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Abstract Most medium to high quality digital cameras
(DSLRs) acquire images at a spatial rate which is several
times below the ideal Nyquist rate. For this reason only
aliased versions of the cameral point-spread function (PSF)
can be directly observed. Yet, it can be recovered, at a
sub-pixel resolution, by a numerical method. Since the ac-
quisition system is only locally stationary, this PSF esti-
mation must be local. This paper presents a theoretical
study proving that the sub-pixel PSF estimation problem
is well-posed even with a single well chosen observation.
Indeed, theoretical bounds show that a near-optimal accu-
racy can be achieved with a calibration pattern mimicking
a Bernoulli(0.5) random noise. The physical realization of
this PSF estimation method is demonstrated in many com-
parative experiments. We use an algorithm to accurately es-
timate the pattern position and its illumination conditions.
Once this accurate registration is obtained, the local PSF can
be directly computed by inverting a well conditioned linear
system. The PSF estimates reach stringent accuracy levels
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with a relative error of the order of 2% to 5%. To the best
of our knowledge, such a regularization-free and model-free
sub-pixel PSF estimation scheme is the first of its kind.
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1 Introduction

Image blur can be observed when the camera focus is not
properly set, when there are different objects at different
depths, or in the presence of is a motion blur. But there is a
permanent intrinsic physical camera blur due to light diffrac-
tion, sensor resolution, lens aberration, and anti-aliasing fil-
ters. Our goal here is to accurately estimate the point spread
function—PSF, that models the intrinsic camera blur. This
function can be locally interpreted as the response of the
camera to a point light source.

There are several key applications of PSF estimation,
among them image super-resolution, image de-blurring and
camera quality evaluation. Traditionally, sharp PSFs are con-
sidered to lead to better images, but too sharp PSFs (contain-
ing significant frequency components beyond the Nyquist
frequency) cause aliasing effects that may also affect the
quality of digital images. An accurate sub-pixel estimation
of the PSF is therefore crucial to evaluate the image qual-
ity in terms of a trade-off between sharpness and aliasing
effects.

Image super-resolution is the longstanding problem of in-
creasing the resolution of an aliased imaging system by in-
terpolating a single-frame, or by fusing together several low-
resolution images. For this difficult super-resolution pro-
cess, an accurate PSF is fundamental. Surprisingly, there are
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many more works on blind de-convolution associated to im-
age restoration or on super-resolution, than on the accurate
PSF estimation.

Existing PSF estimation methods can be classified as
blind or non-blind, parametric or non-parametric. Blind
methods estimate the PSF from a single image or from
a set of acquired images, without any knowledge of the
scene. On the contrary, non-blind methods use a specially
designed calibration pattern. Blind methods endeavor to
model features of the latent sharp image and to find by
optimization the most suitable kernel that predicts them
from the blurry observation. Most of them attempt to de-
tect edges in the blurred image, modeling them as the re-
sult of blurring pure step-edge functions (Chalmond 1991;
Luxen and Förstner 2002; Capel 2004; Smith 2006). How-
ever, in real images, a step-edge convolved with the PSF ker-
nel is generally not a good model of the observed edges
(Ladjal 2005, Chap. 4). Other blind approaches try to es-
timate the PSF based on statistical models of sharp im-
ages (Chalmond 1991; Rooms et al. 2004; Zhang and Cham
2008; Šroubek et al. 2007). Since the blind estimation is an
ill-posed problem (blind source separation), strong kernel
smoothness assumptions or, equivalently, very simple para-
metric models are necessary. These inaccurate approaches
are necessary to characterize and to blindly restore images
affected by contingent motion or out of focus blur.

Non-blind methods instead address the problem of es-
timating accurately the inherent camera blur. They rely on
photographs of calibration patterns to estimate the PSF.
These patterns range from pin-hole or slanted-edge patterns
to random noise images. The sub-pixel PSF estimation prob-
lem is generally treated as ill-posed. Most non-blind meth-
ods therefore introduce a PSF model constraining the space
of possible solutions. Parametric models, priors on the reg-
ularity of the PSF or on its symmetry are the most current
assumptions. However, these a priori assumptions can jeop-
ardize the estimation accuracy.

The ideal calibration pattern that comes to mind would be
a perfect pin-hole image simulating a Dirac delta impulse,
permitting to directly observe samples of the PSF. However,
in such an observation the signal to noise ratio would be
very low, the spot support being ideally infinitesimal. Fur-
thermore, for producing sub-pixel PSF estimates several sub-
pixel-shifted versions of the spot image would be needed.
Bar or sine patterns can also help to sample the Modu-
lated Transfer Function, MTF, but only up to the Nyquist
frequency.

The ISO 12233 standard (ISO 2000) gives a normalized
pattern and a procedure for measuring the one-dimensional
MTF, i.e. the modulus of the Fourier transform of the sys-
tem’s impulse response (PSF) in a particular orientation.
This standard is based on the slanted-edge method (Re-
ichenbach et al. 1991), which is an extension of the step-
edge technique to achieve sub pixel resolution on the esti-

mation. By aligning the step-edge slightly off the orthogo-
nal scan direction the effective sampling rate is increased.
Also, scan-line averaging successfully suppresses noise and
increases signal-to-noise ratio making the estimation more
stable. Zandhuis et al. (1997) propose a slanted-edge non-
parametric sub-pixel PSF estimation method that admits ge-
ometrical distortions. A parametric and non-parametric edge
spread function estimation procedure is proposed in Claxton
and Staunton (2008). Non-uniform illumination is also taken
into account. However, the differentiation step that gives
back the PSF requires regularization and therefore loses ac-
curacy. Since the previous methods are based on estimat-
ing several one-dimensional responses, several images or
symmetry assumptions are needed to reconstruct a full bi-
dimensional PSF.

The recent method by Joshi et al. (2008), Joshi (2008)
arguably represents the current state of the art of slanted-
edge methods. It proposes a flexible blind and non-blind
non-parametric local PSF estimation algorithm. Its approach
is based on the ability to detect edges with sub-pixel accu-
racy. In order to get a precise local PSF a specially designed
pattern formed by 120-degrees-arc-step-edges is used. The
method directly solves the de-convolution and superresolu-
tion problem for a bi-dimensional sub-pixel PSF. To reach
a sub-pixel accuracy a penalty term on the norm of the PSF

gradient is introduced, the inverse problem being ill-posed.
As we shall see in Sect. 5, this penalty causes inaccurate
estimates in the high frequency components of the PSF. If
the observed image is under-sampled, which is highly prob-
able and the reason why a sub-pixel PSF estimation will be
proposed here, interpolating it tramples high frequency in-
formation.

As we shall try to prove, there are two main possible im-
provements to the Joshi et al. method, and they are linked:
one is the use of a random noise pattern and the other is
the removal of any regularity term, thus transforming the
PSF estimation problem into a well-posed problem. The use
of random noise patterns with known power spectral den-
sity has been explored for MTF estimation in Daniels et al.
(1995), Levy et al. (1999), Backman et al. (2003, 2004). In
an ideal situation, the power spectral density PSD(f ) of the
observed digital image at frequency f is equal to the input
power spectral density PSDi (f ) times the squared MTF(f ).
The advantage of this procedure is that the MTF can be di-
rectly calculated. It does not require knowledge of the par-
ticular noise realization, relying only on statistical assump-
tions. A strong limitation of this approach is that the estima-
tion is done up to half the sampling frequency. Consequently
it does not reach a sub-pixel accuracy, and aliasing effects
are not taken into account.

In Brauers et al. (2010) a random noise pattern is also
used, but in a completely different approach. The acquired
image is registered to match the target. Then, by doing de-
convolution with the almost flat spectrum noise target, this
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method succeeds in characterizing locally the PSF. However,
the method assumes that the camera over-samples the sig-
nal, which is a correct hypothesis for the particular multi-
spectral-camera-lens system, but unrealistic for a classical
optical camera. This method contemplates the possibility of
a non-linear light sensor response, but does not correct the
non-projective distortion. Again, the question is treated as
an ill-posed problem and noise-free kernels are produced by
regularization.

Table 1 summarizes some of the existing algorithms for
PSF estimation. It first gives the abbreviations for the five
criteria characterizing calibration methods. The above anal-
ysis suggests that an ideal method must be non-blind (NB),
with no regularization. The kernel estimation must be 2D,
local (L), sub-pixel (sp). The main systematic perturbations
in imaging (optical distortion (D), non uniform illumina-
tion (I), non linear sensor response (G)) must be corrected
when comparing the ideal pattern to the photographed one.
In short, an ideal method must be (NB, R, 2D-L-sp, DIG)
with no (C, P, K). The closest to this ideal in the state of
the art is the Joshi et al. method, but it includes a regulariza-
tion which will be shown fatal to the high frequency kernel
content. The proposed method here has all “good” features.
Indeed, it will be shown mathematically and practically that
an adequate noise pattern permits to avoid any regulariza-
tion. The camera kernel is directly recovered from the com-
parison of the ideal noise pattern to the observed one by the
inversion of a well-conditioned matrix. We will also verify
that this is not possible with an edge based pattern.

By correctly choosing the calibration target, a sub-pixel
PSF estimation is therefore feasible without a priori kernel
model, without regularization, and with a single aliased in-
put image capture. Nevertheless, this requires the careful
correction of the geometrical distortion, of the non-uniform
illumination, and of the non-linearity of the sensor response.
In short, with a noise pattern, and thanks to this careful elim-
ination of all bias, the PSF sub-pixel estimation becomes
well-posed. Theoretical bounds will also demonstrate the
quasi-optimality of white noise calibration patterns to that
purpose. Given that the PSF is space variant, due to lens
aberrations or sensor non uniformity, the estimation must be
done as local as possible.

This article is organized as follows. Section 2 describes
the general mathematical digital camera model used for PSF

estimation. Section 3 proposes a mathematical theory of op-
timal patterns. It studies the optimality of the calibration pat-
tern in terms of the well-posedness of the PSF estimation
problem, and concludes with the proposition of a near opti-
mal and physically feasible random noise pattern. Section 4
describes all the steps of the proposed PSF estimation proto-
col. In Sect. 5 experimental results generated with both sim-
ulated and real camera data are presented, cross-validated,
and compared with the results of state of the art previous
methods. Section 6 is a final discussion.

Table 1 PSF estimation algorithm summary

Item Code Description

Blindness B blind

NB non-blind

Model E edge-based

R random pattern

N natural image model

Regularity C circular symmetry

P parametric estimation

K other kernel regularization

Estimation 1 one-image estimation

k k-image estimation

1D, 2D uni/bi-dimensional estimation

L local estimation

sp sub-pixel estimation

Features D geometrical distortion considered

I non-uniform illumination considered

G non-linear sensor response considered

Algorithm Blind Model Regul. Estim. Feat.

Luxen and Förstner (2002) B E P 1-2D –

Smith (2006) B E P 1-1D –

Capel (2004)

Rooms et al. (2004) B N C-P 1-2D –

Zhang and Cham (2008)

Šroubek et al. (2007)

Chalmond (1991) B E-N K 1-2D –

Zandhuis et al. (1997) NB E – k-2D-L-sp D

Claxton and Staunton (2008) NB E P-K k-2D-sp I

Reichenbach et al. (1991) NB E – 1-1D-sp –

Joshi et al. (2008) NB E K 1-2D-L-sp D

Daniels et al. (1995) NB R C 1-1D –

Levy et al. (1999)

Backman et al. (2004, 2003)

Brauers et al. (2010) NB R K 1-2D-L G

Proposed NB R – 1-2D-L-sp DIG

2 Image Formation Model

An accurate estimation of the PSF requires a proper model-
ing of the digital image formation process. The basic pin-
hole camera model consists of a perspective projection of
the 3D world scene into the focal plane. In real cameras,
a system of lenses is needed to concentrate the light rays
toward the focal point, passing through a finite but non pin-
hole aperture. Hence, the perspective projection is followed
by geometric distortions, which are always present in any
camera/lens system. This process can be faithfully modeled
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as a diffeomorphism from the focal plane into itself. The blur
of the resulting image in the focal plane is modeled by a ker-
nel that captures all PSF-like effects (diffraction due to finite
aperture, lens aberration, optical antialiasing filters, sensor
light integration, etc). Finally the resulting analog image is
sampled into a discrete image by the sensor array.

If we consider that the observed scene is a planar scene u,
the perspective projection is reduced to a planar homogra-
phy that will be denoted by H . The whole image formation
process can therefore be summarized in a single equation

(M′) v = S1 (g (F (H(u) ∗ hex) ∗ h)) + n,

where F(·) is the geometric distortion operator, h is the con-
volution kernel due to all intrinsic PSF-like effects, hex is
the convolution due to extrinsic blurring effects that occur
outside the camera (like motion blur and atmospheric turbu-
lence), and g(·) is a monotone non-decreasing function that
describes the non-linear sensor response (camera response
function—CRF). The operator S1 is the bi-dimensional ideal
sampling operator due to the sensor array, and n(u) models
the sensor noise.

Physical models of digital camera sensors, both for CCD

and CMOS sensors, suggest that the readout noise n(u) is
a mixture of luminance independent (Gaussian, thermal)
noise, and luminance dependent (Poisson or photon count-
ing) noise (Healey and Kondepudy 1994; Tian et al. 2001;
Marion 1997). In fact, the noise can be modeled as white
Gaussian noise with luminance-dependent variance. For the
purposes of this study, however, precise statistics of noise
are not critical, and only the global SNR is significant, so
we shall stick to the more traditional and simpler model of
image independent white Gaussian noise.

Furthermore, as stated in the introduction, we will only
deal here with intrinsic PSF-like effects at the camera fo-
cal plane. Therefore we assume that the experimental setup
is capable of avoiding motion blur, atmospheric turbulence
and out-of-focus blur as much as possible, thus permitting to
neglect the effect of hex. Strictly speaking out-of-focus blur
should be included in the intrinsic camera blur kernel h, but
since it can become negligible under controlled experimen-
tal setups, we chose to exclude this kind of PSF-like effect
from our study.

As a result of the previous discussion we shall simplify
model (M′) and use

(M′′) v = S1 (g (F (H(u)) ∗ h)) + n,

where h models the camera-intrinsic PSF-like blurring ef-
fects, and n is an image-independent Gaussian white noise.

The blur kernel h is space variant, but it varies smoothly.
Thus, the symbol ∗ is understood as a local convolution
product, the kernel h varying smoothly with the position in
the image domain.

The model can be further simplified by noticing that, in
order to estimate h, the geometric transformation implicit in
the combined deformation operator F ◦H can be considered
as a whole: there is no need to estimate separately the pro-
jective and non-projective parts. We shall therefore denote
by D the whole geometric transformation, and the image
formation model becomes

(M′′′) v = S1g (uD ∗ h) + n,

where uD is the geometrically transformed image, namely
uD(x) = u(D(x)). This model can be further simplified. In-
deed the sampling and the contrast change g commute, so
that S1g(uD ∗ h) = g(S1uD ∗ h). As we shall see, the con-
trast change g can be recovered from the image samples.
Thus we shall first focus on the simplified formation model

(M) v = S1(uD ∗ h) + n,

and explain later on how g can be eliminated. The next sec-
tion discusses the structure of the optical kernel h.

2.1 Diffraction-Limited Optical Systems

Ideal optical systems present PSFs only caused by the optical
light diffraction. In the case where there are no aberrations
the diffraction kernel is determined by the shape and size
of the aperture, the focal length, and the wavelength of the
considered monochromatic light. If the shape and size of the
aperture is known, the far field approximation (Fraunhofer
diffraction) can be explicitly computed as the square of the
Fourier transform modulus of the aperture function (Good-
man 1996). As a trivial consequence the PSF diffraction ker-
nel is always non-negative.

Optical aberrations degrade this ideal system where
only diffraction is considered, producing larger kernels
(Williams and Becklund 2002). In addition, optical anti-
aliasing filters—OLPF may be introduced in the camera be-
fore sampling. They are typically made of several birefrin-
gent crystals that separate a light spot into several divergent
light spots, leading to an effect similar to having a larger
pixel pitch. An analysis of the filters commonly used in dig-
ital cameras can be found in Zhao et al. (2006).

In most cameras, the digitization process is performed by
a rectangular grid of photo-sensors (CCD or CMOS) located
on the focal plane. Each photo-sensor integrates the light
arriving within a particular time frame. This sensor light
integration can be modeled by a convolution with a kernel
hsensor = 1C , the indicator function of the photo-sensor re-
gion C. Yadid-Pecht (2000) performs a theoretical analysis
of the MTF for the active area shape and deduces explicit for-
mulas for the transfer function for CMOS pixel arrays with
square, rectangular and L shaped active areas, which are
regularly used. In conclusion, the unknown kernel h results
from the convolution of three different kernels, all nonnega-
tive.
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3 Optimality Criterion and Quality Measure for
Calibration Patterns

Assume we can unveil exactly the latent sharp image that
produced the blurry aliased observation. Then, solving for
the PSF amounts to solve an inverse problem governed by the
image formation model (M). The first step toward solving
this problem is to carefully model the re-sampling operator
that produced an aliased observation. The inverse problem
to be solved can be stated in terms of the re-sampling rate
and of the observed pattern image uD , which is a function
of the calibration pattern. It follows, as will soon become
clear, that the accuracy of the estimation of h depends on
how well we can invert an operator that depends on the re-
sampling operator and on the calibration pattern. In this sec-
tion we show that a nearly optimal conditioning is obtained
when the calibration pattern is a realization of a white noise.
While this may not be new (noise patterns have been used
in non-blind PSF estimation, see e.g. Daniels et al. (1995),
Levy et al. (1999), Backman et al. (2004, 2003), Brauers et
al. (2010)), the novelty presented in this section is that the
use of white noise patterns allows one to solve for super-
resolved PSFs without the need for any regularization, and
without any prior model for h. In other words, the system is
well posed as long as a white noise image is chosen as the
calibration pattern.

3.1 Inverse Problem Statement in Terms of the
Re-sampling Operator and the Calibration Pattern

In the following, F denotes the Fourier Transform. We de-
note by f̂ the Fourier Transform of a function f . The s-
Shannon-Whittaker interpolator defined as Isu(x) =
∑

k u(k)sinc( x
s

− k) is denoted by Is , Ss is the s-over-
sampling operator Ssu(k) = u(s−1k) and LPFw is the fre-
quency cut-off low pass filter that cuts the spectrum of a
signal to [−wπ,wπ]2.

Suppose that h is band-limited within supp(ĥ) =
[−δπ, δπ]2. If the PSF is sampled at a rate s, where s > δ,
the Nyquist sampling theorem guarantees a perfect signal re-
construction. We will consider the case where δ > 1, which
corresponds to aliased images, as in practice most digital
cameras introduce aliasing.

Lemma 1 (Discrete convolution) Let u and h be images
in L2(R2) such that h is band-limited, i.e. supp(ĥ) =
[−sπ, sπ]2. Then

u ∗ h = Is(ũ ∗ h),

where h = Ssh and

ũ = Ss LPFsu.

Proof Set ũ := LPFsu = F−1(û ·1[−sπ,sπ]2), so that ũ = Ss ũ

and ˆ̃u = û ·1[−sπ,sπ]2 . This implies that u∗h = ũ∗h. Indeed,

F−1(ûĥ) = F−1(û · ĥ · 1[−sπ,sπ]2) = F−1( ˆ̃uĥ).

Now, since both ˆ̃u and ĥ are supported in [−sπ, sπ]2, it fol-
lows that

ũ ∗ h = IsSs(ũ) ∗ IsSs(h)

= Is(ũ) ∗ Is(h)

= Is(ũ ∗ h). �

Remark 1 Note that u does not need to be band-limited,
only h. Notwithstanding, if we can find the spectral cut-off
ũ of u, then this lemma implies that the continuous convo-
lution u ∗ h can be simulated exactly with a discrete set of
samples.

Let us denote by Ss the s-to-1-sub-sampling operator

Ss = S1Is .

It follows from Lemma 1 that the image formation model
(M) can be rewritten in terms of discrete sequences as

v = Ss ũD ∗ h + n,

where h and ũD are sampled at rate s such that s > δ for h
to be well sampled. The value s is the over-sampling rate to
the high resolution lattice, where the PSF estimation is going
to take place, from the 1× sensor grid.

Assuming that n is a zero-mean stationary white Gaus-
sian noise, the kernel samples h can be obtained by solving

arg min
h

‖Ss ũD ∗ h − v‖2
2. (1)

Here, ũD is the result of the Shannon-sampling on the
s× grid of the distorted continuous pattern signal ũD =
Ss LPFsu(D(x)), and v the blurred degraded digital obser-
vation on the camera 1× sensor grid.

As inferred by the above discussion, the estimation of the
PSF by a non-blind method raises the following issues:

– to choose a good PSF characterization target;
– to estimate the function g(·), the non-linear CCD re-

sponse;
– to estimate the geometric deformation D(·);
– to generate ũD from the sharp latent pattern image u;
– to find numerical algorithms calculating the PSF.

So far h is only assumed to be band-limited. The numeri-
cal method will recover only a finite number of samples of h,
which is well localized, and therefore in practice compactly
supported. Strictly speaking h being band limited cannot be
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compactly supported. However, the error introduced by a
restriction on the support will prove negligible in compar-
ison to the other sources of error: image noise, quantization,
slight estimation errors of g, D, . . . . The found solution h is
experimentally independent from variations of its assumed
support.

The problem in (1) can be rewritten in matrix form,

(P) arg min
h

‖SsUh − v‖2
2,

where U is the convolution matrix by ũD . (This matrix is
applied to the sample vector h.) Assuming that the observed
image v is of size m × n, the sizes of ũD and h are ms × ns

and r × r , respectively. The matrix Ss is the downsampling
matrix of size M × Ms2, where M = m × n. As mentioned
above, we need s > δ to recover h from its samples. Thus,
s is an integer greater than δ, which facilitates the construc-
tion of the subsampling matrix (Ssu)(m,n) = u(ms,ns).
Then SsU is of size M × N , with N = r × r .

The solution of (P) is easily obtained using a least squares
estimation procedure, and is given by

he = (SsU)+v,

where (SsU)+ = ((SsU)t (SsU))−1(SsU)t is the Moore-
Penrose pseudo-inverse of (SsU). Depending on the con-
dition number of this matrix, the inversion would be well-
posed and the solution would be unique. Since

(SsU)h + n = v,

the estimation error is given by ne = (SsU)+n. The noise
has zero-mean, thus the estimator he is unbiased and its vari-
ance is

E
{‖ne‖2

2

} = E
{∥
∥(SsU)+n

∥
∥2

2

}

= E

{
M∑

j=1

(
N∑

i=1

(SsU)+ij ni

)2}

=
M∑

j=1

N∑

i=1

N∑

k=1

(SsU)+ij (SsU)+kjE{nink}.

Since n is white and stationary, with zero mean, it follows
that

E
{‖ne‖2

2

} =
M∑

j=1

N∑

i=1

(SsU)+ij
2
σ 2

n = ‖(SsU)+‖2
F σ 2

n ,

where σ 2
n denotes the noise variance, and ‖ ·‖F is the Frobe-

nius norm of a matrix.
If all singular values of SsU are non zero, the singular

values of (SsU)+ are the inverses of the singular values of
(SsU). If some singular value is zero, the system is ill posed

and the estimation problem cannot be solved, unless some
kind of regularization on h is imposed.

Let {σ1, σ2, . . . , σN } be the singular values of SsU. Then

‖(SsU)+‖2
F =

N∑

i=1

σ−2
i .

In order to minimize the variance of the estimator he (i.e. to
minimize the noise amplification), one has to minimize the
function

γ (SsU) :=
N∑

i=1

σ−2
i .

It should be pointed out that γ depends on the rate s and
on the samples ũD . The super-resolution rate s is determined
by the spectral support of the PSF. The sequence ũD depends
on the adopted continuous pattern u, on the geometric trans-
formation D (that includes the perspective projection asso-
ciated to the particular pattern’s view) and also on other pos-
sible distortions that are present in the camera-lens system.
Hence, for the s× sub-pixel PSF estimation problem, γ mea-
sures the quality of any given view of a calibration pattern.

In order to find the best ideal pattern independently of
the view and distortion, we will consider first the discrete
problem of finding the best sequence ũD , minimizing the γ

value. To simplify the notation we write uij = (ũD)ij . This
motivates the following definition.

Definition 1 (Optimal digital pattern) Given a kernel sup-
port N = r × r and a window observation size M = m × n,
the optimal pattern for the s× sub-pixel PSF estimation is
the digital calibration pattern u∗ such that

u∗ = arg min
a≤uij ≤b

γ (SsU),

where the constraints on uij are linked to the physical re-
alization of the pattern and to the sensitivity of the sensors.
(The conclusions of the analysis will prove independent of
the particular value of these bounds.)

3.2 Characterization of Optimal Digital Calibration
Patterns

In this section, we derive a lower bound for γ (SsU) that will
be used to design calibration patterns. Indeed, it will then
be shown that for a realization of white stationary Bernoulli
noise, the γ value is so close to this bound, that in practice
these patterns can be considered to be optimal.

Lemma 2 Let � be a M × N matrix, M > N , with all its
entries in [a, b]. Let σ1 ≥ σ2 ≥ · · · ≥ σN denote its singular
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values. Then

N∑

i=2

σ 2
i ≤ (a + b)

√
MNσ1 − σ 2

1 − abMN.

Proof Let ϕij be the (i, j) entry of �, and ϕj its j -th

column. Let also ϕ̄j = 1
M

∑M
i=1 ϕij denote each column’s

mean, and ϕ̂j = ϕj − ϕ̄j 1.
The Frobenius norm of � can be expressed as

‖�‖2
F = trace(�t�) =

N∑

j=1

ϕt
jϕj .

Since ϕ̃ij := ϕij −a

b−a
∈ [0,1], we have ϕ̃2

ij ≤ ϕ̃ij , and then

ϕt
jϕj =

M∑

i=1

ϕ2
ij ≤

M∑

i=1

(a + b)ϕij − abM

= M(a + b)ϕ̄j − abM.

Thus,

‖�‖2
F ≤ M(a + b)

N∑

j=1

ϕ̄j − abMN. (2)

On the other hand, for all x such that ‖x‖ = 1, ‖�‖2 ≥
‖�x‖. Let us take x = 1√

N
1. Then

‖�‖2
2 ≥ ‖�x‖2

2 = 1

N

∥
∥
∥
∥
∥

N∑

j=1

ϕj

∥
∥
∥
∥
∥

2

= 1

N

∥
∥
∥
∥
∥

N∑

j=1

ϕ̂j +
N∑

j=1

ϕ̄j 1

∥
∥
∥
∥
∥

2

= 1

N

(∥
∥
∥
∥
∥

N∑

j=1

ϕ̂j

∥
∥
∥
∥
∥

2

+
∥
∥
∥
∥
∥

N∑

j=1

ϕ̄j 1

∥
∥
∥
∥
∥

2)

+ 1

N

(
N∑

j=1

ϕ̂j

)t( N∑

j=1

ϕ̄j 1

)

= 1

N

(∥
∥
∥
∥
∥

N∑

j=1

ϕ̂j

∥
∥
∥
∥
∥

2

+
∥
∥
∥
∥
∥

N∑

j=1

ϕ̄j 1

∥
∥
∥
∥
∥

2)

≥ 1

N

∥
∥
∥
∥
∥

N∑

j=1

ϕ̄j 1

∥
∥
∥
∥
∥

2

= M

N

(
N∑

j=1

ϕ̄j

)2

. (3)

Thus, by (2) and (3), we have:

‖�‖2 ≥ ‖�‖2
F + abMN√

MN(a + b)
.

Then, since ‖�‖2 = σ1,

σ1 ≥ ‖�‖2
F + abMN√

MN(a + b)
=

∑N
i=1 σ 2

i + abMN√
MN(a + b)

.

Finally,

N∑

i=2

σ 2
i ≤ (a + b)

√
MNσ1 − σ 2

1 − abMN.
�

Lemma 3 (A bound on γ ) Let � be a M × N matrix,
M > N , with all its entries ϕij in [a, b]. Then

min
ϕij ∈[a,b]γ (�) ≥ 1

MN

(
1

b2
+ 4(N − 1)2

(b − a)2

)

.

Proof According to Lemma 2, for any matrix � with entries
in [a, b], and in particular for the ones that attain

γ ∗ = min
σ1,...,σN

N∑

i=1

σ−2
i ,

the inequality
∑N

i=2 σ 2
i ≤ (a + b)

√
MNσ1 − σ 2

1 − abMN

holds. Thus

min
ϕij ∈[a,b]

γ (�) ≥ min
σ∈D

f (σ ),

where σ = (σ1, . . . , σN),

D :=
{

σ

∣
∣
∣ σi ≥ 0,

N∑

i=1

σ 2
i −(a+b)

√
MNσ1 +abMN ≤ 0

}

,

and f (σ ) := ∑N
i=1 σ−2

i . The function f being strictly con-
vex on D, which is itself a convex and compact domain,
it follows that the minimum of f on D is attained at a
unique point. D and f being invariant by any permutation
of σ2, . . . , σN , the minimum point being unique satisfies
σ2 = · · · = σN . Since this minimum belongs to D,

N∑

i=2

σ 2
i = (N − 1)σ 2

2 ≤ (a + b)
√

MNσ1 − σ 2
1 − abMN.

By noting that the maximum value of

σ1 
→ (a + b)
√

MNσ1 − σ 2
1 − abMN

is ( b−a
2 )2MN , it follows that

σ 2
2 ≤

(
b − a

2

)2
MN

N − 1
.

On the other hand for any point of D we have

σ 2
1 ≤ (a + b)

√
MNσ1 − abMN.
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Fig. 1 Comparison of the lower
bound given by Lemma 3 and
the one obtained by solving the
KKT conditions for the case
a = 0, b = 1. Both bounds are
shown in (a), as a function
of M . The plot in (b) shows
their difference, also as a
function of M

Then, it follows that σ 2
1 ≤ b2MN . Consequently,

min
σ∈D

f (σ ) =
N∑

i=1

σ−2
i ≥ 1

MN

(
1

b2
+ 4(N − 1)2

(b − a)2

)

.
�

Remark 2 It should be noted that in the proof of the previous
lemma, the condition that the entries of � belong to [a, b]
was replaced by the weaker condition given by the inequal-
ity proved in Lemma 2. This amounts to enlarge the space
of matrices that was originally considered, thus the real op-
timum that can be attained by matrices with entries in [a, b]
will necessarily lead to higher values of γ .

Remark 3 Notice also that in Lemma 3 we did not solve the
complete constrained optimization problem
minσ1,...,σN

∑N
i=1 σ−2

i subject to
∑N

i=2 σ 2
i ≤ (a+b)

√
MNσ1

− σ 2
1 − abMN . While this problem can be solved via the

Karush-Kuhn-Tucker conditions, according to the previous
remark it would still lead to a lower bound on γ . The so-
lution of this constrained minimization problem leads to
a closed form which is significantly less handy than the
bound that was obtained in Lemma 3, and is worthless since
both bounds are extremely close, as shown in Fig. 1 for
a = 0, b = 1.

Proposition 1 (Non-asymptotic bound for optimal patterns)
Let u = {uij } be a ms × ns digital image with all its values
in [a, b]. Let SsU be the operator associated to the convo-
lution of the r × r kernel with the image u, followed by the
downsampling operator of rate s. Then

min
a≤uij ≤b

γ (SsU) ≥ 1

MN

(
1

b2
+ 4(N − 1)2

(b − a)2

)

,

where M = m × n is the observation window size and N =
r × r is the kernel size.

Proof The result follows directly from Lemma 3, since the
operator SsU associated to u is a M × N matrix with all its
entries in [a, b]. �

We will propose as calibration pattern a realization of a
white Bernoulli(0.5) stationary noise. It will be shown that
this calibration pattern is so close to the γ (SsU) lower bound
given by Lemma 3 that for practical calibration purposes, it
can considered to be optimal.

The motivation for choosing stationary white noise pat-
terns is not new: white noise has been widely used for sys-
tem identification applications, since it optimizes the min-
imum variance of unbiased estimators. Now, the choice of
Bernoulli(0.5) distribution can be explained as follows. Sup-
pose u = {uij }, where uij ∈ [a, b] are mutually independent
random variables, identically distributed with mean mu and
variance σ 2

u . In this case, it can easily be shown that

E
{
(SsU)t (SsU)

} = M
(
m2

u11t + σ 2
u I

)
.

This is a direct consequence of the non-correlated nature
of u and that subsamples of white noise remain white noise.
Observe that M(m2

u11t + σ 2
u I) has only two different eigen-

values: σ1 = M(Nm2
u + σ 2

u ) and σ2 = · · · = σN = Mσ 2
u .

Thus, its γ value is

γ = 1

M

(
1

Nm2
u + σ 2

u

+ N − 1

σ 2
u

)

.

On the one hand, in order to minimize γ , both mu and σ 2
u

should be as large as possible. On the other hand there is a
trade-off between both values and they cannot be simultane-
ously maximized. Indeed, any random variable with support
[a, b] satisfies

σ 2
u ≤ (mu − a)(b − mu).

Nonetheless, the equality holds for the Bernoulli distribu-
tion. Hence, from now on we restrict the analysis to the
Bernoulli case which, from the previous reason, is optimal.
Therefore we can express γ as

γ = 1

M

(
1

Nm2
u + (mu − a)(b − mu)

+ N − 1

(mu − a)(b − mu)

)

.
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Fig. 2 Comparison of the lower
bound given by Lemma 3 and
the γ obtained from the
expected SsU operator when
using a Bernoulli(0.5) random
noise target. Both bounds are
shown in (a), as a function of M

whereas the Plot (b) shows their
difference, also as a function
of M

Fig. 3 Reaching theoretical
bounds. A random Bernoulli
binary image is used to generate
the SsU. We set s = 4 and
estimate γ for different
observed image sizes (m,n

values) (a) and different kernel
sizes (r value) (b). The
proximity between the obtained
γ and the theoretical bound
shows the tightness of the
derived γ lower bound

It can be shown that the mu ∈ [a, b] value where γ attains its
minimum is always very close to mu = a+b

2 . This happens
independently of M and N . However, the exact value de-
pends on N . It is therefore convenient, to avoid dependence
on N , to fix mu = a+b

2 by using an equiprobable Bernoulli
distribution. Finally, the γ value for the expected operator
SsU when using a Bernoulli(0.5) pattern is

γ = 4

M

(
1

N(a + b)2 + (b − a)2
+ N − 1

(b − a)2

)

.

This value is very close to the bound provided by Lemma 3.
Indeed, for M ≥ N � 1 we have γ ∗ − γ ≈ 4

M(b−a)2 . This
small difference is illustrated in Fig. 2 for the particular
case a = 0, b = 1. Notice also that since E{(SsU)t (SsU)} =
limM→∞(SsU)t (SsU), large M values may be required in
order to reach the optimal γ . However, this is clearly not our
case of interest, our goal being to perform a local kernel es-
timation. Nevertheless, we may still be interested in explor-
ing the use of a realization of white stationary Bernoulli(0.5)
noise as calibration pattern, for finite and realistic values of
M and N (the non-asymptotic case).

In order to show that the choice of such a calibration pat-
tern can be considered to be optimal for practical PSF es-
timation, we generated a white random binary image uij ∈
{0,1}, Bernoulli(0.5), and evaluated γ (SsU) for fixed down-
sampling rate s = 4. Figure 3 shows that the obtained γ is
very close to the non-asymptotic lower bound (Lemma 3),
indicating that this pattern is optimal in a practical sense.

Concluding Remark The mathematical argument and exper-
iments above show that near-optimal γ values are reached
with a Bernoulli random noise pattern for reasonable ob-
servation, kernel and pattern sizes. Slightly better γ values
could be achieved if we allowed the pattern to adapt to the
kernel size. This is nevertheless not practical. The payoff
would be a negligible improvement of the well-posedness,
and the exact PSF support size being anyway a priori un-
known.

3.3 From Continuous Patterns to Digital Patterns

Based on the previous section it comes into view that good
PSF estimation patterns are those that produce very con-
trasted random ũD sequences. However, we cannot choose
directly the values inside the SsU operator. Indeed, the γ

value depends on ũD , obtained by sampling on the s× grid
the distorted continuous pattern image.

Consider the set of analogical patterns formed of constant
uij gray value squares regions,
u(x) = ∑

i,j uij 1‖x−(i,j)‖≤ 1
2
. Since signals in optical sys-

tems are non-negative in nature and bounded, we can assume
w.l.o.g. that 1 ≥ uij ≥ 0.

For the mathematical exploration of optimal patterns, we
will restrict ourselves to the case where the geometrical
transformation D is a zoom-out with factor t−1, Zt−1 . This
assumption is almost perfectly satisfied if the views of the
pattern are taken frontally. Notice that the s-sampling oper-
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Fig. 4 Random pattern analysis. Sensitivity of the γ value to the ker-
nel support size (a) and to the s/t zoom factor (b) s = 4. The larger
the support of the kernel, the noisier the estimation when the gamma
value increases with the kernel support size (a). The zoom factor s/t

is closely related to the focal distance and to the distance from the
camera to the pattern. For example if the distance to the pattern is too
small (small s/t value) the pattern will look like a step-edge pattern

because of the zoom-in. The corresponding γ value will be higher than
the optimal. On the other hand, if the distance to the pattern is large
then the γ value will also be larger than the optimal one, because of
the contrast loss due to the zoom-out. In agreement with the theoretical
study, the views with zoom factors close to one (i.e. t ≈ s) produce the
best γ values

ator can be written as Ss = S1Zs . Thus,

ũD = Ss LPFsuD

= S1LPF1ZsuD

= S1LPF1ZsZt−1u

= c ∗ u

where c is the digital filter

ci,j =
∫ 1

2

− 1
2

∫ 1
2

− 1
2

sinc

(
s

t
ζ − i

)

sinc

(
s

t
η − j

)

dζdη.

As mentioned earlier the goal is to produce values (ũD)ij
as independent and contrasted as possible. This motivates
the following simplification. Suppose that the set up realizes
t = s.

An ideal unattainable situation would be that the re-
sampling operator and the low-pass filter do not produce
inter-symbol interference (i.e. the discrete filter c does not
change the input signal u). Then each of the square gray
values would be equal to the sample after low-pass filtering
ũD ≈ uij . In this particular case we would have a perfect
one-to-one correspondence between the gray values of the
pattern and the ũD digital signal which would be a Bernoulli
pattern. Due to the constraints on uij the best we can do is to
choose iid random variables u ∈ {0,1} with Bernoulli(0.5)
distribution. Yet, while this perfect geometric situation is
unattainable, the experiments show that γ stays close to its
optimal value when s/t is between 0.7 and 2, as it is shown
in Fig. 4. The resulting ũDij

for distances in a range from

s/t = 1 produce γ values close to the γ bound for entries in
[0,1].

3.4 Comparison of calibration patterns

The γ factor introduced above permits to compare the suit-
ability of different patterns for the PSF estimation problem.
Since the noise amplification is governed by the sum of the
inverses of the singular values, it is desirable to use patterns
that produce singular values that are all as large as possi-
ble. For this purpose, and justified by the previous theory,
we shall use a binary random pattern. The proposed noise
pattern consists of a matrix of 256 × 256 black and white
random squares generated from an equiprobable Bernoulli
distribution. The pattern was printed at a high enough res-
olution so that artifacts introduced by the printer could be
neglected. Several cross marks and white/black flat regions
were added, to easily align the acquired image with the tar-
get, and to correct non-uniform illumination. Figure 5 shows
the proposed random pattern, compared to a pattern de-
signed by Joshi et al. consisting of 120◦ arc step edges.

Suppose we want to do a s = 4× PSF estimation. As
shown in the previous section, the pattern should be pho-
tographed at such a distance that the pattern covers more or
less 256/4 × 256/4 pixels. In practice, this permits a very
local PSF estimation.

Figure 6 shows the eigenvalues of the SsU matrix for
s = 4, an observed window with size 80 × 80, and vary-
ing kernel sizes, for Joshi et al.’s pattern and for the pro-
posed random target. The random pattern produces sec-
ondary eigenvalues very similar in contrast to the fast decay
shown by the eigenvalues of the slanted-edge Joshi pattern.
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Fig. 5 Calibration patterns for local PSF estimation

Table 2 A comparison of pattern realizations through the γ value.
The random pattern produces significantly smaller γ values than the
slanted-edge Joshi pattern

9 × 9 17 × 17 25 × 25 33 × 33

Joshi 99.44 1133.05 6445.87 58419.08

Random 0.19 0.69 1.54 2.98

Bound 0.10 0.35 0.70 1.15

The γ values for the corresponding patterns are shown in
Table 2. In all cases, the random pattern significantly out-
performs the Joshi et. al. pattern. The γ bound value was
computed by taking into account the effective observed win-
dow size, that is, leaving out the auxiliary region with the
checkerboard and flat regions.

4 The Complete PSF Estimation Procedure

In this section we describe the steps that lead to a local sub-
pixel PSF estimates. The complete chain is summarized in
the block diagram of Fig. 7. The next paragraphs present
brief summaries for each block.

4.1 Feature Detection

In order to deal with geometric distortions the ideal pattern
and its observation have to be precisely locally aligned. To

Fig. 6 Pattern comparison I. Proposed Random Pattern vs Joshi et al
slanted-edge-circles target. Observed Window of size 81×81, PSF sup-
port size 25 × 25, s = 4. Eigenvalues sorted from highest to lowest.
The random pattern produces very similar eigenvalues, and the decay
its very slow in comparison to the ones from the Joshi et al. pattern

that purpose checkerboard corners were introduced along
the boundary of the noise calibration pattern. Assuming
that the PSF is (approximately) symmetric, these x-corners
will not suffer from shrinkage. Several methods to detect
checkerboard corners have been reported in the Computer
Vision literature (e.g. Harris and Stephens (1988), Cheng et
al. (2005), Lucchese and Mitra (2002)), ranging from differ-
ential operators such as the Harris detector to more specific
correlation methods. We used a Harris-Stephens based cor-
ner detector implemented by Bouguet (2008), that allows to
iteratively refine the detected corner positions to reach sub-
pixel accuracy.

4.2 Geometric Transform Estimation

The estimation of the PSF does not require a decomposition
of the distortion into its homography and non-homography
parts, as it is done in classical geometric camera calibration
(Zhang 2000), where a global radial lens distortion model
is usually adopted. In order to avoid that computation and to
utilize a more flexible model that may capture local lens dis-
tortion, the complete geometric distortion was approximated
with thin-plate splines. While thin-plate splines were orig-
inally conceived as an exact interpolation method (Book-
stein 1989) they can be easily extended to the approxima-
tion problem (Sprengel et al. 1996). The mapping from the
non-distorted to the distorted space is estimated from the
detected corners {p̃i}, and their correspondences in the ideal
pattern {Pi}, whose coordinates are perfectly known. Ac-
curate geometric transform estimation is essential for good
performance. Although there are no “control points” inside
the random pattern (only on borders as depicted in Fig. 5(a)),
as the pattern is designed to cover about 100 × 100 pixels
in an image, the local geometrical distortion inside such a
small region will be practically affine. Hence, by using thin-
plate splines we can achieve the necessary registration accu-
racy.
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Fig. 7 Algorithm description.
The captured image is precisely
aligned to the analytic pattern
through intentionally inserted
checkerboard markers.
Non-uniform illumination and
non-linear camera response
function impact—CRF are
corrected from the captured
image to allow an artifact-free
s× PSF estimation

4.3 Illumination Estimation and Normalization

In order to match the gray levels in the sharp pattern to
those in the observed image, black and white square flat re-
gions were included along the boundary of the noise pattern.
These regions permit to estimate the mapping between black
and white colors and the corresponding observed gray level
values. The presence of these constant regions all around
the pattern permit to estimate a black (white) image that
models the black (white) intensity level at each pixel. These
light images have been modeled by second order polynomi-
als whose coefficients are estimated by least squares from
the known pairs (value, position). In continuation each pixel
value in the observed image is linearly rescaled within the
range [0,1], by considering the respective estimated black
and white values.

4.4 CRF Estimation g(·)

Once the nonuniform illumination has been compensated,
the camera response function can finally be estimated and
the non-linear response of the sensors corrected.

Since we are working with the RAW data and out of the
saturation region of the sensors, the sensor response should
be almost linear. Hence, for simplicity we model the camera
response function as a polynomial of order no larger than 2.

The estimation and correction procedure is based on a
strong property of our pattern: the white noise pattern was
generated assigning equal probabilities to black and white
values (0 and 1 respectively, after normalization). Conse-
quently, since the PSF has unit area, the mean gray value
within the observed image should be 0.5.

The solution is defined as a parabolic function u 
→
αu2 + (1 − α)u where α is chosen so that the mean of the
pattern after the correction is 1/2.

4.5 Pattern Rasterization

In order to generate the samples ũD from the ideal contin-
uous pattern image u, we need to sample this image at the

desired s resolution after deforming it by the estimated geo-
metric transformation. For that purpose the distorted contin-
uous pattern uD must be low pass filtered to be bandlimited
in [sπ, sπ]. (Remember that the camera resolution is 1×.
Thus the digital pattern has an s× over-sampling.) The pro-
cedure is:

1. The continuous pattern u is sampled at a very high res-
olution. From the vectorial description of the pattern a
digital image is generated (this procedure is called ras-
terization) by replacing each one of the flat squares by
a 4 × 4 block of pixels with the same gray value. The
re-sampling starts from these samples u instead of the
continuous pattern;

2. Frequencies higher than sπ are cut off from the digital
pattern u to get ũ;

3. By help of the previously computed geometric distortion
the filtered pattern ũ is bi-cubically interpolated at the
desired resolution s× ũD .

4.6 Numerical Methods for PSF Estimation

We have seen that light diffraction, optical low pass filter-
ing, and sensor light integration all produce non-negative
kernels. Thus the estimated PSF must be non-negative. We
can therefore constrain the solution to be nonnegative, thus
reducing the space of solutions. Section 5, Fig. 17 shows
that not imposing this non-negativity assumption yields es-
sentially the same results, which in fact verifies the correct-
ness of the proposed image formation model. Hence, we can
opt to solve a non-negative least squares, or to simply solve
a least squares problem and then threshold the solution to
eliminate very little components.

Suppose that the local grid pattern observation v has size
m × n and that we want to estimate a PSF at s× sub-pixel
resolution. Also suppose that the estimated support of the
PSF is inside a r × r image. The matrix SsU corresponding
to the s-down-sampling of the convolution with the distorted
calibration pattern, has size mn × r2. Thus, the problem to
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Fig. 8 Synthetic example I. Performance comparison for simulated
data. A 4× kernel is estimated using the Joshi et al. algorithm, with
varying regularization level, and the proposed approach. The observed
window has 110 × 110 pixels. The top row shows the kernel estima-
tion and the middle row the difference image between the estimation
and ground truth for one of the realizations. The proposed method sig-
nificantly outperforms the Joshi et al. algorithm, achieving a much less
noisier estimation as shown by the difference images and by the peak
signal to noise ratios. The bottom row shows central horizontal pro-

files for all the estimated MTFs (0.5 is the Nyquist frequency). Notice
that in the Joshi et al. method the estimation is unstable. The estimates
show extremely noisy components for frequencies higher than the sam-
pling frequency, when the amount of kernel regularization is too small.
On the other hand, if a strong regularization is imposed, the penal-
ization of the kernel gradient adopted by Joshi et al. tends to produce
kernels with under-estimated high frequency components. The method
proposed here does not rely on a regularization and produces nonethe-
less noiseless and unbiased results

be solved can be formally written as

(P ) arg min
h

‖SsUh − v‖2

subject to hi ≥ 0, i = 1, . . . , r2.

Problem (P ) can be solved using standard convex optimiza-
tion solvers such as CVX (Grant and Boyd 2009). A simpler
Newton interior point algorithm proposed in Portugal et al.
(1994) was used and always converged rapidly.

5 Experimental Results

This section is dedicated to the evaluation of the proposed
non-blind sub-pixel PSF estimation method, and to the com-
parison of its performance with two state of the art proposed
approaches. A complete algorithmic description, an online
demo facility and a source code can be found at the IPOL
workshop by Delbracio et al. (2011).

We selected a method recently reported in the literature
by Joshi et al. (2008), Joshi (2008), and a MTF commercial
software, Imatest (LLC I 2010). Since we do not have real
camera ground truth for the PSF, the performance evaluation
was first carried out on simulated data. A real PSF estima-
tion on real cameras was tried next under varying acquisi-
tion conditions. Particular attention was paid to the aliasing
effect caused by sampling under the Nyquist frequency.

5.1 Simulations for Objective Evaluations

The simulation of the camera acquisition process was as fol-
lows. The grid pattern was rasterized at a very high resolu-
tion (i.e. 8×), convolved with a PSF like kernel (in this case
a Gaussian isotropic kernel), and down-sampled to get the
observed digital image at the camera resolution (i.e. 1×).
The kernel was chosen so that the low resolution image
presented aliasing artifacts. We also added white Gaussian
noise of standard deviation σ = 0.02. We compared the per-
formance of the proposed approach to that of Joshi et al. us-
ing their calibration pattern and our implementation of their
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approach, with different regularization levels. A 4× kernel
was estimated for both algorithms from the observed win-
dow of size 110 × 110 pixels.

Figure 8 shows the results for 4× PSF estimation from the
simulated observation. Solutions with the Joshi et al. method
with three levels of regularization are presented, along with
the proposed approach (which is regularization-free). In this
experiment the proposed method significantly outperform’s
Joshi et al.’s algorithm, achieving a much less noisy estima-
tion. Joshi’s algorithm needs a strong regularization to stabi-
lize the estimation and to avoid an amplification of high fre-
quency noise. Consequently, its estimation tends to penalize
high frequency components and to produce a biased kernel
with amplified lower frequency components. See caption for
details.

5.2 Experiments with Real Camera Images

In this section we present several local 4× PSF estimation
examples from real camera acquisitions. In all cases a Canon
EOS 400D camera provided with a Tamron AF 17-50mm
F/2.8 XR Di-II lens was used. The focal length was fixed at
50.0 mm. Based on these experiments the behavior of the
proposed method was analyzed with varying camera aper-
ture. The impact of the CRF estimation/correction was evalu-
ated, and the PSF estimates obtained for the four color chan-
nels in the Bayer pattern compared. Variations of the kernel
estimates depending on their location in the image were also
explored. This was followed by an evaluation of the stabil-
ity of the estimation procedure, and of the influence of the
kernel support size. Finally the results were again compared
with the Joshi et al. algorithm and with Imatest, applied to
real cameras.

Different Apertures The estimation was conducted using
the proposed random pattern captured at five different aper-
tures. For each acquisition, a 4× PSF estimation for one of
the green channels (half of the green pixels of the Bayer ma-
trix) was performed. Results are shown in Fig. 9. The esti-
mations were performed at the image center from a window
of size 90 × 90 pixels. Notice that kernels at apertures f/32
and f/16 are significantly larger than the rest, as predicted
by diffraction theory (see caption for details). An example
of the acquired blurry image is shown in Fig. 10.

Figure 11 shows the diffraction-limited MTF for a circular
f/5.7 aperture and green monochromatic light (see the end
of Sect. 2.1). The estimated response for our camera-lens
system at aperture f/5.7 and for the green channel is under
the ideal diffraction-limited response. This can be a conse-
quence of the light integration in the sensor array but also of
the optical low pass filter specifically included to avoid alias-
ing. Using the same setup, in Fig. 12 we display the module
and real part of the OTF. The fact that these two curves are
so close indicates that the PSF is nearly symmetric.

Fig. 9 Different apertures. Taken at different apertures, green chan-
nel g1, 100 ISO, 50 mm. All estimated 4× kernels are quite smooth.
(a): The top and bottom rows show respectively the estimated PSFs and
a few level lines of the corresponding MTFs that prove that the kernels
are not exactly axis-symmetric. The kernels at apertures f/32 and f/16
are considerably larger than the rest in agreement with diffraction the-
ory. This phenomenon also stands out in the modulus of the estimated
PSF spectra, which also shows that the PSFs/MTFs are not axis sym-
metric. (b): Vertical cuts of the spectrum modulus. The camera seems
to have the sharpest response from apertures f/3.2 to f/12.9. At aper-
tures f/32 and f/16 the camera cuts high frequencies significantly more
than the rest, as predicted by diffraction theory. Notice that in all cases,
except at aperture f/32, the MTF at the Nyquist frequency (f = 0.5) is
significantly greater than zero. Hence, the camera introduces aliasing

Estimation of Camera Response Function This experi-
ment evaluates the impact of the non-linearity of the cam-
era sensors response. To conduct this experiment, the cam-
era response curve was computed using a specially designed
pattern for CRF estimation. In order to assess the impact of
the CRF on the PSF estimation, the observed image was cor-
rected using the special purpose CRF estimate, to compare
the results that yield the PSF estimation algorithm.

Figure 13(a) compares the CRF estimated using the spe-
cial purpose pattern with the CRF estimate embedded in the
proposed PSF estimation algorithm. Notice that both esti-
mates are hardly non-linear and extremely close to each
other, so the PSF estimation algorithm seems to be capable
of giving a reasonable CRF estimation.
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Fig. 10 Real camera example. Taken at f/5.7. An example image, to
show how local the PSF estimation is (left), and a zoom of the observed
window of size 110 × 110 pixels (right)

Fig. 11 Diffraction-limited system. Theoretical diffraction MTF for
monochromatic green light with circular f/5.7 aperture and the estima-
tion for the green channel at the same aperture. The estimated response
for our camera-lens system is under the ideal diffraction-limited re-
sponse. This can be consequence of the light integration in the sensor
array, but also of the optical low pass filter specifically included to
avoid aliasing

Figure 13(b) shows the MTFs obtained under four differ-
ent situations:

– PSF estimation with embedded CRF correction from the
raw observed values (psf-crf).

– PSF estimation without any CRF correction from the raw
observed values (psf-nocrf).

– PSF estimation without embedded CRF correction from
the adjusted values after correction via the special pur-
pose CRF estimate (psf-nocrf-eq).

In all cases, the estimation yielded very similar results.

Color Estimation The goal of this experiment is to com-
pare the PSF estimates for all four channels from the Bayer
RAW camera output (two greens, red and blue). The esti-
mation was performed using the random pattern captured at
apertures f/5.7. The results for the 4× PSF estimation lo-
cated in the image center are shown in Fig. 14. It is easily

Fig. 12 OTF phase. Estimation done for the green channel g1, 100
ISO, 50 mm, f/5.7 at the center of the sensor array. The figure on the
top shows the modulus of a horizontal profile of the optical transfer
function—OTF and its real component. Both curves coincide, implying
that the OTF is real and thus the PSF is symmetric. This is also seen in
the bottom figure that shows that the OTF phase is 0 or π

seen that the red PSF is larger than the green and the blue
one (i.e. produces blurry images). This is reasonable, since
the wavelengths associated to red are smaller than the rest.
Hence the red diffraction kernel will be larger than the green
and blue kernels for the same camera configuration. The dif-
ferences between the shapes of the red/blue and green PSF

spectra can be explained by the sensor shape. If we accept
that the sensor active zone is L-shaped, then by the red/blue
sensors in the Bayer pattern will have the same sensor term
MTF and will be rotated 45◦ with respect to the green chan-
nels.

Location Figure 15 displays the 4× PSF estimates for one
of the green channels, at different image locations, for f/5.7.
Kernels closer to image borders are larger and more asym-
metrical than the kernel at the image center. This seems to be
a consequence of lens aberrations that deteriorate the system
performance.

Stability of the Estimation Procedure A set of thirteen im-
ages of the noise calibration pattern were acquired with ex-
actly the same camera configuration (f/5.7), from similar
viewpoints. For each acquisition, the 4× PSF of one of the
green channels at the image center was estimated. Figure 16
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Fig. 13 Dependence on the CRF correction, for a 4×PSF estima-
tion of the green channel, at aperture f/5.7. (a): CRF estimates ob-
tained with the estimation embedded in the proposed PSF estima-
tion algorithm (crf-psf estimation), and with the one gen-
erated independently from a special purpose CRF calibration pat-
tern (crf-pattern). Both estimates are very similar and hardly
non-linear; (b): vertical profile of MTFs. The estimates from the raw
gray values with and without CRF estimation/compensation (psf-crf
and psf-nocrf, resp.) gave very similar results. After compensation
of the gray values using an external special purpose estimation of the
CRF, the PSF estimation procedure (psf-nocrf-eq) also led to very
similar results

shows the average MTF vertical profile, and its standard de-
viation band. It is clear from the small value of the stan-
dard deviation that the estimation method is highly stable,
in agreement with the fact that the corresponding linear sys-
tem to be inverted is very well-posed. More details are given
in Fig. 16 caption.

Support We can consider that the proposed approach has
only one main parameter: the kernel support size. The choice
of this size implies a trade-off between the model validity

Fig. 14 Different color channels. 4× PSF estimation for the four Bayer
pattern channels (two greens, red and blue) from a camera RAW out-
put. Top row: PSF estimation. Middle row: the corresponding Fourier
spectrum modulus. Bottom row: MTF horizontal and vertical profiles.
The estimation was performed using the random pattern captured at
aperture f/5.7. The red PSF is larger than the green and the blue ones.
Since the wavelengths associated to red are larger than the rest, the
diffraction components for the red channel will be larger than those
for green and blue for the same camera configuration. Also notice the
differences between the shape of the red/blue and green PSF spectra
(bottom row). Red and blue MTF seem to be 90◦ rotated with respect to
the green ones. This symmetrical behavior is plausible for an L-shaped
active zone sensor array

and the feasibility of the estimation. On the one hand, if the
support is too large the kernel estimation will be very noisy,
since the γ factor increases with the support size. On the
other hand, if the kernel support is too small the considered
image formation model will not be accurate.

Figure 18 shows the 4× PSF estimation for various ker-
nel support sizes. All estimations for the supports 17 × 17,
25 × 25 and 33 × 33 turn out to be very close to each other.
Nevertheless, the 9 × 9 kernel support does not seem to be
large enough to correctly model the PSF. Hence, as soon as
the support size exceeds such a lower bound, the proposed
algorithm does not appear to be sensitive to this parameter.

Author's personal copy



Int J Comput Vis

Fig. 15 Different locations. Taken at f/5.7 for one of the green chan-
nels. The PSFs estimated far from image center are larger and more
asymmetrical than the one estimated at the center. This is certainly due
to lens aberrations, which are more significant near the image borders

Comparison of Several Methods This section ends up with
a comparison between the Joshi et al. method, Imatest, and
the proposed approach to non-blind sub-pixel PSF estima-
tion (LLC I 2010). Imatest is a commercial MTF estima-
tion software. The Imatest estimation is performed from a
slanted-edge image and only gives an estimate of the MTF

at the direction orthogonal to the slanted-edge. The estima-

tion was conducted with images taken at aperture f/5.7 with
patterns located at the center of the image.

Figure 19 shows the horizontal MTF profiles obtained
with the Joshi et al. method using various regularization
levels, with Imatest, and with the proposed approach for
one of the green channels. In the low frequencies Joshi and
the proposed approach yield very similar results. However,
for higher frequencies the Joshi et al. results vary strongly
with the regularization level. The Imatest estimate is quite
noisy and does not resolve frequencies above twice the sam-
pling rate. The proposed random pattern algorithm generates
much more information than the typical slanted-edge MTF

calibration.

6 Discussion

This work is an attempt to define an optimal non-blind sub-
pixel PSF estimation method from a single aliased image.
The method is successful, but its set up is tight. The pat-
tern must be large enough (some 70 cm in our experiments),
printed with good quality ink. The random squares must
be large enough to avoid any ink soaking bias, and a good
quality print is recommended. The mathematical analysis
demonstrated that a Bernoulli pattern is nearly optimal in
terms of well-conditioning of the matrix to be inverted. The
pattern was therefore placed in an approximately frontal po-
sition. The photographs were taken at the right distance to
ensure that the camera sampling grid and the pattern grid had
similar meshes. These position requirements are not strict,
though, the experiments showing only a slow degradation
of the results when the distance varies around the optimal

Fig. 16 Stability of the estimation. Average and standard devia-
tion statistics were generated from 13 estimations computed at f/5.7
(for one of the green channels). The small standard deviation in the
vertical profile of the Fourier spectrum modulus is shown in (a).
The relative MTF sensitivity vs region threshold is shown in (b).
We define the relative MTF sensitivity in a region 
 as: s(
) =

mean(std(mtf))/mean(mtf) where the mean values are computed inside
the region 
. In this case we construct 
(threshold) = {x : mtf(x) ≥
threshold}. The relative sensitivity in the whole spectrum does not ex-
ceed 0.08 and what is more if the MTF values smaller than 5% are
not considered, then the relative sensitivity is less than 3%. The small
standard deviation and sensitivity demonstrate the algorithm stability
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Fig. 17 Non-negative constraint. This experiment analyzes how the
PSF estimation changes by not assuming the non-negative hypothesis.
On the left we show both estimations: the no-constrained and the non-
negative 4× PSF for the green channel, f/5.7 at the center of the image.
Since there is no structure in the image produced by subtracting both

estimations and since the relation between the energy of the image dif-
ference and the energy of the non-negative estimation is 0.001, we can
conclude that both estimations are extremely close. This is confirmed
by observing in the left figure a horizontal profile of the MTF for both
estimations

Fig. 18 Changing support size. This experiment analyzes how the PSF

estimation changes with the desired PSF support size. Several PSF esti-
mations for various kernels support sizes (left). Only the central 9 × 9
regions are shown. All the estimates are very close, specially 17 × 17,
25 × 25 and 33 × 33. However, the 9 × 9 kernel support seems to be

hardly sufficient for correctly modeling the PSF, as indicated by the
MTF vertical profiles on the right. The proposed algorithm does not
appear to be sensitive to this parameter as soon as the kernel support
exceeds this minimal size

position. The method is also very strict in the precautions
to compensate for the variations in illumination and to es-
timate the exact deformation between the ideal pattern and
the observed one.

Nevertheless, the pay off of this careful procedure is high.
The method delivers a very accurate estimate of the PSF,
as amply shown in the various comparative experiments,
with quite stringent accuracy levels (relative error in the
order of 2% to 5%). It remains to wonder why the for-
mer methods added regularizing terms or a priori models
if these were not needed. Yet, the numerical experiments
have confirmed that the inverse estimation problem is in-

deed ill-posed with slanted edge patterns, which accounts
for the necessity of regularization terms for such patterns.
Although random noise patterns have been widely used in
the past, up to our knowledge no regularization-free sub-
pixel PSF estimation scheme had been previously proposed.
For these previous methods with noise patterns, the lack of
a careful correction for all perturbations may explain the
need for a regularization or an a priori model. The exper-
iments here have confirmed that for typical DSLR cam-
eras, each color channel is under-sampled with respect to
the ideal Nyquist rate given by the PSF, by a factor of 2 or
even 4. This fact was confirmed, even with DSLR mod-

Author's personal copy



Int J Comput Vis

Fig. 19 Comparison of PSF/MTF estimation methods applied to a real
camera. Our implementation of Joshi et al. PSF estimation algorithm,
the Imatest commercial software and the proposed random patter algo-
rithm. All estimations are done at the center of the image with a camera
at aperture f/5.7 for one of the green channels. On the low frequencies
all algorithms gave very similar estimations, while on the higher fre-
quencies the Joshi et al. estimation depends on the regularization level.
Although we did our best to get a noise free MTF estimation from the
Imatest software, the final estimation is quite noisy. The Imatest esti-
mation is done from a slanted-edge image and only gives an estimation
for the MTF at the slanted-edge orthogonal direction

els including an optical anti-aliasing filter on the sensor.
This more than justifies a posteriori the need of a sub-pixel
estimation procedure. As usual, a locality-accuracy trade-
off had to be resolved. The locality of the order of a few
hundred pixels can be achieved under typical noise condi-
tions.

Of course a wholesome local camera calibration remains
a heavy procedure. According to the above setting, some 100
snapshots of the pattern are needed to cover the whole im-
age domain to get an accurate enough PSF estimate every-
where. Indeed, the experiments show that this kernel varies
significantly, particularly near the image boundaries. A pos-
sible solution to avoid these many photographs would be to
print a very large random pattern covering a whole wall, that
would cover the whole visual field of the camera. While this
is not easy to implement, it is indeed doable in lab condi-
tions.

Acknowledgements The authors would like to thank Rafael Grom-
pone von Gioi and Saïd Ladjal for fruitful comments and discussions.
This work was partially funded by: the Uruguayan Agency for Re-
search and Innovation (ANII) under grant PR-POS-2008-003, ECOS-
Sud Project number U06E01, FUI FEDER (CEDCA), STIC AmSud
project MMVPSCV, MISS-CNES project, ONR grant N00014-97-
1-0839, Callisto (ANR-09-CORD-003), and the European Research
Council advanced grant “Twelve labours”.

References

Backman, S., Maekynen, A. J., Kolehmainen, T. T., & Ojala, K. M.
(2003). Fast lens testing using random targets. Optics and Pho-
tonics Technologies and Applications, 4876(1), 1100–1109. Opto-
Ireland 2002.

Backman, S., Makynen, A., Kolehmainen, T., & Ojala, K. (2004). Ran-
dom target method for fast MTF inspection. Optics Express, 12,
2610–2615.

Bookstein, F. L. (1989). Principal warps: thin-plate splines and the de-
composition of deformations. IEEE Transactions on Pattern Anal-
ysis & Machine Intelligence, 11(6), 567–585.

Bouguet, J. Y. (2008). Camera calibration toolbox for Matlab. URL:
http://www.vision.caltech.edu/bouguetj/calib_doc/.

Brauers, J., Seiler, C., & Aach, T. (2010). Direct PSF estimation us-
ing a random noise target. In Proceedings of SPIE—The Interna-
tional Society for Optical Engineering (Vol. 7537, pp. 75,370B–
75,370B-10).

Capel, D. (2004). Image mosaicing and super-resolution. Distin-
guished Dissertation Series, Springer.

Chalmond, B. (1991). PSF estimation for image deblurring. CVGIP:
Graphical Models and Image Processing, 53(4), 364–372.

Cheng, O., Guangzhi, W., Quan, Z., Wei, K., & Hui, D. (2005). Eval-
uating Harris method in camera calibration. In Conference pro-
ceedings of the International Conference of IEEE Engineering in
Medicine and Biology Society (Vol. 6, pp. 6383–6386).

Claxton, C. D., & Staunton, R. C. (2008). Measurement of
the point-spread function of a noisy imaging system. Jour-
nal of the Optical Society of America A, 25(1), 159–170.
doi:10.1364/JOSAA.25.000159.

Daniels, A., Boreman, G., Ducharme, A., & Sapir, E. (1995). Ran-
dom transparency targets for modulation transfer function mea-
surement in the visible and infrared regions. Optical Engineering,
34(3), 860–868.

Delbracio, M., Musé, P., & Almansa, A. (2011). Non-parametric
sub-pixel local point spread function estimation. In Im-
age Processing On Line (IPOL) workshop, algorithmic
description. Online demo and source code accessible at
http://www.ipol.im/pub/algo/admm_non_blind_psf_estimation.

Goodman, J. W. (1996). Introduction to Fourier optics. New York:
McGraw-Hill Science.

Grant, M., & Boyd, S. (2009) CVX: Matlab software for disci-
plined convex programming (web page and software). URL:
http://stanford.edu/boyd/cvx. Online; accessed 19-July-2009.

Harris, C., & Stephens, M. (1988). A combined corner and edge de-
tector. In Proceedings of the fourth Alvey vision conference (pp.
147–151).

Healey, G., & Kondepudy, R. (1994). Radiometric CCD camera cali-
bration and noise estimation. IEEE Transactions on Pattern Anal-
ysis & Machine Intelligence, 16(3), 267–276.

ISO (2000). ISO 12233:2000: Photography—electronic still-picture
cameras—resolution measurements.

Joshi, N. (2008). Enhancing photographs using content-specific image
priors. PhD thesis, Department of Computer Science and Engi-
neering, University of California, San Diego.

Joshi, N., Szeliski, R., & Kriegman, D. J. (2008). PSF estimation using
sharp edge prediction. In IEEE conference on Computer Vision
and Pattern Recognition (CVPR) (pp. 1–8). Los Alamitos: IEEE
Computer Society.

Ladjal, S. (2005). Flou et quantification dans les images numériques.
PhD thesis, Centre de Mathématiques et de Leurs Applications,
Ecole Normale Supérieure de Cachan.

Levy, E., Peles, D., Opher-Lipson, M., & Lipson, S. (1999). Modu-
lation transfer function of a lens measured with a random target
method. Applied Optics, 38(4), 679–683.

LLC I (2010). Imatest 3.6. http://www.imatest.com/.

Author's personal copy

http://www.vision.caltech.edu/bouguetj/calib_doc/
http://dx.doi.org/10.1364/JOSAA.25.000159
http://www.ipol.im/pub/algo/admm_non_blind_psf_estimation
http://stanford.edu/boyd/cvx
http://www.imatest.com/


Int J Comput Vis

Lucchese, L., & Mitra, S. K. (2002). Using saddle points for subpixel
feature detection in camera calibration targets. In APCCAS (2)
(pp. 191–195). Bellingham: IEEE.

Luxen, M., & Förstner, W. (2002). Characterizing image quality: Blind
estimation of the point spread function from a single image.
In Proceedings of Photogrammetric Computer Vision 2002 (pp.
205–210).

Marion, A. (1997). Acquisition et visualisation des images. Paris: Ey-
rolles.

Portugal, L. F., Júdice, J. J., & Vicente, L. N. (1994). A compar-
ison of block pivoting and interior-point algorithms for linear
least squares problems with nonnegative variables. Mathematics
of Computation, 63(208), 625–643.

Reichenbach, S. E., Park, S. K., & Narayanswamy, R. (1991). Char-
acterizing digital image acquisition devices. Optical Engineering,
30(2), 170–177.

Rooms, F., Philips, W., & Portilla, J. (2004). Parametric PSF esti-
mation via sparseness maximization in the wavelet domain. In
F. Truchetet & O. Laligand (Eds.), Proceedings of the SPIE—
Wavelet Applications in Industrial Processing II (Vol. 5607, pp.
26–33).

Smith, E. H. B. (2006). PSF estimation by gradient descent fit
to the ESF. In Proceedings of SPIE—Image Quality and Sys-
tem Performance III (Vol. 6059, p. 60590E). Bellingham: SPIE.
doi:10.1117/12.643071.

Sprengel, R., Rohr, K., & Stiehl, H. (1996). Thin-plate spline approx-
imation for image registration. In Engineering in Medicine and
Biology Society 1996. Bridging disciplines for biomedicine. Pro-

ceedings of the 18th Annual International Conference of the IEEE
(Vol. 3, pp. 1190–1191). doi:10.1109/IEMBS.1996.652767.

Tian, H., Fowler, B., & Gamal, A. E. (2001). Analysis of temporal
noise in CMOS photodiode active pixel sensor. IEEE Journal of
Solid-State Circuits, 36(1), 92–101.

Šroubek, F., Cristóbal, G., & Flusser, J. (2007). A unified approach
to superresolution and multichannel blind deconvolution. IEEE
Transactions on Image Processing, 16(9), 2322–2332.

Williams, C. S., & Becklund, O. A. (2002). SPIE press monograph:
Vol. PM112. Introduction to the optical transfer function. Belling-
ham: SPIE Publications.

Yadid-Pecht, O. (2000). Geometrical modulation transfer function for
different pixel active area shapes. Optical Engineering, 39(4),
859–865.

Zandhuis, J., Pycock, D., Quigley, S., & Webb, P. (1997). Sub-pixel
non-parametric psf estimation for image enhancement. IEE Pro-
ceedings. Vision, Image and Signal Processing, 144(5), 285–292.

Zhang, W., & Cham, W. K. (2008). A single image based blind super-
resolution approach. In IEEE International Conference on Image
Processing (ICIP) (pp. 329–332).

Zhang, Z. (2000). A flexible new technique for camera calibration.
IEEE Transactions on Pattern Analysis & Machine Intelligence,
22(11), 1330–1334.

Zhao, T., Wang, R., Liu, Y., & Yu, F. (2006). Characteristic-analysis
of optical low pass filter used in digital camera. In Proceedings
of SPIE—The International Society for Optical Engineering (Vol.
6034, pp. 60,340N.1–60,340N.9). Bellingham: SPIE.

Author's personal copy

http://dx.doi.org/10.1117/12.643071
http://dx.doi.org/10.1109/IEMBS.1996.652767

	The Non-parametric Sub-pixel Local Point Spread Function Estimation Is a Well Posed Problem
	Abstract
	Introduction
	Image Formation Model
	Diffraction-Limited Optical Systems

	Optimality Criterion and Quality Measure for Calibration Patterns
	Inverse Problem Statement in Terms of the Re-sampling Operator and the Calibration Pattern
	Characterization of Optimal Digital Calibration Patterns
	From Continuous Patterns to Digital Patterns
	Comparison of calibration patterns

	The Complete psf Estimation Procedure
	Feature Detection
	Geometric Transform Estimation
	Illumination Estimation and Normalization
	CRF Estimation g(·)
	Pattern Rasterization
	Numerical Methods for psf Estimation

	Experimental Results
	Simulations for Objective Evaluations
	Experiments with Real Camera Images
	Different Apertures
	Estimation of Camera Response Function
	Color Estimation
	Location
	Stability of the Estimation Procedure
	Support
	Comparison of Several Methods


	Discussion
	Acknowledgements
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /ESP <>
    /FRA <>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing false
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


