Facultad de Ingeniería.

IMERL.

Geometría y Álgebra Lineal 1.

Curso anual 2017.

Práctico 3.

Ejercicio 1. Consideremos las 4-uplas

$$X_1 = (1, 2, 2, 1), \quad X_2 = (2, 1, -2, 0), \quad X_3 = (-1, 1, 4, 1).$$

Hallar las combinaciones lineales $aX_1 + bX_2 + cX_3$ para:

- 1. a = 0; b = 2; c = 5
- 2. a = -3; b = 2; c = 1
- 3. a = 1; b = -1; c = -1

Ejercicio 2. Consideremos el conjunto

$$A = \{(1,0,1,-1), (2,0,3,1), (0,2,1,0)\}$$

formado por tres 4-uplas de números reales. Determinar en cada caso si X puede obtenerse como combinación lineal de los elementos de A. Si la respuesta es afirmativa hallar los respectivos coeficientes.

- 1. X = (0, 2, 0, -3)
- 2. X = (5, -2, 0, 0)
- 3. X = (5, -6, 4, 1)

Ejercicio 3. Sea la matriz

$$A = \left(\begin{array}{rrrr} 1 & 0 & -1 & -1 \\ 0 & 1 & 3 & 2 \\ -1 & 2 & 7 & 5 \\ 2 & -1 & -5 & -4 \end{array}\right).$$

- 1. Determinar si los siguientes vectores de \mathbb{R}^4 pueden obtenerse como combinaciones lineales de las columnas de A:
 - (a) (1,-1,-3,3);
 - (b) (0,1,0,1);
 - (c) $(0, x, x, -x), x \in \mathbb{R};$
 - (d) $(x, 0, -x, 2x), x \in \mathbb{R}$
- 2. Llamamos espacio de columnas de A al subconjunto de todas las combinaciones lineales de las columnas de la matriz A. Hallar ecuaciones que caractericen al espacio de columnas.

Ejercicio 4. 1. Para la matriz real A y los vectores B_1 , B_2 dados por

$$A = \begin{pmatrix} 1 & 1 & -2 & 1 \\ 2 & 1 & -1 & 1 \\ 2 & 2 & -4 & 2 \\ 3 & 2 & -3 & 2 \end{pmatrix}, \quad B_1 = \begin{pmatrix} -1 \\ 2 \\ -2 \\ 1 \end{pmatrix}, \quad B_2 = \begin{pmatrix} 0 \\ 2 \\ 4 \\ 0 \end{pmatrix}$$

resolver los sistemas $AX = B_i$, i = 1, 2. Expresar de dos maneras diferentes B_1 como una combinación lineal de las columnas de A.

- 2. Hallar todos los vectores B que hacen que el sistema AX = B sea compatible.
- 3. Formar una nueva matriz \bar{A} eliminando algunas columnas de A, de modo que:
 - $\bar{A}X = B$ sea compatible para todos los vectores B hallados en la parte anterior, y sólo para esos B;
 - la solución de $\bar{A}X = B$ siempre sea única.
- 4. Expresar B_1 como combinación lineal de las columnas de \bar{A} . Expresar el vector columna O = (0,0,0,0) como combinación lineal de las columnas de \bar{A} y como combinación lineal de las columnas de \bar{A} .
- 5. Repetir las partes 2 y 3 para la matriz

$$C = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 2 & 2 & -1 \\ 1 & 1 & 3 & 3 & -3 \\ 0 & 0 & 1 & 1 & -2 \\ 2 & 2 & 4 & 4 & -2 \\ -4 & -4 & -6 & -6 & 0 \end{pmatrix}$$

Ejercicio 5. Calcular el rango y el núcleo de las siguientes matrices, en cada caso indicar si las matrices son invertibles y si corresponde calcular la inversa.

a)
$$\begin{pmatrix} 1 & -1 & 1 & 1 \\ 1 & 0 & 2 & -1 \\ 1 & 1 & 3 & -3 \end{pmatrix}$$
 b) $\begin{pmatrix} 15 & 20 & 5 & -10 \\ -9 & -12 & -3 & 6 \end{pmatrix}$ c) $\begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & 1 \\ 2 & -1 & -1 \\ -1 & 1 & 2 \end{pmatrix}$ d) $\begin{pmatrix} 2 & 4 & -2 \\ 5 & 8 & -7 \\ -2 & -3 & 3 \end{pmatrix}$ f) $\begin{pmatrix} 1 & 0 & -1 \\ 2 & 1 & -1 \\ 4 & 1 & -3 \end{pmatrix}$

Ejercicio 6. Sea A una matriz de tamaño $n \times n$.

- 1. Sea p un polinomio, probar que A conmuta con p(A).
- 2. Si existe un polinomio p con p(0) = 0 y tal que p(A) = I, probar que A es invertible y hallar la inversa de A.
- 3. Si existe $k \in \mathbb{N}$ tal que $A^k = O$, probar que I A es invertible y que $(I A)^{-1} = I + A + A^2 + \cdots + A^{k-1}$.

Ejercicio 7. Indicar si las siguientes afirmaciones son verdaderas o falsas:

- 1. Si el conjunto sólo tiene un vector, el conjunto es lineamente dependiente si y sólo si el vector es el vector cero.
- 2. Si el vector cero pertence a un conjunto de vectores, el conjunto es linealmente dependiente.
- 3. Si el conjunto consta de más de un vector: el conjunto es linealmente dependiente si y solamente si un vector del conjunto es combinación lineal de los restantes.
- 4. Si en un conjunto de vectores uno de ellos es múltiplo escalar de otro el conjunto es linealmente independiente.
- 5. Si un conjunto de vectores contiene un subconjunto de vectores que es linealmente independiente, el conjunto es a su vez linealmente independiente.

6. Si un conjunto de vectores es linealmente independiente, entonces cualquier subconjunto de él también será linealmente independiente.

Ejercicio 8. Indicar si los siguientes conjuntos son L.I. o L.D. indicando en cada caso el rango del mismo:

```
1. A = \{(3,1), (2,3)\}
```

2.
$$U = \{(1,1,3), (3,5,5), (2,1,8)\}$$

3.
$$E = \{(2,1,3), (1,2,1), (1,1,4), (1,-5,1)\}$$

4.
$$B = \{(1, -1, 2, 1, 5), (2, 1, 0, 1, 3), (0, 1, -2, 1, 1)\}$$

5.
$$T = \{(1,1,1), (0,1,1), (1,0,k)\}$$
 discutiendo según k