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* [MPSP09) is the central document which introduces OWL 2 in functional
style syntax.

e [PSMO09] describes how the functional style syntax translates from and
to the RDF syntax.

o [MCGH™09] specifies the different profiles of OWL 2.

¢ [SHKO09] describes conformance conditions for OWL 2 and introduces the
format of OWL 2 test cases which are provided along with the OWL 2
documents.

e [HKP*09} is a general introduction to OWL 2.

Exercises 4.1 to 4.3 were inspired by [RDH*04].

Chapter 5

 OWL Formal Semantics

" In Chapter 4 we introduced OWL syntactically, and have discussed intuitively
. how to derive logical inferences from OWL ontologies. This derivation of
_implicit knowledge is at the heart of logic-based semantics, and we give this
. a thorough and formal treatment in this chapter. We start with description
logics in Section 5.1, which provide a logical view on OWL. In Section 5.2, we
then present two equivalent ways of defining the formal semantics of OWL.
- In Section 5.3 we present the most successful algorithmic approach, the so-
called tableaux method, for automated reasoning with OWL ontologies. In
" this chapter, the reader will benefit from some background in predicate logic,
which can be found in Appendix C.

5.1 Description Logics

OWL DL can be identified with a decidable fragment of first-order pred-
icate logic and thus OWL draws on the long history of philosophical and
mathematical logic, which is a well-established and well-understood theory.
As such, it is also in the tradition of logic-based artificial intelligence research,
" where the development of suitable knowledge representation formalisms plays
an important part.

Historically, OWL DL can be traced back to so-called semantic networks,
which can be used for the modeling of simple relationships between individu-
als and classes via roles, roughly comparable to RDFS. In the beginning, the
meaning of such semantic networks was vague, which necessitated a formaliza-
tion of their semantics. Eventually, this led to the development of description
logics which we will deal with prominently in this chapter. OWL DL is es-
sentially a description logic, which in turn can be understood as a fragment
of first-order predicate logic.

Description logics have been designed in order to achieve favorable trade-
offs between expressivity and scalability. Also, they are usually decidable and
there exist efficient algorithms for reasoning with them.

To make this introduction more accessible, we will sometimes refrain from
a complete treatment of OWL DL, and instead restrict our attention to sub-
languages which suffice for conveying the key insights.
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5.1.1 The Description Logic ALC In order to express complex class relationships, ALC provides logical class

nstructors which we already know from OWL. The symbols for conjunction,
junction, and negation are M, U, and -, respectively. The constructors can
e nested arbitrarily, as in the following example.

By description logics we understand a family of logics for knowledge rep
resentation, derived from semantic networks and related to so-called fram
logics. Description logics are usually fragments of first-order predicate loj
and their development is usually driven by considerations concerning comp
tational complexity: Given a complexity class, find a description logic whig
is as expressive as possible concerning its language constructs, but rema
within the given complexity class. We will return to computational complexit;
later. :

Researchers have developed a simple and useful notation for d%criptio
logics which makes working with them much easier. We will use it in th
following. We start by introducing the basic description logic ALC.

These logical constructors correspond to class constructors we already know
from the OWL RDF syntax, namely, owl:intersectionOf, owl:unionOf,
gnd owl:complementOf, respectively. The example just given corresponds to
at from Fig. 4.11.

. Complex classes can also be defined by using quantifiers, which correspond
to role restrictions in OWL. If R is a role and C a class expression, then YR.C
d 3R.C are also class expressions.

5.1.1.1 Building Blocks of ALC

Just as in OWL, the basic building blocks of ALC are classes, roles, ang

individuals, which can be put into relationships with each other. The exp
sion

Professor(rudiStuder)
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describes that the individual rudiStuder belongs to the class Professor. The
expression :

Poarin oy

d corresponds to t

B U
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Quantifiers and logical constructors can be nested arbitrarily.

describes that rudiStuder is affiliated with aifb. The role hasAffiliation
is an abstract role - we will discuss concrete roles later.

Subclass relations are expressed using the symbol C. The expression

5.1.1.2 Modeling Part of OWL in ALC

We have already seen that many OWL DL language constructs can be
expressed directly in ALC. Some others can be expressed indirectly, as we
%ill now demonstrate.

~ The empty class owl:Nothing, denoted in ALC using the symbol L, can
be expressed by

{\ -L = C n ﬂC',

,'here C is some arbitrary class. Analogously, the class T, which corresponds
to owl:Thing, can be expressed by

says that Professor is a subclass of the class FacultyMember. Equivalence
between classes is expressed using the symbol =, e.g., as

T=CuU-C,

or equivalently by
T=-1.
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1.2 OWL DL as Description Logic

. We have already seen that the following OWL DL language constructs can
represented in ALC:

Disjointness of two classes C and D can be expressed using
cnDC L,

or equivalently by 4
CC-D, ¢ classes, roles, and individuals

corresponding to owl:disjointWith. o class membership and role instances

Domain and range of roles can also be expressed: The expression e owl:Thing and owl:Nothing

TCVRC o class inclusion, class equivalence, and class disjointness

stat i . .
es that C is the rdfs:range of R, and the expression e conjunction, disjunction, and negation of classes

3RTCC " e role restrictions using owl:allValuesFrom and owl:someValuesFrom

states that C is the rdfs:domain of R. o rdfs:domain and rdfs:range

The other OWL DL language constructs cannot be expressed in ALC. In-
tead, we need to extend ALC to the description logic SHOIN (D), which en-
mpasses ALC and also provides further expressive means. We will present

5.1.1.3 Formal Syntax of ALC

Formally, the following syntax rules define ALC. We first define how com
plex classes are constructed. Let A be an atomic class, i.e. a class name, an hem in the following.
let R be an (abstract) role. Then class expressions C, D are constructed ;xsm
the following rule. X .1.2.1 Class Constructors and Relationships
Closed class expressions using owl:one0f can be expressed in SHOIN (D)
follows: The class containing exactly the individuals a4, ..., a, is written as
ay,.-.,an}. When talking about description logics, closed classes are called
ominals.

We have already seen on page 129 that owl:hasValue can be expressed
y making use of owl:someValuesFrom and owl:one0Of, i.e. owl:hasValue is
expressible in SHOIN(D).

SHOZIN (D) further provides cardinality restrictions via the following no-

tion: The statement

C.D:=A|T|L|-~C|CAD|CUD|VRC|3IRC

A?other common name for class expressions in description logics is “co J
cept'.or “concept expression” but we will adhere to the terminology that
u§ed in OWL. Statements in ALC ~ and in other description logics - are d
vided into two groups, namely into TBoz statements and ABoz statements;
Thfz TBox is considered to contain terminological (or schema) knowledge'-
while the ABox contains assertional knowledge about instances (i.e. individu:
als). Re'member that we distinguished between these two types of knowledge
already in the case of RDFS (cf. the example in Section 2.6). Separating TBox‘
and {\Bf)x becomes a bit academic when considering certain more expressive
description logics, but it is still useful, and the distinction is well-defined for:
ALC. Statements of either kind are often called azioms in description logics.! |

Formally, a TBor consists of statements of the form C=DorCCD,
where. Cc anfi D are class expressions. Statements C C D are called (ger;:ml)' :
class inclusion azioms. An ABoz consists of statements of the form C(a) and
R(a,b), where C is a class expression, R is a role, and a, b are individuals. An
ALC knowledge base consists of an ABox and a TBox. .

‘;L"{;‘;,‘}\::',}‘_‘ D _ e .
Exan C <2basExaminer- o0 e L7

LRER STt S D VN R TR

says that each exam has at most two examiners. More generally, we can
% express owl:maxCardinality via <nR, where n is a non-negative integer,
. and R is an (abstract) role. Likewise, owl:minCardinality is written using
nR. As already exemplified in Fig. 4.12, owl:cardinality can be expressed
- using the intersection of owl:minCardinality and owl:maxCardinality.

' 7T be precise, a nominal is a class which contains exactly one individual. Closed classes
. correspond to unions of nominals then.

—_
T

The tel:m “formula” would be more accurate than “axiom” in cases where a statement
not required to be true, but “axiom” is widely used in the literature.
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5.1.2.2 Relationships Between Individuals ¢ datatypes.

Equality of individuals a and b is expressed indirectly as {a} = {b} using
nominals and class equivalence. Inequality of individuals a and & is expres
likewise by saying that the classes {a} and {b} are disjoint, i.e. by statin
{a}n{b} C 1.

1.3 Naming Description Logics — and How They Relate to
the OWL Sublanguages

We have already introduced and used some of the strange names description
gics have, such as ALC or SHOIN (D). The terminology behind these
es is in fact systematic: the letters describe which language constructs
e allowed in a particular description logic. ALC is short for Attributive
snguage with Complement, and has its name for historical reasons. ALC is
nsidered to be the most fundamental description logic,3 and is usually the
arting point for theoretical investigations. We have formally defined ALC
Jn Section 5.1.1.3.
; Expressive means beyond ALC are now indicated by certain letters. The
following explains SHOZAN (D).

5.1.2.3 Role Constructors, Role Relationships, and Role Charac:
teristics

The statement that R is a subrole of S is written as R E S, and is called!
a role inclusion ariom. Equivalence between these roles is written as R= §
The inverse role to R is denoted by R™, ie. § = R~ states that S is th
inverse of R. In SHOZN (D), inverse role descriptions may be used in all th
Places where roles may occur, basically as in OWL 2,

Transitivity of a role R is stated as Trans(R). Symmetry of R can be
declared indirectly using R = R~. Functionality of R is stated as T C <IR

hile i L . C <1R-.
while inverse functionality of R is stated as T E <1R e S stands for ACC plus role transitivity.
5.1.2.4 Datatypes

SHOIN(D) allows the use of data values, i.e. of elements of datatypes;
in the second argument of concrete roles. It is also possible to form closed
classes using such data values. This straightforward use of datatypes does not
have any significant impact on the logical underpinnings, so we will not go
into more detail here.

There exist more powerful uses of datatypes, known as concrete domains,
in the theory of description logics. But concrete domains are not part of the
OWL standard, so we only refer the interested reader to the literature given
in Section 5.6. i

¢ H stands for role hierarchies, i.e. for role inclusion axioms.

e O stands for nominals, i.e. for closed classes with one element.
o T stands for inverse roles,

o N stands for cardinality restrictions.

o D stands for datatypes.

5.1.2.5 SHOIN(D) and OWL DL

Let us summarize the expressive means available in SHOIN(D), as they
cover OWL DL. We have

We also give the letters for some other language constructs which are of
particular importance, and will explain them below.

e F stands for role functionality.
 all language constructs from ALC ,

ified cardinalit trictions.
¢ equality and inequality between individuals, * Q stands for qualified cardinality restriction

e R stands for generalized role inclusion axioms.

closed classes (i.e. disjunctions of nominals),

cardinality restrictions, o £ stands for the use of existential role restrictions.

role inclusion axioms and role equivalences (i.e. role hierarchies),

ALC is often said to be Boolean closed, which means that conjunction, disjunction, nega-
ion and both quantifiers can be used without any restrictions. Description logics without
this feature are called sub-Boolean.

® inverse roles,

¢ transitivity, symmetry, functionality, and inverse functionality of roles,
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5.1.3.1 Role Functionality

We have already said that OWL DL corresponds to SHOIAN(D). By
functionality of roles can be declared in OWL DL, so why didn't we ss
that it corresponds to SHOZNF(D)? The reason is that redundant lettes
are usually left out. We have seen on Page 164 that functionality can b
expressed by means of cardinality restrictions, so functionality is implicit i3
SHOIN (D), i.e. the letter F is omitted. Likewise, there is no letter for invergs
functionality simply because it can be expressed using cardinality restrictioi
and inverse roles. Likewise, symmetry of roles can be expressed using inversg
roles and role hierarchies. B

So why do we need the letter F at all? Because having description logits
with functionality but without, e.g., cardinality restrictions can be meaningfil;
Indeed, OWL Lite corresponds to the description logic SHTF(D). &

FIGURE 5.1: Correspondence between OWL variants and description log-
es

5.1.3.2 Qualified Cardinality Restrictions ’;5

Qualified cardinality restrictions are a generalization of the cardinality re-
strictions which we already know from SHOIN. They allow us to make
declarations like <nR.C and 2nR.C which are similar to <nR and >nR
(sometimes called unqualified cardinality restrictions) but furthermore all
us to specify to which class the second arguments in the role R belong -
have already encountered them in our discussion of OWL 2 in Section 4.3

':5.1.3.4 Existential Role Restrictions

' Since existential role restrictions are contained in ALC, this symbol is only
‘hseful when discussing sub-Boolean description logics which are properly con-
ined in ALC. This is the case for the description logics corresponding to
some of the tractable profiles of OWL 2, as discussed in Section 4.3.2: The (_i,,i'
: §cription logic ££ allows conjunction and existential role restrictions.! ££
' 'éﬂditionally allows generalized role inclusions and nominals. It corresponds
to the OWL 2 EL profile from Section 4.3.2.1. The tractable fragment DL-
ite imposes more complicated restrictions on the use of language constructs,
and we will not treat it in more detail here. It corresponds to the OWL 2 QL
profile from Section 4.3.2.2. The OWL 2 RL profile from Section 4.3.2.53 corre-
sponds to a naive intersection between SROZQ and datalog (see Section 6.2)
and is very closely related to so-called Description Logic Programs (DLP).
DLP is also a tractable fragment of SROZQ, but we refrain from covering it
n more detail here: we will have much more to say about OWL and Rules in

Qualified cardinality restrictions encompass unqualified ones: >nR, for ex.
ample, can be expressed using >nR.T. It is also a fact that extending fro
unqualified to qualified cardinality restrictions hardly makes a difference i
terms of theory, algorithms, or system runtimes, Description logic literature
is thus usually concerned with SHZQ or SHOIQ rather than SHIN o

5.1.3.3 Generalized Role Inclusions

We have already encountered generalized role inclusions in our discussio 5.1.3.5 OWL Sublanguages and Description Logics

of OWL 2 in Section 4.3.1.5. The notation used for description logics i
Tao oL R, meaning that the concatenation of Ri;-.., R is a subrol carefully, since minor modifications are imposed in some cases. It is therefore
of R. A typical example of this would be necessary to revert to the formal definitions when details matter. We have
T T T e e e S : given a formal definition of ALC in Section 5.1.1.3 above, and will give the
T R T R LI N ormal definition of SROZQ and SHZQ in Section 5.1.4 below.
We summarize the relationships between different versions and sublan-
guages of OWL and description logics in Fig. 5.1.

The mentioned letters for describing description logics have to be taken

OWL 2 DL is essentially the description logic SROZQ(D). Note that gener.
alized role inclusions encompass role hierarchies, so that SROT (D) containg
SHOIN(D), i.e. OWL 2 DL contains OWL DL.

The letter £ does not really carry a specific meaning.
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5.1.4 Formal Syntax of SROTQ

We will now formally define the complete syntax of the SROZQ descrip-
tion logic. By doing this, we will encounter some details which we have no
mentioned so far in our rather intuitive treatment. The definition we will give
is one of several possible logically equivalent definitions. It is the one most,3
convenient for the rest of our treatment in this chapter. Its formal semantics
will be presented in Section 5.2.

For SROZQ, it is customary and convenient to distinguish between RBox
for roles, TBox, for terminological knowledge, and ABox, for assertional
knowledge.
Note that regular role hierarchies must not contain role equivalences: If we
-had R C S and S C R, then regularity would enforce R < S and § < R, which
is impossible because < must be strict. Formally, however, this restriction
is not severe, since it basically means that we do not allow roles to have
ynonyms, i.e. if a knowledge base would contain two roles S and R which are
" equivalent, then we could simply replace all occurrences of S by R without
. losing any substantial information.

* We now turn to the notion of simple role, which is also needed in order to
. guarantee decidability. Given a role hierarchy, the set of simple roles of this
> hierarchy is defined inductively, as follows.

5.1.4.1 SROIQ RBoxes "2

A SROZIQ RBoz is based on a set R of atomic roles, which contains al]
role names, all inverses of role names (i.e. R~ for any role name R), and
the universal role U. The universal role is something like the T element for
roles: It is a superrole of all roles and all inverse roles, and can intuitively be ;
understood as relating all possible pairs of individuals. It is the top abstract
role which we have already encountered in Section 4.3.1.3.

A generalized role inclusion aziom is a statement of the form Syo0-..08, C
R, and a set of such axioms is called a generalized role hierarchy. Such a ro];
hierarchy is called regular if there exists a strict partial order® < on R, such
that the following hold:

¢ If a role does not occur on the right-hand side of a role inclusion axiom
- and neither does the inverse of this role —, then it is simple.

e S$<Rifand only if S~ < R ¢ The inverse of a simple role is simple.

e If a role R occurs only on the right-hand side of role inclusion axioms

e every role inclusion axiom is of one of the forms of the form S C R with S being simple, then R is also simple.

- . Simplicity of a role essentially means that it does not occur on the right-
RoRLCR, R™CR, Si0:--085, CR, ' band side of a role inclusion axiom containing a role concatenation o.

RoSjo---08,CR, S10---0S,0cRCR

Ty et iy
P RTINS

such that R is a non-inverse role name, and S; < Rfori=1,...,n. an examg e he the role hiersrchy {RE RI)RI °

Regulmity is a way to restrict the occurrence of cycles in generalized role
hicrarchies. It needs to be imposed in order to guarantee decidability of

SROZQ. Note that regular role hierarchies allow us to express transitivity (RoR C R)

-and symmetry (R~ C R). In SROIQ, we additionally allow the explicit
declaration of reflexivity of a role by Ref(R), of antisymmetry of a role by
Asy(S), and of disjointness of two roles Sy and Sz by Dis(S), S2). However,
we have to impose the condition that S, S; and S, are simple in order to

L T —r— ) ascertain decidability. These declarations are called role characteristics.%
.A partial order < on a set X satisfies the following conditions for all z,y,z € X: z Lz
nf:SyandyS::,thenz:y;andifzSyandySz,then::Sz. If < is a partial order,

then we can define a strict partial order < by setting z < yifandonlyifs <yandz #y. SIn the description logic literature, role characteristics are often called role assertions.
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Note that SROZQ allows negated role assignments -R(a, b}, whi.cl-l we also
know from OWL 2 and Section 4.3.1.8. This allows us to state explicitly, e.g.,
hat John is not the father of Mary, namely by —hasFather(Mary, John).

A SROIQ knowledge base is the union of a regular RBox R, an ABox, and
TBox for R.

Let us explain the intuition behind the three new SROT Q role characters;
istics which we have already encountered in Section 4.3.1.3. Reflexivity of ¢
role means that everything is related to itself by this role; a typical examplg:
would be isIdenticalTo. Antisymmetry of a role R means that whenever ¢
related to b via R, then b is not related to a via R. Most roles are antisymme
ric; an example would be the role hasParent. Disjointness of two roles meang
that they do not share any pair of instances. The two roles hasParent an
hasChild, for example, would be disjoint, while hasParent and hasFathe
would not be disjoint.

A SROIQ RBor is the union of a set of role characteristics and a rols:
hierarchy. A SROZQ RBox is regular if its role hierarchy is regular.

1.4.3 SHIQ

The description logic SHZQ is of particular importance for re'sea.rch ar.ound
OWL. From the perspective of computational complexity, which we discuss
more closely in Section 5.3.5, SHZQ is not more complicated than ALC. At
he same time, only nominals are missing from SHIQ in order .to encompass
OWL DL.” SHOIN, however, which is essentially OWL DL, is much more
complex than SHZQ, and SROIQ is even worse.

.~ For research into reasoning issues around OWL, methods and algorithms are
ften first developed for ALC, and then lifted to SHZQ, before attem;?tmg
SHOIQ or even SROTIQ. We do the same in Section 5.3, and require a
ormal definition of SHZQ.

We define SHIQ by restricting SROZQ. SHIQ RBoxes are SROIQ

5.1.4.2 SROIQ Knowledge Bases [

Given a SROIQ RBox R, we now define the set of class expressions
inductively as follows.

¢ Every class name is a class expression.

e T and L are class expressions.

RBoxes restricted to axioms of the form Ro R C R (written as Trans(R}),
R~ C R (written as Sym(R)), and S € R. Regularity does not need to be
imposed. for SHZQ. Simplicity of roles is defined as for SROZQ, !)ut' note
that we can give a simpler definition of simplicity for SHZQ: A role is simple
unless it is transitive, its inverse is transitive, it has a transitive subrole, or
ts inverse has a transitive subrole. Note that we do not allow any of the
additional role characteristics from SROZQ.
SHIQ TBoxes are SROTIQ TBoxes where Self and nominals of the form
{a}, for a an individual, do not occur. )
7Q ABoxes contain statements of the form C(a), R{a,b), or a s
wlig C;Q € C, R € R, and a, b are individuals, i.e. SHTQ Aboxes are SROZQ
ABoxes where - does not occur and where inequality of individ.uals may be
explicitly stated. Note that there is no need to explicitly allow inequality of
individuals in SROZQ ABoxes, since a statement like a # b can be expressed
in a SROIQ TBox using nominals as {a} N {b} C L.

A SHIQ knowledge base is the union of a SHZQ RBox, a SHIQ TBox,

e If C,D are class expressions, R,S € R with S being simple, a is an

individual, and n is a non-negative integer, then the following are class
expressions:

-C CnD CuD {a} VYRC 3RC
35Self  <nS.C  >nS.C

From our discussion of SHOZA/(D), these language constructs are already
familiar. An exception is the 35.Self expression, which we have already en.
countered for OWL 2 in Section 4.3.1.7. Intuitively, an individual a is an
instance of 35.Self if a is related to itself via the S role. A typical example
would be the class inclusion

w73k o PeraonCommittihgSul cide €-3ki11s.Self.

RIS A=

Concerning nominals, i.e. the use of the construct {a}, note that closed
classes with more than one individual can be constructed using disjunction,
i.e. {ay,...,an} can be written as {a1}u---u{a.}.

A SROIQ TBoz is a set of class inclusion azioms of the form C C D,
where C and D are class expressions.

A SROIQ ABorz is a set of individual assignments - of one of the forms
C(a), R(a,b), or ~R(a,b), where C € C, R € R and a, b are individuals,

For completeness, let us remark that the only difference between SHZQ
and SHOZQ is that nominals are allowed in class expressions.

> TDatatypes are also missing, but they do not pose any particular difficulties to the theory.
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There are many choices possible, which we do not further rmtrictz'The S(?t
, i A may be arbitrary, and how exactly the functions Iy, Ic, and I asgign their
5.2 Model-Theoretic Semantics of OWL 1 ‘values also bears a lot of freedom.

" We note that we do not map class names and role names to single elements
We now define formally the semantics of SROT Q, i.e. for OWL 2 DL. Since b

asses ‘as done in RDF(S). The function Ic, however, could be understood as _the
EreOTQ encomp SHOLN, this also means that we essentially define the “concatenation of the functions Is and Icgxr from an RDF(S) interpretation.
formal semantics of QWL DL. :

; Likewise, Ir could be understood as the concatenation of the functions Is and
We present the semantics in two versions, which are equivalent. In Sec!: exr. Figure 5.2 graphically depicts a DL interpretation.
tion 5.2.1 we give the extensional semantics, sometimes also called the direct

model-theoretic semantics. In Section 5.2.2, we define the semantics by a
translation into first-order predicate logic. %

ivi class names C | role names R
5.2.1 Extensional Semantics of SROIQ individual names I | cla

A Kiejngesoa

The direct model-theoretic semantics which we now define is similar tg
the model-theoretic semantics of RDF(S) given in Chapter 3. We will make
remarks about similarities and differences at the appropriate places.

5.2.1.1 Interpreting Individuals, Classes, and Roles

As for RDF(S), we first need to fix notation for the vocabulary used. We
assume

T uonejaidsojul |

* a set I of symbols for individuals,

* @ set C of symbols for class names, and FIGURE 5.2: Schematic representation of a DL interpretation

¢ a set R of symbols for roles.

We next define an interpretation function -, which lifts the interpretation
of individuals, class names, and role names just given to complex class and
role expressions.

o Weset TZ=A and 17 =0.
o —C describes those things which are not in C, i.e. (-C)T = A\ CZ.

There is a significant difference from the situation for RDF(S) (and OWL ;
Full): The sets I, C, and R must be mutually disjoint. This means that
we enforce type separation as discussed for OWL DL on page 139. OWL
punning as in Section 4.3.1.1 is not needed, although this would not change
the theory. We avoid the issue of punning here simply for convenience.

We next define the notion of SROTQ interpretation. As for RDF(S), we
start with a set of entities, which can be thought of as resources, indi
or single objects. We denote this set, called the domain of the interpretation;
by A. We now declare how individuals, class names, and roles are interpreted,
namely, by means of the functions

e C' 1N D describes those things which are both in C and in D, ie. (CN
D)* =C*n D%

e C U D describes those things which are in C or in D, i.e. (CUD)* =
cTuDr,

¢ JR.C describes those things which are connected via R with somethizng
in C, i.e. (3R.C)? = {z | there is some y with (z,y) € R? and y € C%}.

¢ Ij, which maps individuals to elements of the domain: I; : I — A,

* Ic, which maps class names to subsets of the domain: Ic: C — 22 (the
class extension), and * VR.C describes those things z for which every y which connects from =
via a role R is in the class C, i.e. (YR.C)¥ = {z | for all y with (z,y) €
RT we have y € C7}.

* IR, which maps roles to binary relations on the domain, i.e. to sets of
pairs of domain elements: Ig : R — 22%4 (the property eztension).
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® <nR.C describes those things which are connected via R to at most

things in C, i.e (<nR.C)7 = {z | #{(z,y) € RZ |y € C%} <n). tes only to the names of elements in a set, while in logic we would usu-

y abstract from concrete names, i.e. we would usually be able to rename
hings without compromising logical meanings. The second aspect is more
evere, as it is structural: It is about the question whether the interpretation
pithfully captures the relations between entities as stated in the knowledge
ase. This is not the case in this example: Ir(rudiStuder) is not contained in
(Professor), although the knowledge base states that it should. Similarly,
n(hasAffiliation) does not contain the pair (Iy(rudiStuder), Ij(aifb)),
though it should according to the knowledge base.
Interpretations which do make sense for a knowledge base in the structural
anner just described are called models of the knowledge base, and we intro-
uce them formally next. Note, however, that we ignore the first aspect, as
ommonly done in logic.

o 21}R.Cj descr’ibes those things which are connected via R to at least;‘
things in C, i.e. (>nR.C)% = {z | #{(z.v) € RT |y € CT} > n}.

* {a} describes the class containing only g, i.e. {a}T = {aT).

. 'EIS.Self describes those things which are connected to themselves via
ie. (38.8elf)? = {z | (z,z) € §7}.

* For Re R, we set (R~)% = {(b,a) | (a,d) € RT}.

e For the universal role U, we set /% = A x A,

.2.1.2 Interpreting Axioms

Ic, and Ig, it is not necessary that interpretations are intuitively meaningful3} ‘Models capture the structure of a knowledge base in the sense that they
ve a truthful representation of the axioms in terms of sets. Formally, models
of a knowledge base are interpretations which satisfy additional constraints
which are determined by the axioms of the knowledge base. The constraints
are as follows: An interpretation Z of a SROIQ knowledge base K is a mode!
of K, written T |= K, if the following hold.

1f we consider, for example, the knowledge base consisting of the axiom
| . Professor C FacultyMenber L
© i sProfessor(rudiStuder) - .

. hasAte{1 ration(idi Studer, aifb)

¢ If C(a) € K, then o7 € CT.

P Segr. =

could sef

* If R(a,b) € K, then (a¥,b7) € RZ.
¢ If ~R(a,b) € K, then (aZ,t%) ¢ RZ,
o IfCC DeK,then CT C D7,

e If SC Re K, then ST ¢ RZ.

H J H ; S
aseriziacion) < {0 b o))
‘these settings are monsense. but th'éy"n‘evé;thelo‘ss*de ni
valid interpretation.  ~: - o UUESE 4tenmn

¢ If S10-..08, C R € K, then {(a;,an41) € AxA | there are ay,...,a, €
A such that (a;,ai+1) € ST for all i = 1,...,n} C RZ.

L ogen e

. 4
Let us dwell for a bit on the point that the interpretation Jjust given is in.: ¢ IfRef(R) € K, then {(z,2) | € A} € A

tuit:ively nonsense. There are actually two aspects to this. The first is the:
choice of names for the elements in A, e.g., that rudiStuder is interpreted
as Jan, which seems to be quite far-fetched. Note, however, that this aspect

* If Asy(R) € K, then (z,y) & RT whenever (y,z) € RZ.

—_ o If Dis(R,S) € K, then RTN ST = ¢,
8Recall from Appendix B that #A denotes the cardinality of the set A, ’
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A Model 1 l\/ioczlel 2 Model 3 KeECCD ff(CCDY?faIlkK ffiCPCD faIlkK
Ir(rudiStud fera} {1,2} KEC@) if(C@)’faTkbK ifaeClfallK
1‘%:;};) uder) r ! o KER@b FQRGOEfaILK if(@f )R oIk
I::(mfessor) K &= ~R(a,b) iff (—-R(a, b)) fa. T K iff (a,b°) ¢ R fa. T K
Ic FacultyMember) .: {a,r, 8 oo : - L B ‘ ]

",‘éhashffil; 6‘)ﬁ (i)

lﬁ?-.h’“)( 0,
e S es A taibet i hival g

: FIGURE 5.4: Logical consequences of a knowledge base. The first line
tates that C C D is a logical consequence of K if and only if (C C D)7 holds
" for all models Z of K, which is the case if and only if CT C D? holds for all
odels T of K.

DIV RU-F LI RN VY zu.‘.. oh

or example, we have aifb? € FacultyMember? in all three models in
ig. 5.3, but we would not expect the conclusion from the knowledge base
‘that aifb is a faculty member.

model: For it to be a model, we would need to have (rudiStuder?,aifb?) € -
hasAffiliationZ, i.e. we would need to have :

The right perspective on different models is the following: Each model of a
knowledge base provides a possible view or realization of the knowledge base.
5. The model captures all necessary structural aspects of the knowledge base,

but it may add additional relationships which are not generally intended. In
. order to get rid of these additional relationships, we consider all models of a
knowledge base when defining the notion of logical consequence. The rationale
behind this idea is the following: If the models capture all possible views, or
. possible realizations, of a knowledge base, then those things common to all
> models must be universally valid logical consequences from the knowledge
: base. This leads us to the following formal definition.

Let K be a SROZQ knowledge base and a be a general inclusion axiom
 or an individual assignment. Then o is a logical consequence of K, written
. K |= a, if oF, as defined in Fig. 5.4, holds in every model I of K. Figure 5.5
" contains an example related to logical consequence.

Let us introduce some further notions which are useful when dealing with
: model-theoretic semantics. A knowledge base is called satisfiable or consistent
"if it has at least one model. It is unsatisfiable, or contradictory, or inconsistent,
" if it is not satisfiable. A class expression C is called satisfiable if there is a

model Z of the knowledge base such that C7 # 8, and it is called unsatisfiable
otherwise. Examples of these notions are given in Fig. 5.6.

Unsatisfiability of a knowledge base or of a named class usually points
to modeling errors. But unsatisfiability also has other uses, which we will

encounter in Section 5.3.

Let us remark on a difference to RDF(S): for the SROZQ (i.e. OWL
semantics, we need to consider many different kinds of axioms. For RDF(S),.,
however, we had to consider only one kind of axiom, namely triples. ‘

5.2.1.3 Logical Consequences

Models capture the structure of a knowledge base in set-theoretic terms.
However, a knowledge base can still have many models. Each of these models
describes a meaningful interpretation of the knowledge base. Figure 5.3 lists \
several example models for the knowledge base from page 174.

So how do we make the step from models to a notion of logical consequence,
i.e. how do we define what implicit knowledge a knowledge base entails? Fig
ure 5.3 shows that it does not suffice to consider one or a few models.
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2.2 SROIQ Semantics via Predicate Logic

We now briefly present an alternative perspective on the semantics of OWL,
namely by translating SROZQ knowledge bases into first-order predicate
gic. This perspective serves two purposes:

o it shows that the formal semantics of OWL is based on the long-standing
tradition of mathematical logic, and

o it helps to convey the semantics of OWL to those readers who already
have some background in formal logic.

More precisely, the translation is into first-order predicate logic with equal-
y, which is a mild generalization of first-order predicate logic with an equality
redicate = and with the unary T and 1 predicates, with the obvious mean-
g and formal semantics. Every SROZQ knowledge base thus translates to
theory in first-order predicate logic with equality.

We give the translation of a SROZQ knowledge base K by means of a
function 7 which is defined by n(K) = U,ex 7(a). How 7(a) is defined
epends on the type of the axiom a, and is specified in the following.

. Ic(Professor) = {r}
Fa. e

FIGURE 5.5: Example of logical consequence

.2.2.1 Translating Class Inclusion Axioms

If a is a class inclusion axiom of the form C C D, then w(a) is defined
nductively as in Fig. 5.7, where A is a class name.

.2.2.2 Translating Individual Assignments
5, If a is an individual assignment, then w(«) is defined as
7(C(a)) = C(a),
n(R(a,b)) = R(a,b),
w(~R(a, b)) = ~R(a,b),

i.e. the translation does nothing, due to the notational similarity of individual
assignments in SROZQ to standard predicate logic notation.

5.2.2.3 Translating RBoxes

If o is an RBox statement, then m(a) is defined inductively as stated in
- Fig. 5.8, where S is a role name.

5.2.2.4 Properties of the Translation and an Example

The function 7 translates SROZQ knowledge bases to first-order predicate
logic theories in such a way that K and 7(K) are very intimately related.
Indeed, K and #n(K) have essentially identical models, where the models of
#(K) are defined as usual for first-order predicate logic. This means that we

FIGURE 5.6: Examples of notions of consistency and satisfiability
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n—2
(“’z.z: (R1) A /\ Tzizi (Rid1) A ”ru-x,v(Rﬂ))

i=1

7(C E D) = (Vz)(x=(C) — m2(D))
mz(A) = A(z)
7z(~C) = -7 (C)

w(Ref(R)) = (Vz)7z z(R)
w(Asy(R)) = (Vz)(Vy)(nzy(R) — —my(R)
#(Dis(Ry, Ra)) = ~(32)(3p) (7=, (R1) A 7z (Re))

aw e Ve went e e e s e T P

IGURE 5.8: Translating SROZQ RBoxes into first-order predicate logic

can understand SROZ Q essentially as a fragment of first-order predicate logic,
. which means that it is in the tradition of mathematical logic, and results which
have been achieved in this mathematical field can be carried over directly.
We have left out the treatment of datatypes in the translation, since it is un-
.usual to consider predicate logic with datatypes. However, adding datatypes
to predicate logic does not pose any particular problems unless complex op-
erators on the datatype are allowed ~ which is not the case for OWL.
We close our discussion of the translation to predicate logic with an example,
.given in Fig. 5.9. It also shows that the established description logic notation
is much easier to read than the corresponding first-order logic formulae.

FIGURE 5.7: Translating SROZQ general inclusion axioms into first.
order predicate logic with equality. Note that 7z(205.C) = T(z). We use
auxiliary functions =, ,, etc., where z,x1, etc. are variables. Also note
that variables z, ..., z,; introduced on the right-hand sides should always be’
variables which are new, i.e. which have not yet been used in the knowledge
base. Obviously, renamings are possible - and indeed advisable for better
readability. The axiom D C 3R.38.C, for example, could be translated to
(vz)((D(=z)) = Q) (R(z,y) A (32)(S(y, 2) A C(2)))).

5.3 Automated Reasoning with OWL

The formal model-theoretic semantics which we presented in Section 5.2
provides us with the logical underpinnings of OWL. At the heart of the formal
semantics is that it provides means for accessing implicit knowledge, by the
notion of logical consequence.

The definition of logical consequence given on page 177, however, does not
lend itself easily to casting into an algorithm. Taken literally, it would ne-
cessitate examining every model of a knowledge base. Since there might be
many models, and in general even infinitely many, a naive algorithmization of
the definition of logical consequence is not feasible.

With OWL being a fragment of first-order predicate logic,it appears natural
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FIGURE 5.9: Example of translation from description logic syntax to first-
order predicate logic syntax
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to employ deduction algorithms from predicate logic and to simply adjust
them to the description logic setting. This has indeed been done for all the
major inference systems from predicate logic.

By far the most successful approach for description logics to date is based
on tableaux algorithms, suitably adjusted to OWL. We present this in the
following. Since these algorithms are somewhat sophisticated, we do this first
for ALC, and then extend the algorithm to SHZQ. We refrain from presenting
the even more involved algorithm for SROZQ, as SHZQ allows us to convey
the central ideas.

But before coming to the algorithms, we need some preparation.

5.3.1 Inference Problems

In Section 4.1.10 we introduced the typical types of inferences which are
of interest in the context of OWL. Let us recall them here from a logical
perspective.

o Subsumption. To find out whether a class C is a subclass of D (i.e.
whether C is subsumed by D), we have to find out whether CC D is a
logical consequence of the given knowledge base.

o Class eguivalence. To find out whether a class C is equivalent to a class
D, we have to find out if C = D is a logical consequence of the given
knowledge base.

e Class disjointness. To find out whether two classes C and D are disjoint,
we have to find out whether CM D C L is a logical consequence of the
given knowledge base.

o Global consistency. To find out whether the given knowledge base is
globally consistent, we have to show that it has a model.

o Class consistency. To find out whether a given class D is consistent,
we have to show that C' C L is not a logical consequence of the given
knowledge base.

e Instance checking. To find out if an individual a belongs to a class C,
we have to check whether C(a) is a logical consequence of the knowledge
base.

o Instance retrieval. To find all individuals belonging to a class C, we
have to check for all individuals whether they belong to C.

It would be very inconvenient if we had to devise a separate algorithm
for each inference type. Fortunately, description logics allow us to reduce
these inference problems to each other. For the tableaux algorithms, we need
to reduce them to the checking of knowledge base satisfiability, i.e. to the
question whether a knowledge base has at least one model. This is done as
follows, where K denotes a knowledge base.
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* Subsumption. K |=CC D if and only if KU {(Cn -D)(a)} is unsatis-:
fiable, where a is a new individual not occurring in K. 3

andR '

et e

® Class equivalence. K = C = D if and only if we have K |=C C D and PRI
KeDCcC. E

* Class disjointness. K = CNDC L if and only if K U {(C N D)e)} i8
unsatisfiable, where a is a new individual not occurring in K.

s

6o

¢ Global consistency. K is globally consistent if it has a model.

® Class consistency. K |= C C L if and only if K U{C(a)} is unsatisfiable,
where ¢ is a new individual not occurring in K.

* Instance checking. K |= C(a) if and only if K U{~C{(a)} is unsatisfiabl

¢ Instance retrieval. To find all individuals belonging to a class C, we.:
have to check for all individuals a whether K = C(a).

Note that, strictly speaking, statements such as -C(a) or (C M ~D)(a) are :
not allowed according to our definition of ABox in Section 5.1.1.3. However, !
complex class expressions like C(a) in the ABox, where C is an arbitrary class
expression, can easily be transformed to comply with our formal definition, 5
namely, by introducing a new class name, say A, and rewriting C(a) to the :
two statements A(a) and A = C. This technique is known as ABoz reduction,
and can also be applied to SROZQ. The knowledge bases before and after :
the reduction are essentially equivalent. Without loss of generality, we will -
therefore allow complex classes in the ABox in this chapter.

We have now reduced all inference types to satisfiability checking. In prin-
ciple, we could now use the transformation into predicate logic from Section
5.2.2 and do automated reasoning on OWL using predicate logic reasoning
systems. This approach, however, is not very efficient, so special-purpose al-
gorithms tailored to description logics are preferable. But there is also a more
fundamental problem with the translational approach: SROZQ, and also the :
description logics it encompasses, are decidable, while first-order predicate :
logic is not. This means that, in general, termination of description logic :
reasoning cannot be guaranteed by using reasoning algorithms for first-order
predicate logic.

Nevertheless, the tableaux algorithms which we present in the following are
derived from the corresponding first-order predicate logic proof procedures,
And we will return to the termination issue later.

FIGURE 5.10: Transformation of a SHZQ knowledge base K into nega-
tion normal form

form. It is not absolutely necessary to do this, and the algorithms could also
be presented without this preprocessing step, but they are already comp!l-
cated enough as they are, and restricting our attention to knowledge bases in
negation normal form eases the presentation considerably.

In a nutshell, the negation normal form NNF(K) of a knowledge base K
is obtained by first rewriting all C symbols in an equivalent way, and then
moving all negation symbols down into subformulae until they only occur
directly in front of class names. How this is done formally is presented in
Fig. 5.10 for SHZ Q. Note that only the TBox is transformed.

In the negation normal form transformation, subclass relationships like
C C D become class expressions =C U D which, intuitively, may look strange
at first sight. Cast into first-order predicate logic, however, they become

5.3.2 Negation Normal Form

Before presenting the actual algorithms, we do a preprocessing on the knowl-
edge base known as negation normal form transformation, i.e. we transform
the knowledge base into a specific syntactic form known as negation normal
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(Va:')(C(z) — D(z)) and (Vz)(~C(z) vV D(z)) - and these two formulae are
logically equivalent.

By slight abuse of terminology, we will henceforth refer to NNF(C C D) as

a TBoz statement whenever C C D is contained in the TBox of the knowledge
base currently under investigation.

. ThF knowledge bases K and NNF(K') are logically equivalent, i.e. they have
identical models. We assume for the rest of this chapter that all knowledge
bases are given in negation normal form.

5.3.3 Tableaux Algorithm for ACC

The Fableaux d@fithm determines if a knowledge base is satisfiable. It‘
does this by attempting to construct a generic representation of a model. If:

this construction fails, the knowledge base is unsatisfiable.

Obviously, it requires formal proofs to verify that such an algorithm in-.

deed does what it claims. In this book, however, we do not have the space
or the means to present this verification, which is based on comprehensive
mathematical proofs. We refer the interested reader to the literature listed

in Section 5.6. Nevertheless, by keeping in mind that tableaux algorithms es-

sentit}lly attempt to construct models, it should become intuitively clear why
they indeed implement automated reasoning.

We now start with the description logic ALC. The presentation of the corre-
sponding tableaux algorithm is done in three stages to make this introduction

easier to follow. We first informally discuss some examples. Then we formally -
define the naive tableaux algorithm for ALC. It only is a small step then to:

provide the full tableaux algorithm.

5.3.3.1 Initial Examples

_ Consider a very simple case, where we have only class names, conjunction,
disjunction, negation, and only one individual. We are given such a knowledge
base and we are to determine whether it is satisfiable. Let us have a look at
an example.

Assume the knowledge base K consists of the following two statements.
C(a) (-C N D)(a)

Then obviously C(a) is a logical consequence of K. From the statement
(=C N D)(a) we also obtain ~C/(a) as logical consequence ~ this is due to the
semantics of conjunction. But this means that we have been able to derive
C(a) and ~C(a), which is a contradiction. So K cannot have a model and is
therefore unsatisfiable.

What we have just constructed is essentially a part of a tableau. Informally
speaking, a tableau is a structured way of deriving and representing logical
consequences of a knowledge base. If in this process a contradiction is found
then the initial knowledge base is unsatisfiable. ,

OWL Formal Semantics 187

Let us consider a slightly more difficult case. Assume the negation normal

i form of a knowledge base K consists of the following three statements.

Cle) -CuD -D(a)

We are now going to derive knowledge about class membership for a, as done

"in the previous example. The set of all classes for which we have derived

class membership of a will be called £(a). We use the notation L(a) — C to
indicate that £(a) is updated by adding C. For example, if £L(a) = {D} and we
update via £(a) «— C, then L(a) becomes {C, D}. Similarly, £L(a) — {C, D}

' denotes the subsequent application of L(a) « C and L(a) « D, i.e. both C
- and D get added to L(a).

From the example knowledge base just given, we immediately obtain £({a) =

' {C,-D}. The TBox statement ~C'U D corresponds to C C D and must hold

for all individuals, i.e. in particular for a, so we obtain £(a) — -CU D. Now
consider the expression (~CU D) € L(a), which states that we have ~C(a) or

. D(a). So we distinguish two cases. (1) In the first case we assume ~C(a) and
obtain £(a) «~ -C = {C,~D,~C U D,~C}, which is a contradiction. (2) In

the second case we assume D(a) and obtain £(a) — D = {C,-~D,-~-CuD, D},
which is also a contradiction. In either case, we arrive at a contradiction which
indicates that K is unsatisfiable.

Note the branching we had to do in the example in order to deal with dis-
junction. This and similar situations lead to nondeterminism of the tableaux
algorithm, and we will return to this observation later.

In the previous section we have provided examples of how to deal with
class membership information for individuals in a tableau, i.e. how to derive
contradictions from this information. Qur examples were restricted to single
individuals, and we did not use any roles.

So how do we represent role information? We represent it graphically as
arrows between individuals. Consider an ABox consisting of the assignments

~ R(a,b), S(a,a), R(a,c), S(b,c). This would be represented as the following

figure.

a—L+p
G
NG

c
Likewise, we use arrows to represent roles between unknown individuals,
the existence of which is ascertained by the knowledge base: Consider the
single statement 3R.35.C(a). Then there is an arrow labeled with R leading
from a to an unknown individual z, from which in turn there is an arrow
labeled with S to a second unknown individual y. The corresponding picture

would be the following.

a—Pez_S,y

Let us give an example tableau involving roles. Consider the knowledge base
K = {C(a),C E 3R.D, D C E}, so that NNF(K) = {C(a),~CU3R.D,~DU



Lvamnaies

R S L U

188 Foundations of Semantic Web Technologies

E}. We would like to know if (3R.E)(a) is a logical consequence of K.

We first reduce the instance checking problem to a satisfiability problem as &

described in Section 5.3.1: -3R.E in negation normal form becomes VR.-E,
and we obtain the knowledge base {C(a),~CU3R.D,~DUE, VR.-E(a)}, of
which we have to show that it is unsatisfiable. We start with the node @ with
label £(a) = {C,VR.-E}, which is information we take from the ABox. The
first TBox statement results in £(a) — ~C U3R.D. We can now resolve the
disjunction as we have done above, i.e. we have to consider two cases. Adding
-~C to L(a), however, results in a contradiction since C € L(a), so we do
not have to consider this case, i.e. we end up with £(a) «— 3R.D. So, since
3R.D € L(a), we create a new individual z and a connection labeled R from
a to z, and we set L(z) = {D}. The situation is as follows.

a £L(a) = {C,YR~E,-CU3R.D,3R.D}

IR
z L(z) = {D}
The TBox information =D U E can now be added to L(z), ie. L(z) —
~D U E, and expanded using the already known case distinction because of
the disjunction. As before, however, selecting the left hand side =D results

in a contradiction because D € £L(z), so we have to put £L(z) — E. The
situation is now as follows.

a L(a) = {C,YR.~E,~CU3R.D,3R.D}
[R
T L(z)={D,-DUE,FE)}

Now note that YR.~E € L(a), which means that everything to which a
connects using the R role must be contained in ~E. Since a connects to z
via an arrow labeled R, we set £(z) «— —E, which results in a contradiction
because we already have E € £(z). Thus, the knowledge base is unsatisfiable,
and the instance checking problem is solved, i.e. (3R.E)(a) is indeed a logical
consequence of K. The final tableau is depicted below.

a L(a) = {C,YR.~E,~CU3R.D,3R.D}
R

z L(z)={D,~-DUE,E, ~E}
It is now time to leave the intuitive introduction and to formalize the tableau
procedure.

5.3.3.2 The Naive Tableaux Algorithm for ALC
A tableau for an ALC knowledge base consists of

 a set of nodes, labeled with individual names or variable names,
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initi i ledge base
FIGURE 5.11: Example of an initial tableau given the knowledg
K = {A(a), (3R.B)(a), R(a,b), R(a,¢), S(b,b), (AU B)(c),~AU (vS.B)}

o directed edges between some pairs of nodes,
e for each node labeled z, a set £(z) of class expressions, and
o for each pair of nodes z and ¥, a set L(z,y) of role names.

When we depict a tableau, we omit edges which are labeled with the empty
set. Also, we make the agreement that T is contained in £(z), for any z, !)ut
we often do not write it down, and in fact the algorithm does not explicitly

derive this. o
er('l;‘i':en an ALC knowledge base K in negation normal form, the initial

tableau for K is defined by the following procedure.

1. For each individual a occurring in K, create a node labeled a and set

L(a) = 0.
2. For all pairs a,b of individuals, set £(a,b) = 0.
3. For each ABox statement C(a) in K, set L(a) + C.
4. For each ABox statement R(a,b) in K, set L(a,b) — R.

An example of an initial tableau can be found in Fig. 5.11. o

After initialization, the tableaux algorithm proceeds by nondeterministi-
cally applying the rules from Fig. 5.12. This means th?,t at efa.ch step one of
the rules is selected and executed. The algorithm terminates if

e either there is a node z such that £(z) contains a gontradiction, i.e. if
there is C € L(z) and at the same time —~C € L(z),

9This includes the case when both L and T are contained in £({z), which is also a contra-
diction as T = -1,
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get us “on the wrong track.” This is because, if we choose to set L(x) — C,
then it is no longer possible to also add £(z) — D by applying the same rule
- the condition {C, D} N £(z) = @ prevents this. So if we have chosen to add
L(z) — C and this leads to a contradiction, then we have to go back to this
choice and try the other alternative as well, because this other alternative
may not lead to a contradiction.

To sum this up, note the following. If the sequence of choices (of both
types) leads to termination without producing a contradiction, then the orig-
inal knowledge base is satisfiable. However, if the algorithm produces a con-
tradiction, then we do not yet know if there is a sequence of choices which
avoids the contradiction. Hence, we have to check on all choices made due to
(2) and see if we also get contradictions if we alter these choices - in other
words, we have to backtrack to these choice points. But it is not necessary
to reconsider the choices made due to (1). We recommend the reader to go
back to the initial examples in Section 5.3.3.1 and observe how we have done
this; It occurs in all the cases where we have dismissed one of the choices from
applying the U-rule because it would lead to a contradiction.

We will see in the next section that the naive tableaux algorithm does
not necessarily terminate. This will be fixed then. But we first present, in
Fig. 5.13, another worked example.

FIGURE 5.12: Expansion rules for the naive ALC tableaux algorithm

® or none of the rules from Fig. 5.12 is applicable.

5.3.3.3 The Tableaux Algorithm with Blocking for ALC

pr(')l;h:dl;x;o;vi:e:ngé;t;i:io}; ;sest}ft.i:lf]iablt? if th;a algorithm terminates without
" y 1.e. 1f there is a selecti i
cations -such th.at no contradiction is produced axll‘:intzi Zl:::ﬁlﬁzltt:::gisgg.
gthefmse, K is unsatisfiable. Note that due to the nondeterminism of the.
gonth.m we do r.xot know which choice of subsequent rule applications leads
to term_matlon without producing a contradiction. Implementations of thig
alg?nthm. thus have to guess the choices, and possibly have to backtrack
choice points if.' a choice already made has led to a contradiction e
" Leati us 'explam this point in more detail since it is critical to understandin,
e gonthm. There are two sources of nondeterminism namely (1) whicﬁ
expansion rule to apply next and (2) the choice which ha; to be made wh
applying -the U-rule, namely whether to set L(z) — Cor L(z) — D (us'en
:he .notatzon from Fig..5.12). There is a fundamental difference between th:g
t:o. 'I;he choice mf:de in (1) is essentially a choice about the sequence in which
e rules are ax:aplled, l.e. whatever results from such a choice could also be
obt&:.(med by doing the same expansion later. Intuitively speaking, we cannot
g:t on t.he wrong track” by a bad choice, although some choicé will cause
the algorithm to take more steps before termination. Hence, if such a choi
causes a contradiction, then this contradiction cannot be av;ided by maki .
a dlﬂ'erex.lt choice, simply because the original choice can still be maglle latelrn§
and entries are never removed from node labels during execution. This kind
of nopdeterrfumsm is usually called don’t care nondeterminism 'In contrnt,
to this, (2) is a don’t know nondeterminism, since a bad choic.e can ind:eii

We have already remarked that the naive tableaux algorithm for ALC
does not always terminate. To see this, consider K = {3R.T, T(a))}. First
note that K is satisfiable: consider the interpretation Z with infinite domain
{a1,82,.-.} such that of = ¢, and (e;,8i41) € R foralli=1,2,.... Then
T is obviously a model.

Now we construct a tableau for K, as depicted below. Initialization leaves
us with one node a) and £(a;) = {T}. Applying the TBox-rule yields L(a;) «—
3R.T. Then we apply the 3-rule and create a node z with £(a),z) = {R} and
L(z) = {T}. Again we apply the TBox-rule which yields £(z) — 3R.T, and
then the 3-rule allows us to create yet another new node y with £L(z,y) = {12}
and L(y) = {T}. Obviously, this process repeats and does not terminate.

a R ] R » Y R__,..

L(a;)={T,3R.T} L(z)={T,3R.T} L(y)={T,3R.T}

But we remarked earlier that ALC (and actually also SROZQ) is decidable,
i.e. algorithms exist which allow reasoning with ALC and which are always
guaranteed to terminate! To ensure termination in all cases, we have to modify
the naive tableaux algorithm. The technique used for this purpose is called
. blocking, and rests on the observation that in the above example, the process is

essentially repeating itself: The newly created node z has the same properties
as the node a,, so instead of expanding z to a new node y it should be possible
to “reuse” a; in some sense.
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The formal definition is as follows: A node with label z is directly blocked
by a node with label y if

e z is a variable (i.e. not an individual),
e y is an ancestor of z, and
o L(z) € L(y)-

The notion of ancestor is defined inductively as follows: Every z with £(z,z) #

( P LTS s R S 0 is called a predecessor of z. Every predecessor of z, which is not an indi-
. $0s s i§ ‘jdgx i) AL e T 5 1 order;: 9 vidual, is an ancestor of z, and every predecessor of an ancestor of x, which
" ‘unsatisfiable: We' no ooy bt V¢ th ’ - isnot an individual, is also an ancestor of z.

use some.g 0 A node with label z is blocked if it is directly blocked or one of its ancestors
is blocked.

The naive tableaux algorithm for ALC is now modified as follows, resulting
in the (full) tableaux algorithm for ALC: The rules in Fig. 5.12 may only
be applied if = is not blocked. Otherwise, the algorithm is exactly the naive
algorithm.

Returning to the example above, we note that £(z) € £(a,), so z is blocked
by a;. This means that the algorithm terminates with the following tableau,
and therefore shows that the knowledge base is satisfiable.

raightforward 'shorféui

ay R I
L{a;) = {T,3R.T} L(z) ={T}

Recall the model for this knowledge base which we gave on page 191. Intu-
itively, the blocked node z is a representative for the infinite set {a,,as,... }.
Alternatively, we could view the tableau as standing for the model J with
domain {a;,a} such that af = a1, 27 = a and R7 = {(a1,a),(a,a)}, i.e. the
model would be cyclic.

5.3.3.4 Worked Examples

We give a number of worked examples which show some aspects of the
algorithm in more detail.

5.3.3.4.1 Blocking Consider K = {H C 3P.H, B(t)} as knowledge base,
which stands for

Human C 3hasParent.Human
Bird(tweety)

We try to show that tweety is not in the class ~Human, i.e. that ~H(t) is
not a logical consequence of K. To do this, we add ——H(¢t) to K, resulting
in K’, and attempt to show that X' is unsatisfiable. Obviously, this attempt

FIGURE 5.13: Worked example of ALC tableau
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Now, application of the 3-rule yields a new node z with £(j,z) = {k} and
L(z) = {-~m}, as depicted below.

will not be successful, which shows that tweety could be in the class Human
according to the knowledge base.

We obtain NNF(K') = {~H U3P.H, B(t), H(t)}. The tableau is initial P L(p) = {m}
ized with one node t and L(t) = {B,H)}. Applying the TBox rule yields A
L(t) — ~HU3PH. Expanding this TBox axiom using the U-rule results
in £(t) - B.P.H since the addition of ~H to £(t) would lmmed.m.tely yield £() = {3h.-m) j—tea L(a) = {m}
a contradiction. We now apply the 3-rule and create a node with label z,

L(t,z) = {P}, and L(z) = {H}. At this stage, the node z is blocked by ¢,
and no further expansion of the tableau is possible,
t L(t)={H,B,~HLU3P.H, JP.H}

P

¥ L(=z) = {H}

z L(z) = {-m}
At this stage, the algorithm terminates since none of the rules is applicable.

This means that K’ is satisfiable. ' .
The new node z represents a potential child of john who is not male. Note

how the constructed tableau indeed corresponds to a model of the knowledge

(]
5.3.3.42 Open World Consider the knowledge base base K.

K = {h(j, p),h(j,0), m(p), m(a)},
which consists only of an ABox. The knowledge base stands for the following, |

isti lose our discussion of the
5.3.3.4.3 A Sophisticated Example VYe c : :
ALC tableaux algorithm with a more sophisticated example. We start with

the knowledge base K containing the statements

hasChild(john, peter)

hasChild(john, alex)
Male(peter)
Male(alex)

C(a),  C(c),R(a,b),  R(a,c), Sla,a),  S(cb),
CCVYS.A, AC3R3SA, AC3RC

i i f K.
d want to show that 3R.3R.35.A(e) is a logical consequence o
mW:’ first add -3R.JR.35.A(a), which results in K’. The knowledge base

We want to show that VhasChild.male(john) is not a logical consequence NNF(K') then consists of
of the knowledge base. We do this by adding the negation of the statement,
—Vh.m(j), resulting in the knowledge base K’. We then need to show that
K’ is satisfiable. :

Let us first try to understand why K’ is satisfiable. Due to the Open
World Assumption as discussed on page 131, the knowledge base contains no
information whether or not john has only peter and alex as children. It

C(a)’ C(c)’ R(a’ b)7 R(a’ c)i S(a' a')’ S(c’ b)'
~CUVS.A, -AU3R3S.A, -AU3RC, VRVRYS.-A(a),

and the initial tableau for NNF(K’) is the following.

is entirely possible that john has additional children who are not listed in q L(a) = {C,YRYRVS.~A}
the knowledge base. Therefore, it is not possible to infer that all of john’s
children are Male. We will see how the tableaux algorithm mimics this. x
Transformation into negation normal form yields R c £(e) = {C}
NNF(K') = {h(j,p), h(j, @), m(p), m(a), 3h.~m(j)}. /
s
The initial tableau for NNF(K’) can be depicted as follows. b L) =0

’ £o) = tm) At this stage, there are many choices of which rules to apply and at which
node. We urge the reader to attempt solving the tableau by herself bef?re
readi.ng on. Indeed, the tableau can grow considerably larger if the expansion

rules are chosen more or less randomly.

h

o) =Eh-m} ;e L= (m)
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2. For all pairs a, b of individuals, set L(a, b) = 0. ‘ : R AR :
3. For each ABox statement C(a) in K, set L(a) — C. - :
4. For each ABox statement R(a, b) in K, set L(a,b) ~ R.
3. For each ABox statement a #bin K, set a s b.

6

. Set 2 to be the empty relation, i.e. initially, no two nodes are considered
to be equal.

Again, we make the agreement that T is contained in L(z), for any z, but
we will often not write it down, and in fact the algorithm will not explicitly
derive this,

an S-successor
. of b. We thus have that the S-neighbors of b are a and c. Also, we have
" that c is an S-predecessor of d and e is an S~-successor of d. Hence d has
© §~-neighbors c and e. Note that f has no ancestors because ancestors must
. not be individuals.

We exemplify the visualization of initial tableaux by considering the knowl
edge base

K'={R"(a,b),5(a,b),5(a,c),c # b,C(a),C(3), D(t), D(c)}.

[T

FIGURE 5.15: Example of notions of successor, predecessor, neighbor and
: ancestor

5.3.4.1 Blocking for SHIQ

The blocking mechanism we used for ALC in Section 5.3.3.3 is not sufficient
for SHIQ, and we will give an example of this in Section 5.3.4.3.5 below. F(?l‘
SHIQ, we need to employ pairwise blocking: While in ALC, a .node T is
blocked by a node y if y essentially repeats z, in S')‘-Q'Q anode z is b'locked
if it has a predecessor z' and there exists a node y with predecessqr v, §uch
that the pair (y/,y) essentially repeats the pair (z/,z). We formalize this as
follows. ‘

A node z is blocked if it is not a root node and any one of the following

hold.

L PR R M1

SR M it e

For convenience, we use the following notation: If R € R (iie. if Risa
role name), then set Inv(R) = R~ and Inv(R™) = Inv(R). Furthermore, call
R € R transitive if RoRC Ror Inv(R)oInv(R) C R. This, and the following
somewhat involved definitions, are needed to accommodate inverse roles.

Consider a tableau for a knowledge base K. Let Hg be the set of all
statements of the form R C S and Inv(R) C Inv(S), where R,S € R and
RC SeK. WenowcallRasubroleofSifR=S, if RC S € Hy, or if there
are 5y,...,8, € R with {RC 51,5 € Ss,...,8,., C Sn,Sp C S} C Hyg.
In other words, R is a subrole of S if and only if R and § are related via the
reflexive-transitive closure of Cin Hg.

If R € L(z,y) for two nodes z and ¥, and if R is a subrole of S, then yis
called an S-successor of z, and z is called an S-predecessor of y. If y is an
S-successor or an Inv(S)-predecessor of z, then y is called an S-neighbor of z.
Furthermore, inductively, every predecessor of x, which is not an individual,
is called an ancestor of z, and every predecessor of an ancestor of z, which is
not an individual, is also called an ancestor of z. Examples of these notions
are given in Fig,. 5.15.

e There exist ancestors z’, y, and y' of z such that

— y is not a root node,

— z is a successor of 2’ and y is a successor of ¥/,
- £L(z) = L(y) and L(z') = L(y), and

- L(',z) = L(¥',y)-

e An ancestor of z is blocked.

o There is no node y with £(y,z) # 0.
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If only the first case applies, then z is called directly blocked by y. In all other
cases, T is called indirectly blocked. Note that we require L(z) = L(y) if z is
(directly) blocked by y, which is stronger than the required L(z) C L(y) i in
the case of ALC.

X iz A Y B

3-rule If z is not blocked HR C € L(z), and thereisnoy with R € B(a: y)
and C € L(y), then

1. add a new node with label y (where y is a new node label),

2. set L(z,y) = {R} and L(y) = {C}.

is not_indirectly blocked, VR. C € L(z), and there is a node y
@ L(y)sithenset - L(y). == C

As an example of blocking, consider the following part of a table;m.‘

a R > T R v R z B w

Le)={D} L=)={C} Ll={C} L»={C} Lw)={D}
Then z is directly blocked by y, since the pair (y; z) essentially repeats the:
pair (:r, y) The node w is indirectly blocked because its ancestor z is blocked.

O D S S N LD R AL AU O L SURLIP ST RN TERHT R St

5.3.4.2 The Algorithm

The SHZQ tableaux algorithm is a nondeterministic algorithm which es-
sentially extends the ALC algorithm. It decides whether a given knowledge
base K is satisfiable.

Given a SHZQ knowledge base K, the tableaux algorithm first constructs
the initial tableau as given above. Then the initial tableau is expanded by
nondeterministically applying the rules from Figs. 5.16 and 5.17. The algo-
rithm terminates if

FIGURE 5.16: Expansion rules (part 1) for the SHZQ tableaux algorithm

i i .3.4.2 by adding the statement
hich extends the example from Section 5.3.3 -2 by | .
v<v2haLsChilcl.T(j ohn). We will show that Vh.m(j) is still not a logical conse-

quence of K.
-
As before, we add 3h.~m(j) to the knowledge base, resulting in K’'. The
initial tableau now looks as follows.

o there is a node z such that £(x) contains a contradiction, i.e. if there is
C € L(z) and at the same time -C € £L(z),

¢ or there is a node z with <nS.C € £(z), and = has n + 1 S-neighbors
Yy rYnt1 With C € L(y;) and y; 2 y; for all 4,5 € {1,...,n+1} with

i# 7, P L(p) = {m}

¢ or none of the rules from Figs. 5.16 and 5.17 is applicable. h
In the first two cases, we say that the tableau contains a contradiction. In ‘ . T h . L{a) = {m}
the third case, we say that the tableau is complete. The knowledge base | £(j) = {3h.~m, <2h.T} I (a)
K is satisfiable if and only if there is a selection of subsequent expansion cation of the F-rule yields
rule applications which leads to a complete and contradiction-free tableau. Now, application P L(p) = {m}
Otherwise, K is unsatisfiable. .
5.3.4.3 Worked Examples . _

£() = {3h-m,<2hT})  j—>a L(a) = {m}

We continue with some worked examples which help to explain the different
expansion rules.

p L(z) = {-~m}
5.3.4.3.1 Cardinalities We first give an example of the application of -

the <-rule. Consider the knowledge base
K = {h(j,p), h(j,a), m(p), m(a), <2h.T ()},

and subsequent application of the <-root-rule allows us to identify p and a,
resulting in the following.
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4 L(p) = {m}
L(5) = {3h.-m,<2h.T} 7 a L{a) =

z L(z) = {~m}
None of the expansion rules is now applicable, so the tableau is complete
i and K’ is satisfiable.

5.3.4.3.2 Choose We do a variant of the example just given in order
to show how the choose-rule is applied. Consider the knowledge base K =
. {23h.T(j),<2h.m}. We want to find out if K is satisfiable. The initial
tableau for K consists of a single node j with £(j} = {>3h.T,<2h.m}. Ap-
. plication of the >-rule yields three new nodes z, y and z with [,(a:) L(y) =
. L(z) = {T}, z # y, z # 2, and y % z. The choose-rule then allows us to
assign classes to these new nodes, e.g., by setting £(z) — m, L(y) « m, and
£(z) — —m. The resulting tableau, depicted below, is complete.

T L(z) = {m}
h
/%\
h

L(F) = {23h.T,<2h.m} j——v % L(y) = {m}

\K
z L(z) = {-m}

. 5.3.4.3.3 Inverse Roles The next example displays the handling of in-
verse roles. Consider the knowledge base K = {3C.h(j), ~hUVP.A,C C P~},
which stands for

' ‘2 set E(a:, v

= {S
{1 ). = {8}, ﬁ(y

,n}thhz;éj’*

and Z h&s two S-nexghbom
. r 40 sncestor of 2, y'#:% does ng

5 setuaézforallumthuaéy

<-root-rule- If <nS Ce C(:c), there are more than n S né ' '
-neighbors y; of &
thh Ce C(y.), and z hg; two S—nexghbors Yz wluch are bog: root
nodes, y aéz doa not hold, and C e,c(y) 0 £(z), then

i.'”set C(z) - C(y), % : :

.;_for all dxrected edgm from y to some w, set L(z, w) - E(y, w), -
.‘for all dnrected edges from some wtoy, set £(w, z) L(w, y), ‘
. set L(y) - L{w,y) = [.(y, w) 0 for a.ll w,

,;setut;ézfora.llumthuaéy,and
.sety~2 -

JhasChild.Human(john)
Human C VhasParent.Human
hasChild C hasParent™

We show that Human(john) is a logical consequence from K, i.e. we start
by adding —h(j) to K, which is already in negation normal form.

In the initial tableau, we apply the 3-rule to 3C.h € L(j), which yields the
following.

[ <4 B~ C I

L(j) = {3C.h,~h} j—S>=z L(z) = {h}
We now use the TBox rule and set £(z) « -k UVYP.h. The U-rule on this
yields £(z) « VP.h, since the addition of —=h would yield a contradiction.

FIGURE 5.17: Expansion rules (part 2) for the SHTQ tableaux algorithm
L(j) = {3C.h, ~h} >z L(z) = {h,~hUVYP.h,YP.h}
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We now apply the V-rule to VP.h € L(z): j is a C-predecessor of z, and
hence a P~-predecessor of z due to CC P~. Sojisa P~ -neighbor of z, and

the V-rule yields £(j) « h. Since we already have —h € £L(j), the algorithm

terminates with the tableau containing a contradiction.
L(§) = {3C.h,-h, h} j—Srz L(z) = {h,~h UYP.h,VP.h}

5.3.4.3.4 Transitivity and Blocking The next example displays block-

ing and the effect of the trans-rule. Consider the knowledge base K = {h C -
3F.T,F C A,YA.h(j),h(j), >F.T(j), Ao A C A}, which stands for the fol- _

lowing,

Human C JhasFather.T
hasFather C hasAncestor
VhasAncestor.Human(john)
Human(john)
>2hasFather.T(john)
hasAncestor o hasAncestor C hasAncestor

Since the knowledge base states that john has at least two fathers, we

attempt to show unsatisfiability of K, which will not be possible.!! We first -

get NNF(K) = {-~hU3F.T,F C AVYAA(),h(§),2F.T(),A0 A C A}
From the initial tableau, we apply the >-rule to >2F.T, which results in the
following tableau.

j L(j) = {h,>2F.T,VA.h}
AF

L ={T} v =
We now perform the following steps.

1. Apply the TBox-rule and set £(j) = {~hU3IF.T}.

L(z)={T}

2. Apply the U-rule to the axiom just added, which yields £(j) — 3F.T
because adding ~4 would result in a contradiction.

. Apply the ¥-rule to VA.h € L(j), which yields £(z) «— h.
- Apply the trans-rule to VA.h € L(j), setting L(z) — VA.h.
- Apply the TBox-rule and set £(z) — -hU3F.T.

[= TN - I O ]

- Apply the U-rule to the axiom just added, which yields £(z) — IF.T
because adding ~k would result in a contradiction.

NThere is no information in the knowledge base which forbids anybody having two fathers,

OWL Formal Semantics 205

J L(j) = {h,22F.T,VA.h,~hUIF.T,3F.T}
F
Ly={T} v = L(xz) = {T,h,VA.h,~hUIF.T,3F.T}
We can now perform the following steps.

7. Apply the 3-rule to 3F.T € L(z), creating a new node z; with £(z,) =
T.

8. Apply the V-rule to VA.k € £L(z), resulting in L£(z;) — A.
9. Apply the TBox rule and set £(z,) — -hU3F.T.

10. Apply the U-rule to the axiom just added, which yields £(z,) «— 3F.T
because adding —~h would result in a contradiction.

J L(F) = {h,22F.T,VA.h,~hU3F.T,3F.T}
AF
Ly)={T} v =
F
T L(zy) = {T,h,VA.h,-hU3F.T,3F.T}
Note that £(z,) = L£(z), so we can apply steps 7 to 10 to z; in place of
z, creating a node z2 in step 7. Likewise, we can do for y exactly what we

have done for z, starting at step 1, creating two new nodes y; and y, in the
process. The resulting tableau is as follows.

J L(j) = {h,22F.T,VA.h,~hU3F.T,3F.T}

L(z)={T,h, VAR, -hU3IF.T,IF.T}

F\F

Ly)=LE) ¥ = L(z) = {T,h,YA.h,~hU3F.T,3F.T}

F |F
Lpm)=L(x) N = L(z,) = L(z)
F |F
Ly)=L(z) V¥ 22 L(zz) = L(z)

At this stage, z2 is directly blocked by z; since the pair (z1,z2) repeats
the pair (z,z,). Likewise, y; is directly blocked by g since the pair (y1,¥2)
repeats the pair (y,11). There is no expansion rule applicable, so the tableau
is complete, showing that K is satisfiable.

5.3.4.3.5 Why We Need Pairwise Blocking The next example shows
that the more complicated pairwise blocking is indeed needed for SHZQ.
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Consider the knowledge base K consisting of the statements R o R C R,

F E R, and -CN(<1F)N3F-.DNVR~.(3F~.D)(a), where D is short for

the class expression C M (<1F)N3F.~C.

K is unsatisfiable, which is not easy to see by simply inspecting the knowl-
edge base. So let us construct the tableau, which will help us to under-
stand the knowledge base. From the initial tableau, we repeatedly apply
the M-rule to break down the class expression in £(a). Then we apply the
Frule to 3F~.D, creating a node y with L(y) = {D}. D € L(y) can
be ?roken down by applying the M-rule repeatedly. Applying the V-rule to
YR .(HF_‘.D) € L(a) yields L(y) «— 3F~.D due to F C R, and the trans-
;:ll]e:) a.pphet.i tt'.o VRh‘.(BF;.D) € L(a) yields L(y) — VR™.(3F~.D). The

wing picture shows the ¢ H i
o owing :} Ty and L0y, urrent state; note that we have omitted some
a L(a) 2 {~C,<1F,3F~.D,YR~.(3F~.D)}

P

y L(y) 2 {D,3F~.D,YR~.(3F-.D),C,<1F,3F ~C}

Similar arguments applied to y i i
y instead of a leave us with a ne
the following situation. v node # aad

a L(e) 2 {~C,<1F,3F-.D,YR~.(3F~.D)}

P~

y L(y) 2 {D,3F~.D,YR~.(3F~.D),C, <1F,3F~C}
o

.z £(z) = £(y)

Since .the SHIQ tableau requires pairwise blocking, the node z is not
blocked in this situation. If it were blocked, then the tableau would be com-
plete, and K would be satisfiable. Since z is not blocked, however, we can ex-
pand 3F.~C € L(z) via the 3-rule, creating a new node x with £(z) = {~C}.

Application of the <-rule to <1F € £(z) forces us to identi
yields the following. () identify y and z, and

a L(a) 2 {~C,<1F,3F-.D,YR".(3F~.D)}
R
Ty L(y) 2 {D,3F~.D,YR~.(3F-.D),C,<1F,3F ~C,~C}

z L(z) 2 {D,3F-.D,YR~.(3F~.D), C, <1F,3F.~C}

' Since {C,~C} C L(y), the tableau contains a contradiction and the algo-
rithm terminates.
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FIGURE 5.18: Worst-case complexity classes of some description logics

5.3.5 Computational Complexities

Considerations of computational complexities of reasoning with various de-
scription logics have been a driving force in their development.’? The rationale
behind this is that understanding the computational complexity of a knowl-
edge representation language aids avoiding language constructs which are too
expensive to deal with in practice. This is an arguable position, and objec-
tions against the emphasis on computational complexity by description logic
developers has been criticized from application perspectives. Nevertheless, it
appears that the approach has been successful in the sense that it has indeed
helped to produce paradigms with a favorable trade-off between expressivity
and scalability. Complexities of description logics, more precisely of the un-
derlying decision problems, are usually measured in terms of the size of the
knowledge base. This is sometimes called the combined complezity of a de-
scription logic. If complexity is measured in terms of the size of the ABox only,
then it is called the data complezity of the description logic. These notions
are in analogy to database theory.

Figure 5.18 lists the complexity classes for the most important description
logics mentioned in this chapter. It should be noted that despite the emphasis
on complexity issues in developing description logics, their complexities are
very high, usually exponential or beyond. This means that reasoning even
with relatively small knowledge bases could prove to be highly intractable in
the worst case. However, this is not a fault of the design of description logics:
Dealing with complex logical knowledge is inherently difficult.

At the same time, it turns out that average-case complexity, at least for real
existing knowledge bases, is not so bad, and state of the art reasoning systems,
as discussed in Section 8.5, can deal with knowledge bases of considerable size.
Such performance relies mainly on optimization techniques and intelligent

Z[ntroducing complexity theory is beyond the scope of this book. See [Pap94] for a com-
prehensive overview.
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Exercise 5.4 Translate the knowledge base
Human C 3hasMother.Human

ShasMother.(ShasMother Human) C Grandchild
Human(anupriyaAnkolekar)

heuristics which can be added to tablean reasoners in order to improve their
performance on real data.

into RDFS syntax.

Exercise 5.5 Validate the logical inferences drawn in Fig. 4.11 by arguing
with extensional semantics.

5.4 Summary

In this chapter we have presented the logical underpinnings of OWL. We :
have introduced description logics and explained their formal semantics. In
particular, we have given two alternative but equivalent ways of describing the
formal semantics of SROZQ, and therefore of OWL DL and of OWL 2 DL, :
namely the direct extensional model-theoretic semantics, and the predicate
logic semantics which is obtained by a translation to first-order predicate
logic with equality.

We then moved on to discuss the major paradigm for automated reasoning
in OWL, namely tableaux algorithms. We have formally specified the algo-
rithms for ALC and SHTQ. We have also given many examples explaining
the algorithms, and briefly discussed issues of computational complexity for
description logics. :

Exercise 5.6 Consider the two RDFS triples
r rdfs:domain B . and A rdfs:subClass0f B .

Understood as part of an OWL knowledge base, they can be expressed as
BCVYr.Tand AC B. . . .
Give a triple which is RDFS-entailed by the two given triples, but which
cannot be derived from the OWL DL semantics. _ -
Furthermore, give an OWL DL statement which is a logical consequence of
the two OWL statements but cannot be derived using the RDFS semantics.

Exercise 5.7 Show using the ALC tableaux algorithm that the knowledge
base

5.5 Exercises

Exercise 5.1 Translate the ontology which you created as a solution for Ex-
ercise 4:1 into DL syntax.

Exercise 5.2 Translate the ontology which you created as a solution for Ex-
ercise 4.1 into predicate logic syntax.

Exercise 5.3 Express the following sentences in SROZ Q, using the individ-
ual names bonnie and clyde, the class names Honest and Crime, and the
role names reports, comnits, suspects, and knows.

1. Everybody who is honest and commits a crime reports himself,
2. Bonnie does not report Clyde.

3. Clyde has committed at least 10 crimes.

4. Bonnie and Clyde have committed at least one crime together.

5. Everybody who knows a suspect is also a suspect.

Student C Jattends.Lecture
Lecture C JattendedBy.(Student N Eager)
Student(aStudent)
—Eager(aStudent)
is satisfiable.
i i i hat (3r.E)(a) is a
Exercise 5.8 Show using the ALC tableaux algorithm t
logical consequence of the knowledge base K = {C(a),C C 3r.D,DC EU
F,FC E}.
Exercise 5.9 Show using the ALC tableaux algorithm that the knowledge
base K = {~H U 3p.H, B(t),~H(t)} is satisfiable.
Exercise 5.10 Validate the logical inferences drawn in Fig. 4.11 using the
ALC tableaux algorithm.

Exercise 5.11 Show using the ALC tableaux algorithm that the following
knowledge base is unsatisfiable.
Bird C Flies
Penguin C Bird
PenguinMFliesC 1
Penguin(tveety)
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Exercise 5.12 Show using the SHTQ tableaux algorithm that the statement
VhasChild.Male(john) is a logical consequence of the following knowledge
base.
hasChild(john, peter)
basChild(john, alex)
Male(peter)
Male(alex)
<2hasChild.Male(john)
peter # alex

Exercise 5.13 Show using the SHZQ tableaux algorithm that the statement
22hasChild. T(john) is a logical consequence of the following knowledge base.

22hasSon.T(john)
hasSon C hasChild

5.6 Further Reading

[HHPS04] is the normative document for the semantics of OWL 1, while
[MPSCGO09] is the current version describing the semantics of the forthcoming
OWL 2 DL.

The Description Logic Handbook [BCM*07] is a comprehensive reference
for description logics.

[HPSvHO3] gives an overview of OWL 1 in relation to RDF and SHZQ.

The SHIQ tableaux algorithms have been introduced in [HST00, HS99).
Our presentation differs slightly for didactic purposes, but there is no sub-
stantial difference.

A tableaux algorithm for SHOZQ can be found in [HS07]. Nominals ba-
sically add another element of nondeterminism which is very difficult to deal
with efficiently in automated reasoning systems.

SROZQ as an extension of OWL DL was proposed in {HKS06]. The ex-
tensions are uncritical in terms of realization in tableaux algorithms; in this
sense, SROZIQ is only a minor extension of SHOTI Q.

EL** was introduced in [BBLO5] and has recently sparked a considerable
interest in studying polynomial description logics.

DL-Lite is covered in [CGL*07).

For DLP, see [GHVDO3).

Complexities for many description logics, including appropriate literature
references, can be retrieved from http://www.cs.man.ac.uk/~ezolin/d1/.

Part III

Rules and Queries



