Deconvolución de imágenes: Aplicaciones de la SVD

Pablo Musé pmuse@fing.edu.uy

Departamento de Procesamiento de Señales Instituto de Ingeniería Eléctrica Facultad de Ingeniería

5 de noviembre de 2012

Motivación

Todas las imágenes que adquirimos con un cámara, telescopio, microscopio, etc, son (en mayor o menor medida) borrosas

Causas extrínsecas

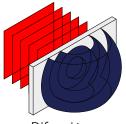
Mala utilización de la cámara, características de la escena

- ► Captura fuera de foco
- ► Solo cierto rango de profundidades en foco
- Vibración o movimiento de la cámara
- Movimiento de la escena

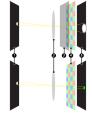
Causas intrínsecas a la cámara

Fenómenos ópticos y de construcción

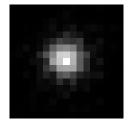
- Difracción de la luz
- Aberraciones de los lentes
- ► Promediado en los captores



Difracción



Formación de imagen



Point Spread Function

Modelo de formación de la imagen (niveles de gris)

- ▶ **Dominio de la imagen:** $\Omega \subset \mathbb{R}^2$, típicamente rectángulo.
- ▶ Imagen "verdadera": $f: \Omega \subset \mathbb{R}^2 \to \mathbb{R}$.
- ▶ **Point spread function** respuesta a un fuente puntual, respuesta del sistema de adquisición: $h: \Omega \subset \mathbb{R}^2 \to \mathbb{R}$.
- Ruido de adquisición (fotónico, térmico, cuantificación): n (carácter aleatorio, cierto conocimiento estadístico).

Imagen observada o adquirida

$$g = h * f + n$$

En imágenes digitales

u,h,v,n definidos en una grilla rectangular de $L\times M=N$ pixels, g(i,j)=(h*f)(i,j)+n(i,j).

$$\stackrel{\text{vectorización}}{\longrightarrow} \boxed{\mathbf{g} = \mathbf{A}\mathbf{f} + \mathbf{n}}, \ \ \text{con} \ \ \mathbf{f}, \mathbf{g}, \mathbf{n} \in \mathbb{R}^{N \times 1}, \ \ \mathbf{A} \in \mathbb{R}^{N \times N}.$$

Ejemplos de PSF y efectos

Gaussiana isotrópica

Movimiento

Deconvolución

Objetivo

Dada la imagen observada g, recuperar la imagen original f.

Dos versiones del problema

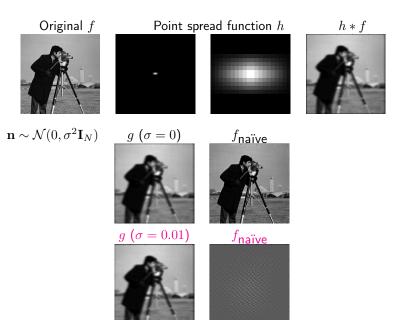
- Deconvolución ciega: h es desconocido y se estima conjuntamente con f.
- Deconvolución no ciega: conocemos h (se calibra previamente; ejemplos: microscopía, astronomía).

Solución naïve

$$\mathbf{f}_{\text{na\"ive}} = \mathbf{A}^{-1}\mathbf{g} = \mathbf{A}^{-1}\mathbf{A}\mathbf{f} + \mathbf{A}^{-1}\mathbf{n} = \mathbf{f} + \mathbf{A}^{-1}\mathbf{n}.$$

¿Tiene sentido? ¿Andará bien?

Solución naïve: resultados



Análisis de la solución naïve (1)

Descomposición SVD de $\mathbf{A} \in \mathbb{R}^{N \times N}$

$$\boxed{ \mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T }, \text{ donde } \mathbf{U}^T \mathbf{U} = \mathbf{I}_N, \quad \mathbf{V}^T \mathbf{V} = \mathbf{I}_N,$$

$$\Sigma = \operatorname{diag}(\sigma_1, \sigma_2, \dots, \sigma_n), \quad \sigma_1 \ge \sigma_2 \ge \dots \ge \sigma_N \ge 0.$$

Suponemos por ahora que $\sigma_N > 0$. Entonces $\mathbf{A}^{-1} = \mathbf{V} \mathbf{\Sigma}^{-1} \mathbf{U}^T$.

Representación útil

$$\mathbf{A} = \left[\mathbf{u}_1 \ \mathbf{u}_2 \ \dots \ \mathbf{u}_N\right] \operatorname{diag}(\sigma_1, \sigma_2, \dots, \sigma_N) \begin{bmatrix} \mathbf{v}_1^T \\ \mathbf{v}_2^T \\ \vdots \\ \mathbf{v}_N^T \end{bmatrix} = \sum_{i=1}^N \sigma_i \mathbf{u}_i \mathbf{v}_i^T$$

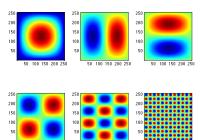
Idem:
$$\mathbf{A}^{-1} = \sum_{i=1}^{N} \frac{1}{\sigma_i} \mathbf{v}_i \mathbf{u}_i^T$$

Análisis de la solución naïve (2)

$$\mathbf{f}_{\text{na\"ive}} = \mathbf{A}^{-1}\mathbf{g} = \sum_{i=1}^{N} \frac{1}{\sigma_i} \mathbf{v}_i \mathbf{u}_i^T \mathbf{g} = \sum_{i=1}^{N} \left(\frac{\mathbf{u}_i^T \mathbf{g}}{\sigma_i} \right) \mathbf{v}_i$$

Es una expansion en la base de los vectores singulares derechos

Desvectorizando:
$$f_{\mbox{na\"ive}}(m,n) = \sum_{i=1}^N \left(\frac{\mathbf{u}_i^{\mathrm{T}} \mathbf{g}}{\sigma_i} \right) v_i(m,n).$$



Seis componentes v_i de la base de vectores singulares derechos para la PSF Gaussiana

Análisis de la solución naïve (3)

Error de estimación

$$\mathbf{f}_{\mathsf{naive}} - \mathbf{f} = \mathbf{A}^{-1}\mathbf{n} = \sum_{i=1}^{N} \left(\frac{\mathbf{u}_i^T \mathbf{n}}{\sigma_i}\right) \mathbf{v}_i$$

Características del problema de deconvolución

- ▶ Usualmente $|\mathbf{u}_i^T \mathbf{n}|$ pequeños y del mismo orden de magnitud $\forall i$.
- ► Los valores singulares decaen a valores cercanos a cero \Rightarrow cond(\mathbf{A}) = σ_1/σ_N muy grande, probema mal condicionado.
- ▶ Los vectores singulares correspondientes a σ_i chicos generalmente representan información de alta frecuencia.

Consecuencia del enfoque naïf

Cuando i crece, $\frac{\mathbf{u}_i^T \mathbf{n}}{\sigma_i}$ crece rápidamente (excitación del ruido) amplificando los \mathbf{v}_i de alta frecuencia.

Regularización por filtrado espectral

El principio

Veremos dos métodos simples que conducen a una mejor restauración, basados en el principio de considerar pesos w_i de forma que

$$\mathbf{f}_{\mathsf{estimado}} = \sum_{i=1}^N w_i \left(\frac{\mathbf{u}_i^T \mathbf{g}}{\sigma_i} \right) \mathbf{v}_i, \quad \mathsf{con} \ \frac{w_i}{\sigma_i} \longrightarrow 0 \ \mathsf{si} \ \sigma_i \to 0.$$

- Truncado de la SVD
- Regularización de Tikhonov

Truncado de la SVD (TSVD)

Para algún k < N, $w_i = 1$ si $i \le k$, $w_i = 0$ si i > k:

$$f_{\mathsf{TSVD}} = \sum_{i=1}^k \left(\frac{\mathbf{u}_i^T \mathbf{g}}{\sigma_i} \right) \mathbf{v}_i = \left[\mathbf{v}_1 \ \mathbf{v}_2 \ \dots \ \mathbf{v}_k \right] \left(\mathrm{diag}(\sigma_1, \sigma_2, \dots, \sigma_k) \right)^{-1} \begin{bmatrix} \mathbf{u}_1^T \\ \mathbf{u}_2^T \\ \vdots \\ \mathbf{u}_{i-1}^T \end{bmatrix}.$$

Regularización de Tikhonov

$$\forall i = 1, 2, \dots, N, \quad w_i = \frac{\sigma_i^2}{\sigma_i^2 + \lambda} \quad \text{con } \lambda > 0.$$

$$\mathbf{f}_{\lambda} = \sum_{i=1}^{N} \frac{\sigma_i}{\sigma_i^2 + \lambda} \left(\mathbf{u}_i^T \mathbf{g} \right) \mathbf{v}_i.$$

Interpretación

- \mathbf{f}_{λ} es la solución al problema $\min_{\mathbf{f}} \{ \|\mathbf{A}\mathbf{f} \mathbf{g}\|_{2}^{2} + \lambda \|\mathbf{f}\|_{2}^{2} \}.$
- ▶ El segundo término impide que $\|\mathbf{f}\|_2^2 = \sum_{i=1}^N \frac{\left(\mathbf{u}_i^T\mathbf{g}\right)^2}{\sigma_i^2}$ crezca demasiado
- λ se llama parámetro de regularización: controla el compromiso entre ajuste al dato observado y la regularidad de la solución frente a ruido.

Resultados

 $\mathsf{Dato}\ \mathbf{g}$

Original f

TSVD (k = 1798, tol = 0.5)

TSVD (k = 6040, tol = 0.1)

Tikhonov ($\lambda = 0.0016$)

Tikhonov ($\lambda = 0.01$)

