we also re-
duce the number of codifications for individuals. This is because
we are coding only the components that are shared by several tu-
ples as we showed in Section 2. These components are not only
shared in one relation but also amongst several relations. For
example, in order to express that Catherine is wearing a crown
in ‘‘The Madonna and Saints’’ by Roselli, we can reuse the indi-
vidual roselli � madonnaandsaints � catherine which was
already introduced to express that Catherine is holding the palm
and a book.

Individual: roselli⁄madonnaandsaints⁄catherine
Facts: wears crown

Another important aspect of this representation (which is an-
other reason why it is better than the reified ternary relation) is
that we now have the relation holds represented as a property
holds and not as a class Reifholds as in Example 9. Reifications
represent properties but they cannot be used in the syntax as prop-
erties because they are actually classes. For instance, we cannot
use constructors for roles (e.g. composition, quantification or tran-
sitive closure) on Cholds, which may restrict the ability of the mod-
eller to capture important aspects of the domain. Instead, the
representation of holds as a property allows us to use the role name
holds in quantifications or in compositions. Below, we will see an
example where holds is used in a composition.

Yet, one of the most important aspect of our method is that, by
reifying the participating relations, we are reflecting and enforcing
the participation constraint within the logic. Fig. 11 illustrates the
case for the relation holds. The participation constraint shown in
Example 11 can be deduced. In particular, OWL will be able to infer
the following assertion:

P. Severi et al. / Web Semantics: Science, Services and Agents on the World Wide Web 9 (2011) 83–98 91



Author's personal copy

Individual: raphael⁄marriageofvirgin
Facts: hasFigure joseph

using the domain of holds, the attribute roles and the axiom (con-
tains) of Example 5.

However, not all relevant participation constraints result in
reification and have to be explicitly stated. For example, there is
another participation constraint for holds that has not been en-
forced yet:

if ðx; y; zÞ 2 holds then ðx; zÞ 2 hasObject for all x; y; z: ð2Þ

An easy way to enforce this constraint without changing the
representation in Fig. 11 is to add the following axiom:

altarpiece
�1 � holds v hasObject

which in OWL Manchester syntax is:

ObjectProperty: hasObject

Domain: Altarpieces

Range: Objects

SubPropertyChain: inversealtarpiece o holds

Fig. 12 illustrates the case of the two overlapping constraints.
There are other ways of representing the relation holds and re-

flect the overlapping constraints. We prefer the solution already
presented because it looks more readable and intuitive.

1. We could have reified hasObject and represented the relation
holds as a role holds whose domain is Figures and range is
the reificaton of hasObject. We can see that the pairs

ðraphael � marriageofvirgin � joseph;bookÞ

and

ðjoseph;raphael � marriageofvirgin � bookÞ

codify the same triplet, i.e.

ðraphael � marriageofvirgin;joseph;bookÞ:

There is no mathematical difference between these solutions
since both reductions of holds are isomorphic by Proposition
4. The diagram of the OWL representation obtained by reify-
ing hasObject will look symmetric to Fig. 12.

2. We could also have reified both participating relations hasFigure
and hasObject. This solution has some intuition behind it. The
individual joseph is representing the figure of Joseph in an
abstract way but the individual

raphael � marriageofvirgin � joseph

is representing the particular figure of Joseph on the altar-
piece raphael � marriageofvirgin. Hence, we could con-
sider the pair

ðraphael � marriageofvirgin � joseph;
raphael � marriageofvirgin � bookÞ

to represent the triplet. This solution looks as if it is storing
redundant information since the altarpiece is coded twice.
However, this solution is also mathematically equivalent to
the first one and it is possible to use the axioms of the logic
to state that both components of the above pair have the
same altarpiece.

Example 12. We show an interesting example that involves polyp-
tych altarpieces. Suppose that we want to express the following
fact about a triptych altarpiece:

St Anne is a figure that appears in the central panel of the altarpiece
called ‘‘The Birth of the Virgin’’ by Lorenzetti

The natural representation of this domain property is in terms
of a relation hasFigureinField of arity 3

hasFigureinField # MAltarpieces� Fields� Figures

where

Altarpieces ¼ OAltarpieces [MAltarpieces

The central panel is identified by field2. Then,

ðlorenzetti � birthofvirgin;field2;anneÞ
2 hasFigureinField

We have two participation dependencies:

1. hasField participates in hasFigureinField, i.e.

if ðx; y; zÞ 2 hasFigureinField then ðx; yÞ 2 hasField

for all x 2 MAltarpieces; y 2 Fields and z 2 Figures.
2. hasFigure participates in hasFigureinField, i.e.

if ðx; y; zÞ 2 hasFigureinField then
ðx; zÞ 2 hasFigure

for all x 2 MAltarpieces; y 2 Fields and z 2 Figures.

The natural and simplest choice for reifying is the first participation
relation. Fig. 13 shows the ER diagram obtained by aggregating the
first participation relation. Following the same pattern as in the
example of holds, we represent the ternary relation hasFigureinField
as an object property whose domain is FieldsinAltarpieces

and range is Figures (see Fig. 14).

ObjectProperty: hasFigureinField

Domain: FieldsinAltarpieces

Range: Figures

The first participation constraint of hasField is enforced because
the domain of hasFigureinField is the reification of hasField. To

Fig. 11. Capturing the participation constraint between hasFigure and holds.

Fig. 12. Capturing the overlapping constraints: hasFigure and hasObject participate
in holds.
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enforce the second participation constraint, we follow the same
pattern as we did for the overlapping constraints of holds and we
add the following axiom:

maltarpiece
�1 � hasFigureinField v hasFigure

which in OWL Manchester syntax is:

ObjectProperty: hasFigure

SubPropertyChain: inversemaltarpiece �
hasFigureinField

4.2. Descriptive attributes

Another related methodological guideline for the use of reifica-
tion arises from what in [12] are called descriptive attributes.
Descriptive attributes are used to record information about a rela-
tionship rather than about one of the participating entities, again
using an aggregation. From a conceptual modelling point of view,
they allow us to capture typical situations in which a functional
dependency exists in a ternary relation as an attribute of the aggre-
gation of a binary relation. For example, it would be intuitive to
represent location in Fig. 15 as a descriptive attribute associated
with the relationship hasFigure.

Definition 8 (Descriptive attribute). Let q # D1 � D2 and q0# D1�
D2 � D3. We say that q0 is a descriptive attribute of q if the
following conditions hold:

1. q0 is a function from D1 � D2 to D3.
2. q participates in q0.

It is evident from this definition that the notion of descriptive attri-
bute is a particular case of the notion of participation as introduced
in Definition 6. Given that descriptive attributes involve a partici-
pating relation, the methodological guidelines that we discussed
in 4.1 suggest that descriptive attributes be represented as (func-
tional) roles of the reification of the participating relation.

For example, location is a descriptive attribute of hasFigure be-
cause the following properties hold in the domain:

1. There is a functional dependency between the location and pair
given by the altarpiece and the figure. In other words, the ter-
nary relation isLocated is actually a function

isLocated 2 Altarpieces� Figures! Locations

2. There exists a participation dependency between the relations
hasFigure and isLocated. In other words, hasFigure participates
in isLocated, i.e. for all x; y and z, we have that:

if ðx; y; zÞ 2 isLocatedthenðx; yÞ 2 hasFigure:

We can represent the descriptive attribute location in OWL as
follows:

1. We reuse the class FiguresinAltarpieces as the reification
of hasFigure (see Example 5).

2. We define a role isLocated representing the descriptive attri-
bute as a function whose domain is

FiguresinAltarpieces:

This is written in OWL Manchester syntax as follows:

DateProperty: isLocated

Characteristics: Functional

Domain: FiguresinAltarpieces

Range: Locations

The OWL-representation of the descriptive attribute isLocated
can be depicted as follows:

FiguresinAltarpieces ��������!isLocated
Locations

Notice that descriptive attributes are a particular case of non-
key attributes (see Definition 4) where we have the additional
involvement of a participating relation. At first sight it might look
as if reifying isLocated as a relation of arity 3 whose key attributes
are the first and second components (Example 10) would be the
same as first reifying hasFigure and later adding isLocated as a
descriptive attribute. However, there are some important differ-
ences between these two processes. Example 10 does not take into
account that hasFigure is a participating relation. From the point of
view of the axioms, this is reflected in the fact that the axiom (con-
tains) was not present in Example 10, whilst this axiom is an
important component of the reification of hasFigure.

There is also a methodological difference between the two pro-
cesses. On the one hand, we want to leave the system open to the

Fig. 13. ER diagram: hasFigureinField for Many Field Altarpieces reduced to a binary
relation through an aggregation.

Fig. 14. Capturing overlapping constraints: hasField and hasFigure participate in
hasFigure.

Fig. 15. ER diagram: a descriptive attribute.
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addition of any number of descriptive attributes (such as size). On
the other hand, we also want to add the right amount of axioms
and have a systematic way for doing so. In order to achieve this,
it should be clear which is the participating relation and how the
relations interact with each other. That is, descriptive attributes
play an important methodological role in the representation of
the domain knowledge.

4.3. Relations of arbitrary arity

In this section, we generalise the notion of participation to rela-
tions of arbitrary arity and show how the notion of participation
can be used to reduce any n-ary relation to a relation of a smaller
arity. We also show an example of a relation of arity 4 with several
participating relations and how the choice of a participating rela-
tion can affect our representation of the relation.

Definition 9 (Participation in a relation of arity n). Let i1; . . . ; ik 2
f1; . . . ;ng be all different, q# D1 � . . .� Dn and q0# Di1 � . . .� Dik

.
We say that q0 participates in q iff the following constraint (also
called the participation constraint) is satisfied for all
x1 2 D1; . . . ; xn 2 Dn:

ðx1; . . . ; xnÞ 2 q implies ðxi1 ; . . . ; xik Þ 2 q0

The relation q0 is called the participating relation. We also say
that there is a participation dependency between q0 and q when q0

participates in q.
The notion of participation allows us to reduce the arity of a

relation:

Proposition 6. If q0 participates in q then q is isomorphic to a
relation of arity n� kþ 1 whose domains are the aggregation Dq0 and
the remaining sets Dj1

; . . . Djn�kþ1
where fj1; . . . ; jn�kþ1g is f1; . . . ng�

fi1; . . . ; ikg.

Proof. For simplicity, and in order to use examples from our case
study, we show how the corresponding reduction is performed
on a relation q # D1 � D2 � D3 � D4 of arity 4. Suppose that there
is a ternary relation q0 # D1 � D2 � D3 participating in q, i.e. for
all x1 2 D1; . . . ; x4 2 D4,

ðx1; x2; x3; x4Þ 2 q implies ðx1; x2; x3Þ 2 q0:

Let Dq0 be an aggregation of q0 with attributes r1;r2 and r3. We can
reduce the relation q to a binary relation bq between the aggrega-
tions Dq0 and D4 as follows:

bq ¼ fðr; x4Þjðr1ðrÞ;r2ðrÞ;r3ðrÞ; x4Þ 2 qg

As a corollary of Proposition 1, the relations q and bq are
isomorphic. h

Definition 10 (Arity reduction of a relation). We say that a n-ary
relation q reduces to a binary relation r if r ¼ bq.

Similarly to Proposition 7, we can show that it is always possi-
ble to reduce the arity of a n-ary relation.

Proposition 7. For any n-ary relation q there exist a binary relation
r such that q reduces to r.

Proof. Suppose q# D1 � . . .� Dn. Trivially, q0 ¼ D1 � . . . Dn�1 par-
ticipates in q and by Proposition 6 we have that q reduces to
r ¼ bq where bq is the reduction of q by Dq0 . h

Using the above proposition and by successively applying the
process of reduction to the participating relations, one can show

that there exists a reduction of the relation where only binary
relations are aggregated. As for ternary relations, there are more
ways of reducing the arity of a relation than the one shown in
the proof above.

As an example, suppose that we want to express the following
fact about a triptych altarpiece:

St Anne is lying in bed in the central panel of the altarpiece called
‘‘The Birth of the Virgin’’ by Lorenzetti

The natural representation of this domain property is in terms
of a relation liesOn of arity 4:

ðlorenzetti � birthofvirgin;field2 ;anne;bedÞ 2 liesOn

The central panel is identified by field2 . The altarpiece
lorenzetti � birthofvirgin belongs to the subclass
MAltarpieces of Altarpieces (see Examples 3, 6 and 12).

We have several participation dependencies: the relations has-
Field, hasFigure; hasObject; hasFigureinField and hasObjectinField
participate in liesOn. We will choose to reify hasFigureinField and
reduce the relation liesOn to a binary relation between the aggrega-
tion of hasFigureinField. and the set Objects. The corresponding ER
diagram is shown in Fig. 16. The advantage is that we are reusing
the reification of the relation hasFigureinField of Example 12. We do
not only enforce the dependency of hasFigureinField but also the
one of hasField; hasFigure and hasObject. This is illustrated in
Fig. 17 by the fact that we stack one representation on top of the
other. The dependency of hasObjectinField illustrated in Fig. 18 will
be enforced by adding an axiom similar to the one for hasObject
and holds as follows:

fieldinaltarpiece
�1 � liesOn v hasObjectinField

The corresponding representation in OWL is achieved through
the reification of the relation dhasFigureinField. We introduce the
concept FiguresinMAltarpieces to represent this reification
and add all the corresponding axioms (see Definition 2). These axi-
oms are written in OWL Manchester syntax as follows:

ObjectProperty: fieldinaltarpiece

Characteristics: Functional

Domain: FiguresinMAltarpieces

Range: FieldsinAltarpieces

InverseOf: inversefieldinaltarpiece

Fig. 16. ER diagram: liesOn reduced to a binary relation.
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ObjectProperty: ffigure

Characteristics: Functional

Domain: FiguresinMAltarpieces

Range: Figures

ObjectProperty: hasFigureinField

SubPropertyChain: inversefieldsinaltarpiece �
ffigure

Class: FiguresinMAltarpieces

SubClassOf: fieldinaltarpiece

some FieldinAltarpieces and

ffigure some Figures

HasKey: (fieldinaltarpiece, ffigure)

Finally, the relation liesOn is represented in OWL as a role
liesOn whose domain is FiguresinMAltarpieces and whose
range is Objects. This is written in OWL Manchester syntax as fol-
lows (see also Fig. 17):

ObjectProperty: liesOn

Domain: FiguresinMAltarpieces

Range: Objects

The class FiguresinMAltarpieces and its corresponding
axioms, can be reused for representing other relations of arity
4 apart from liesOn. This is because the relationship hasFigurein-
Field participates in many other relations that describe the ele-
ments or figures on the field of an altarpiece. For example,

consider the sentence The midservants are washing the newborn
Maria in the central panel of the altarpiece ‘‘The Birth of the Virgin
’’ by Lorenzetti. To represent the above property, we need a rela-
tion wash of arity 4. Because the relation hasFigureinField partic-
ipates in wash, we can represent wash in OWL similarly to liesOn
as a role wash whose domain is

FiguresinMAltarpieces

and whose range is Figures.

ObjectProperty: wash

Domain: FiguresinMAltarpieces

Range: Figures

In summary, ontologies obtained by applying our method are
easier to extend to include new relations without having to add
any reification but reusing existing ones. Moreover, our method
leads to enforce the participation constraints.

5. The generalisation construct

In this section, we extend our methodological approach with a
construction that is inspired by the mechanism of generalisation
introduced in [9] for database design. For simplicity, we consider
only binary relations and define generalisation over their ranges.
Extending the definition to include domains (not just ranges) and
to relations of arbitrary arity is straightforward.

In order to motivate this construct, consider again the rela-
tion hasFigure introduced in Section 4.1 whose range is Figures.
Although figures are, understandably, of major interest in altar-
pieces, there are a number of other elements that play an impor-
tant role and need to be represented in the ontology – the
flowering shaft, tiaras, architectural elements, and so on. For
example, we have introduced in Section 4.3 the domain Objects,
which is used as the range of holds. We can then consider a rela-
tion hasObject similar to hasFigure but with Objects as range to
represent the fact that given objects are depicted in given
altarpieces.

However, in certain circumstances, it is more convenient to
establish relationships over a more general class Elements that con-
sists of Figures and Objects. For instance, we are interested in rep-
resenting the fact that

The Papal tiara rests on top of the balustrade in the altarpiece Sis-
tine Madonna by Raphael

For this purpose, it is convenient to define the relation

restson # Altarpieces� Elements� Elements

According to the method that we have been proposing, we
should seek to establish a participating relation hasElement
# Altarpieces� Elements that we would reify. However, given that
we already have hasFigure and hasObject, we should not introduce
hasElement as an independent relation. Intuitively, hasElement is a
‘generalisation’ of hasFigure and hasObject and, indeed, we would
expect the same to hold between their reifications.

In [9], a generalisation abstraction is introduced as ‘‘an adapta-
tion of Hoare’s discriminated union structure [14]’’. This kind of
structure, which supports programing language constructs such
as Pascal’s variants, can be explained in terms of the notion of dis-
joint union. In Set Theory, the disjoint union of two sets D1 and D2 is
a triple hD1 ] D2; i1; i2i where each ii is an injective function
ii : Di ! D1 ] D2 such that, for any other triple hD0; i01; i02i with
i0i : Di ! D0, there is a unique function / : D1 ] D2 ! D0 such that
/ � ii ¼ i0iði ¼ 1;2Þ. That is, D1 ] D2 is the smallest set that ‘contains’
both D1 and D2 while distinguishing between the elements that
they have in common. The functions ii provide the ‘tag fields’ that,
in discriminated unions in the sense of [14], indicate which of the

Fig. 17. Representation of liesOn.

Fig. 18. Capturing overlapping constraints: hasFigureinField and hasObjectinField
participate in liesOn.
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particular constituent sets, D1 or D2, each element of D1 ] D2 orig-
inates from.

Naturally, if D1 and D2 are disjoint, their union, together with
the corresponding inclusions, is also a disjoint union. In [9], the
concept of generalisation applies precisely to disjoint classes to de-
fine a superclass. However, for generality, we work with the origi-
nal definition, which also has the advantage of providing a
mathematical structure closer to that of aggregation given in Def-
inition 1.

Definition 11 (Generalisation). Let q1 # C� D1 and q2 # C� D2 be
binary relations. A generalisation of q1 and q2 is a triple hq3; i1; i2i
where:

� hD1 ] D2; i1; i2i is a disjoint union of D1 and D2

� q3 # C� ðD1 ] D2Þ is defined by

q3 ¼ fðz; i1ðxÞÞjðz; xÞ 2 q1g [ fðz; i2ðyÞÞjðz; yÞ 2 q2g

We normally use the notation q1 ] q2 to refer to a generalisation of
q1 and q2.

Going back to our example, how can we represent the relation
hasElement as a generalisation of hasFigure and hasObject? Consider
first the problem of representing Elements as a disjoint union of Fig-
ures and Objects. In OWL, the disjoint union of concepts is not avail-
able as a primitive construct: it is an abbreviation for a union of
two classes with an extra axiom requiring that the classes are dis-
joint. For example, in the case at hand, we would define:

Class: Elements

DisjointUnionOf: Figures, Objects

The system generates an inconsistency whenever the exten-
sions of Figures and Objects are not disjoint. Unfortunately, OWL
does not extend this mechanism to roles (in fact, it does not sup-
port the union of roles). Therefore, we cannot express that hasEle-
ment is the disjoint union of hasFigure and hasObject.

However, our main interest is not so much hasElement, but its
aggregation and, ultimately, its reification, as a relation participat-
ing in restson. Intuitively, given

hasElement # Altarpieces� Elements;

hasFigure # Altarpieces� Figures

hasObject # Altarpieces� Objects

where Altarpieces ¼ DhasPainted, if hasElement ¼ hasFigure ] hasObject
then we should also have that DhasElement ¼ DhasFigure ] DhasObject . This
is what we prove next.

Proposition 8. Let q1 # C� D1 and q2 # C� D2 be binary relations.
Let hDq1

; c1;r1i and hDq2
; c2;r2i be aggregations of q1 and q2,

respectively. Let hq3; i1; i2i be a generalisation of q1 and q2. Finally,
let hDq1

] Dq2
; d1; d2i be a disjoint union. Then, hDq1

] Dq2
; c;ri define

an aggregation of q3 where

� c is the unique function Dq1
] Dq2

! C s.t. c � di ¼ ci ði ¼ 1;2Þ.
� r is the unique function Dq1

] Dq2
! D1 ] D2 s.t.

r � di ¼ ii � riði ¼ 1;2Þ.

The above conditions are depicted in Fig. 19.

Proof. The existence of the functions r and c results from the
universal properties of hDq1

] Dq2
; d1; d2i as a disjoint union. The

three conditions of Definition 1 are also easy to prove. h

That is to say, the disjoint union of the aggregations of two rela-
tions is an aggregation of the generalisation of the relations.

In OWL, taking the concept FiguresinAltarpieces for the
reification of hasFigure as defined in Example 5, and similarly

ObjectsinAltarpieces for the reification of hasObject, we
would introduce a concept

ElementsinAltarpieces

for the reification of hasElement as follows:

ObjectProperty: altarpiece

Characteristics: Functional

Domain: ElementsinAltarpieces

Range: Altarpieces

InverseOf: inversealtarpieces

ObjectProperty: element

Characteristics: Functional

Domain: ElementsinAltarpieces

Range: Elements

ObjectProperty: hasElement

Domain: Altarpieces

Range: Elements

SubPropertyChain:inversealtarpieces � element

Class: ElementsinAltarpieces

SubClassOf: altarpieces some Altarpieces and

element some Elements

HasKey: (altarpiece, element)

Class: ElementswithAltarpieces

DisjointUnionOf: FiguresinAltarpieces,

ObjectsinAltarpieces

Notice that, relative to Definition 2, we add that the reification
of hasElement is the disjoint union of the reifications of hasFigure
and hasObject. A diagram connecting the reifications of the three
relations hasElement, hasFigure and hasObject is shown in Fig. 20.

Note that the attribute altarpiece is shared by the three clas-
ses. We have to declare that the domain of the attribute
altarpiece is the biggest class which is the reification of
hasElement.7

Fig. 19. Disjoint union of aggregations.

Fig. 20. Generalisation.

7 Actually, we should also remove it from the axioms in the reification of hasFigure
(see Section 4.3) otherwise OWL takes the intersection.
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Finally, we investigate how generalisation can work together
with the notion of participation and discuss the representation of
restson.

Definition 12 (Restriction). Let hD1 ] D2; i1; i2i be a disjoint union
of D1 and D2, and q# C� ðD1 ] D2Þ �H. We define the restrictions
qji1 # C� D1 �H and qji2 # C� D2 �H as follows:

qji1 ¼ fðx; y1; zÞjðx; i1ðy1Þ; zÞ 2 q ^ y1 2 D1g
qji2

¼ fðx; y2; zÞjðx; i2ðy2Þ; zÞ 2 q ^ y2 2 D2g

That is, a restriction extracts from a relation involving a disjoint
union those triples that involve only the elements of one of the
sets. Notice that, in the case in which the sets are disjoint, the func-
tions i1 and i2 are inclusions, which leads to a simpler formulation
of the restrictions. As already explained, this is case that interests
us in OWL.

It is easy to see that if a relation participates in another relation
q, it also participates in any relation that contains q. The following
proposition is a refinement of this observation for the case of
generalisations:

Proposition 9. Let q1 # C� D1, q2 # C� D2 and hq3;2 c1;2 c2i be a
generalisation of q1 and q2. Let q # C� ðD1 ] D2Þ �H. The relation q3
participates in q iff q1 participates in qji1 and q2 participates in qji2.

That is, the participation of a generalisation in another relation
can be reduced to the participation of the components of the gen-
eralisation in the corresponding restrictions. For example, hasEle-
ment participates in restson iff hasFigure and hasObject participate
in the corresponding restrictions of restson.

Following the methodology that we have introduced in Sec-
tion 4, we can represent the relation restson in OWL as a role
restson whose range is Elements and whose domain is
ElementsinAltarpiecesð¼ ChasElementÞ.

ElementsinAltarpieces ��������!restson
Elements

ObjectProperty: restson

Domain: ElementsinAltarpieces

Range: Elements

The generalisation hasElement is the right conceptualisation
because most of the relations used for describing altarpieces are
between elements. Using this generalisation, the ontology can be
easily extended to include new properties with the same charac-
teristics in the sense that the representation of those properties
does not require any further reification. More precisely, we can
re-use the reification ChasElement and represent any new relation
involving elements of an altarpiece as a role R whose domain is
ElementsinAltarpiecesð¼ ChasElementÞ and whose range is
Elements.

ElementsinAltarpieces ��������!R
Elements

The reification ChasElement can be used to represent even more relations,
indeed any relation in which hasElement participates. For example, if
we take the inscription of a book on a certain altarpiece to be repre-
sented by a string, we can define a relation hasInscription in which
hasElement participates but whose range is the set of strings.

ElementsinAltarpieces ����������!hasInscription
String

DataProperty: hasInscription

Domain: ElementsinAltarpieces

Range: String

6. Related work and concluding remarks

In this paper, we proposed a methodological approach for
Ontology Engineering aimed at guiding the use of reification as
a way of representing n-ary relations. Our method simplifies
ontologies in the sense that it not only reduces the number of
codifications but, more importantly, rationalises the choice of
which relations to reify based on dependencies between rela-
tions that can be derived from a conceptual analysis of the appli-
cation domain. This approach promotes reuse through the
sharing of reifications of relations that participate in several
other relations.

In a nutshell, we advocate that:

� Domain experts should start by building a conceptual model in
which they can identify relationships between relations and
descriptive attributes.
� Participation dependencies should be identified in those models

with a view to reifying the participating relation (as in Sections
4.1 and 4.2).
� A common domain that generalises the domains of several par-

ticipating relations should also be identified. This would induce
a common participating relation generalising all of them that
should be reified (as in Section 5).

In order to justify our approach, we provided mathematical def-
initions of the aggregation and generalisation constructs as used
for database design [12,8,9], which we used to analyse the extent
to which they can be implemented in languages such as OWL. A
number of results were proved that attest to the soundness of
the methodological guidelines that we put forward.

Theoretically, our method can always be applied (see Proposi-
tions 5 and 7). Since there are many participating relations (at least
n for a relation of arity n) it is the task of the ontologist to make the
right choice.

From the point of view of the database relational model, we
have defined a new notion of integrity constraint called participa-
tion constraint. Our method can handle this new notion of integrity
constraint. The notion of participation is a restricted form of inclu-
sion dependency between relations [10]. The stronger concept of
participation dependency is needed to ensure that the arity of a
relation can be reduced without losing information.

An ontology with the examples presented in this paper can be
found in [21]. The ontology editor used to write this ontology
was Protege 4.1_beta. It is interesting to see how the reasoner
(either Hermit or Pellet) can deduce the assertions on the partici-
pation relation through the participation constraint.

The use of conceptual modelling primitives in the context of
ontologies is not new. For instance, [22] and [23] show how to
transform ER diagrams into Description Logic. However, this trans-
formation does not include relationships involving relationships or
descriptive attributes as illustrated in Section 4, nor does it address
aggregation as a modelling abstraction.

A paper that focuses specifically on aggregation is [24]. How-
ever, the author represents aggregations using union of classes,
which does not correspond in any way to their original meaning
[8]. Our use of aggregation (based on cartesian products) adheres
to its use in databases and explores its methodological advantages
for conceptual modelling [12].

Other proposals can be found in the literature that, like [15], put
forward patterns for representing relations q# A� B� C. The third
case of Pattern 1 in that note reifies the whole relation and, in the
remaining cases, reifies B� C and represent q as a property whose
range is the reification CB�C . Our method is based on semantic
abstractions and, therefore, goes beyond simple patterns. In fact,
it adds depth and mathematical rigour to the study of these
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patterns in the sense that it guides the application of reification by
the identification of relations that participate in other relations.

Extensions of description logics with n-ary relations or with
aggregations can also be found in the literature [5,16,25]. However,
the Web Ontology Language (OWL 2), which is based on the
Description Logic of [3], does not provide this capability. OWL 2
provides the possibility of defining n-ary datatype predicates F, al-
beit in a restricted way [26]. We can use an n-ary predicate F in
expressions of the form 8P1 . . . Pn:F or 9P1 . . . Pn:F where P1 . . . Pn

are binary data type predicates. The n-ary predicate F is actually
a functional proposition defined implicitly by a formula of the form
kðx1 . . . xnÞ:compðp; qÞ where comp 2 f6;¼;P; <;>;–g and p and q
are linear polynomials on x1; . . . ; xn. However, OWL does not sup-
port the definition of n-ary predicates by listing the tuples as for
object and datatype properties.

The feedback received from using the method in the construc-
tion of the Ontology of Altarpieces is that if offers a more controlled
use of reification and a closer fit between the resulting ontology
and the application domain as perceived by an expert. Our plans
for future work include developing tools for helping ontologist fol-
low the proposed methodology and assist them in the representa-
tion of relations of arity n.
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