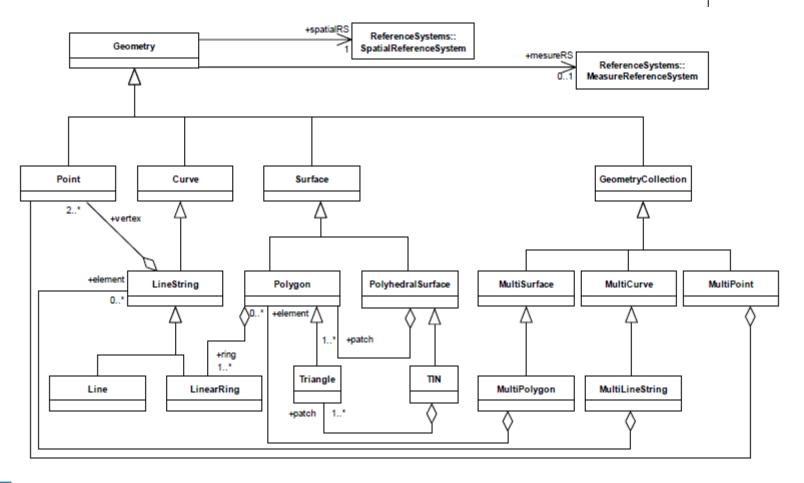
Bases de Datos Geográficas I

Taller de Sistemas de Información Geográfica

Open Geospatial Consortium (OGC)

- El Open Geospatial Consortium (OGC) es un consorcio internacional que agrupa empresa, universidades y organismos estatales (alrededor de 400) con las siguientes metas fundamentales:
 - Proveer de estándares abiertos, gratuitos y públicos.
 - Liderar la creación de estándares que permitan que el contenido y los servicios geo-espaciales se integren a procesos cívicos y de negocios, la Web Espacial y los Sistemas Empresariales
 - Facilitar la adopción de arquitecturas de referencia abiertas en materia de información espacial.

OGC Simple Features Standard (SFS)

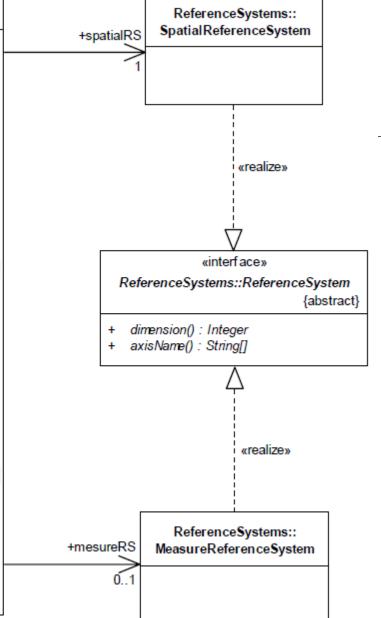


- OGC define un modelo de datos para objetos espaciales conocido como Simple Features Standard (SFS)(ISO 19125:2004).
- El estándar se divide en dos partes:
 - Arquitectura común (Modelo de Objetos)
 - 2. Implementación en SQL (Permite construir bases de datos geográficas)

Diagrama de Clases UML

- Geometry (abstracta)
 - Es la clase base de la jerarquía.
 - Permite representar geometrías planas (hasta 2 dimensiones) en espacios de coordenadas R2, R3 y R4.
 - En R2 se define cada punto por coordenadas (x,y)
 - \triangleright En R3 se define cada punto por coordenadas (x,y,z) o (x,y,m).
 - En R4 se define cada punto por coordenadas (x,y,z,m)
 - La coordenada "z" representa altitud sobre el nivel del mar.
 - La coordenada "m" (measure) representa una medida que depende de las demás coordenadas. Ej.: en una geometría que representa una red fluvial, el valor "m" de cada punto puede ser la distancia a la desembocadura del rio al que pertenece.

- Métodos básicos:
 - dimension(): La dimensión inherente a la geometría. Devuelve
 - -1 si es la geometría vacía
 - 0 si longitud=área=0
 - 1 si longitud ≠ 0, área=0
 - 2 si longitud ≠ 0, área ≠ 0
 - geometryType(): Devuelve el subtipo concreto al que pertenece el objeto (ej. Polygon, Point, etc.)
 - SRID(): Devuelve el ID del Sistema Espacial de Referencia utilizado para georreferenciar este objeto.



- asText(): Devuelve la representación WKT del objeto.
- asBinary(): Devuelve la representación WKB del objeto.
- > isSimple(): Devuelve 1 si el objeto representa una geometría sin propiedades anómalas, como autointersecciones o autotangencia.
- isEmpty(): Devuelve 1 si el objeto representa la geom. vacía (ningún punto). El conjunto vacío es simple.
- is3D(): Devuelve 1 si el objeto tiene una coordenada z.
- > isMeasured(): Devuelve 1 si el objeto tiene una coordenada m.
- boundary(): Devuelve otra geometría con la frontera de este objeto.
- envelope(): Devuelve el mínimo rectángulo delimitador (minimum bounding box, MBR) que contiene a la geometría.

Geometry dimension(): Integer coordinateDimension(): Integer spatialDimension(): Integer geometry Type(): String SRID(): Integer envelope(): Geometry asText(): String asBinary(): Binary isEmpty(): Boolean isSimple(): Boolean is3D(): Boolean isMeasured()(): Boolean boundary(): Geometry query equals(another: Geometry): Boolean disjoint(another : Geometry) : Boolean intersects(another: Geometry): Boolean touches(another: Geometry): Boolean crosses(another : Geometry) : Boolean within(another : Geometry) : Boolean contains(another: Geometry): Boolean overlaps(another: Geometry): Boolean relate(another : Geometry, matrix : String) : Boolean locateAlong(mValue : Double) : Geometry locateBetween(mStart :Double, mEnd :Double) : Geometry analy sis distance(another: Geometry): Distance buffer(distance : Distance) : Geometry convexHull(): Geometry intersection(another: Geometry): Geometry union(another: Geometry): Geometry difference(another: Geometry): Geometry symDifference(another: Geometry): Geometry

Point

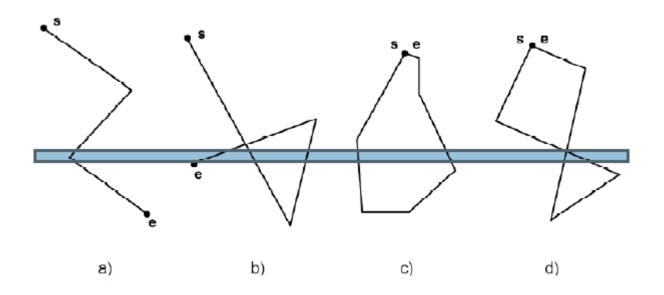
- Objeto geométrico 0D (punto).
- Coordenadas x,y (z,m opcionales).
- Su frontera es el conjunto vacío.
- Su envelope es el propio punto.
- Posee métodos para obtener sus coordenadas

Curve (abstracta)

- Objeto geométrico 1D que representa la curva definida por una secuencia de puntos y la interpolación entre los mismos.
- o Métodos:
 - length(): el largo en su SRS asociado
 - startPoint(), endPoint(): punto inicial y final
 - IsClosed(): devuelve 1 si startPoint=endPoint
 - IsRing(): devuelve 1 si IsClosed()=1 y no pasa mas de una vez por el mismo punto (es simple).
- La frontera de una curva cerrada es el conjunto vacío.
- La frontera de una curva abierta son el startPoint y endPoint.

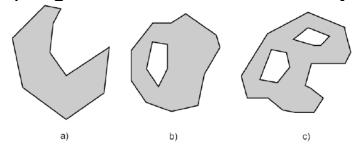
LineString

- Es una curva con interpolación lineal entre los puntos.
- Su envelope es un polígono, o si es una línea vertical u horizontal, es la propia línea.
- o Métodos:
 - numPoints(): devuelve cantidad de puntos
 - pointN(): devuelve el punto N


Line

- Es un LineString de 2 puntos (un segmento de recta)
- LinearRing
 - En un LineString simple y cerrado (un anillo)

Diferentes tipos de LineString


- Surface (abstracta)
 - Objeto geométrico 2D que representa una superficie.
 - o Métodos:
 - area(): devuelve el área en el SRS correspondiente.
 - centroid(): devuelve el centroide (baricentro) de la superficie (puede ser un punto exterior)
 - pointOnSurface(): devuelve un punto cualquiera perteneciente a la superficie.

Polygon

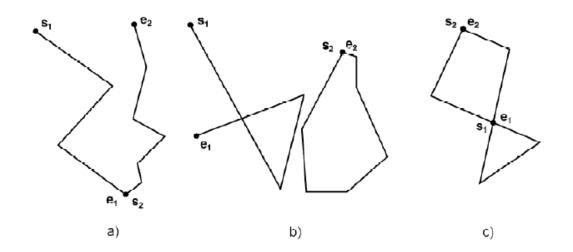
- Es una superficie plana definida por un LinearRing exterior y 0 o más LinearRings interiores, para permitir polígonos con huecos.
- Los polígonos son objetos simples: no existe intersección entre sus contornos.
- o Métodos:
 - exteriorRing(): devuelve el anillo exterior
 - numInteriorRings(): devuelve la cantidad de anillos interiores.
 - interiorRingN(): devuelve el anillo interior N
- La frontera de un polígono son su anillo exterior y sus anillos interiores

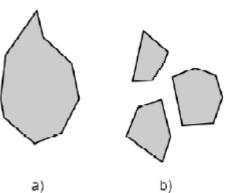
GeometryCollection

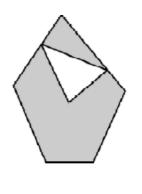
- Colección de geometrías de cualquier tipo
- No existe relación implícita entre sus elementos.
- Todos sus elementos deben estar en el mismo SRS.
- Permite trabajar con un conjunto de geometrías como una unidad que tiene atributos no espaciales comunes.
 - Ej. La red fluvial uruguaya, los territorios del Reino Unido y sus islas, etc.

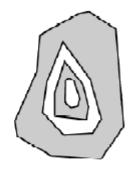
MultiPoint

- Colección geométrica de puntos.
- Su frontera es el conjunto vacío.
 - Un multipunto es simple si no tiene puntos repetidos.






- MultiCurve (abstracta)
 - La frontera de una multicurva son los puntos que están un número impar de veces en la frontera de sus elementos. (regla de "unión módulo 2")
- MultiLineString
 - Es una MultiCurve cuyos elementos son LineStrings.
- MultiSurface (abstracta)
 - La frontera de una multisuperficie son los puntos que están un número impar de veces en la frontera de sus elementos. (regla de "unión módulo 2")
- MultiPolygon
 - Es una MultiSurface cuyos elementos son Polygons.



Well-know Binary (WKB)

- Permite representar geometrías mediante un flujo de bytes.
- Ej. un polígono determinado por dos anillos puede representarse de la siguiente manera.

B=1	т=3	NR=	NP= 3	Х1	¥1	X2	Y 2	х3	Y 3	NP=	X1	Y1	X2	Y2	х3	¥3	
-----	-----	-----	----------	----	----	----	------------	----	------------	-----	----	----	----	-----------	----	----	--

B = orden de bytes

T = tipo de figura (polígono)

NR = numero de anillos (2)

NP = numero de puntos (3 para cada anillo)

Well-know Text (WKT)

- Permite representar geometrías mediante un texto legible por personas.
- Ej. Punto, Línea, Multilínea, Polígono, Multipolígono en WKT.

```
POINT (2572292.2 5631150.7)

LINESTRING (2566006.4 5633207.9, 2566028.6 5633215.1, 2566062.3 5633227.1)

MULTILINESTRING ((2566006.4 5633207.9, 2566028.6 5633215.1), (2566062.3 5633227.1, 2566083 5633234.8))

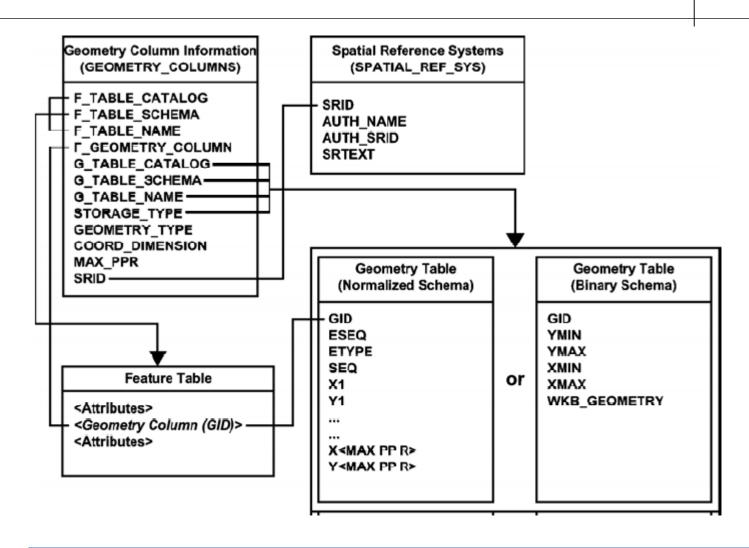
POLYGON (2568262.1 5635344.1, 2568298.5 5635387.6, 2568261.04 5635276.15, 2568262.1 5635344.1);

MULTIPOLYGON (((2568262.1 5635344.1, 2568298.5 5635387.6, 2568261.04 5635276.15, 2568262.1 5635344.1), (2568194.2 5635136.4, 2568199.6 5635264.2, 2568200.8 5635134.7, 2568194.2 5635136.4)))
```


- Se definen 3 tipos de tablas:
 - FEATURE_TABLE: Es toda tabla que almacena un conjunto de features (objetos geográficos). Corresponde al concepto de layer (capa geográfica). Cada fila es un objeto geográfico y cada columna es una propiedad de ese objeto. Una de esas columnas debe corresponder a la geometría de ese objeto (o una FK a la misma).
 - Ej. Una capa de polígonos que representan ciudades la representamos como una feature table Ciudad(nombre, país, población, geometría, gid)

- GEOMETRY_TABLE : Es toda tabla que almacena geometrías, en el caso que la feature table correspondiente no las almacene directamente. Cada fila posee un identificador geográfico (GID).
- GEOMETRY_COLUMNS: Tabla de metadatos que posee una fila por cada columna geometría de la base, con los siguientes atributos:
 - > ID de la feature table a la que corresponde la columna geometría
 - El nombre de la columna geometría
 - El SRID de la columna geometría
 - El tipo de geometría (Point, LineString, etc)
 - La dimensión del SRS utilizado (2D, 3D, etc.)
 - El ID de la geometry_table que almacena la geometría (podría ser la misma feature table)

- SPATIAL_REF_SYS: Es el diccionario de códigos de sistemas de referencia espaciales (SRS). Solamente es necesaria para hacer operaciones de re-proyección, pero resulta útil para consulta durante el desarrollo. Dentro de esta tabla, interesan particularmente los campos SRID y STEXT.
 - Ej. Queremos obtener el SRID de la proyección que corresponde al datum Yacaré (


```
SELECT srid FROM spatial_ref_sys WHERE srtext LIKE '%Yacare%';
```

srid = 4309

Table 4: Geometry t	ype code	es
---------------------	----------	----

Table 4: Geometry type codes						
Code	Geometry type	Coordinates				
0	GEOMETRY	// IN X Y				
1	POINT	// IN X Y				
2	LINESTRING	// IN X Y				
3	POLYGON	// IN X Y				
4	MULTIPOINT	// IN X Y				
5	MULTILINESTRING	// IN X Y				
6	MULTIPOLYGON	// IN X Y				
7	GEOMCOLLECTION	// IN X Y				
13	CURVE	// IN X Y				
14	SURFACE	// IN X Y				
15	POLYHEDRALSURFACE	// IN X Y				
1000	GEOMETRYZ	\\ IN X Y Z				
1001	POINTZ	\\ IN X Y Z				
1002	LINESTRINGZ	\\ IN X Y Z				

	X Y Z
1004 MILTIPOINTS \\ IN	
1004 HOLITOINIZ // IN	X Y Z
1005 MULTILINESTRINGZ \\ IN	X Y Z
1006 MULTIPOLYGONZ \\ IN	X Y Z
1007 GEOMCOLLECTIONZ \\ IN	X Y Z
1013 CURVEZ \\ IN	ХҮМ
1014 SURFACEZ \\ IN	ХҮМ
1015 POLYHEDRALSURFACEZ \\ IN	X Y Z
2000 GEOMETRY \\ IN	ХҮМ
2001 POINTM \\ IN	X Y M
2002 LINESTRINGM \\ IN	ХҮМ
2003 POLYGONM \\ IN	X Y M
2004 MULTIPOINTM \\ IN	ХҮМ
2005 MULTILINESTRINGM \\ IN	ХҮМ
2006 MULTIPOLYGONM \\ IN	ХҮМ
2007 GEOMCOLLECTIONM \\ IN	ХҮМ
2013 CURVEM \\ IN	ХҮМ
2014 SURFACEM \\ IN	X Y M
2015 POLYHEDRALSURFACEM \\ IN	ХҮМ
3000 GEOMETRYZM \\ IN X	XYZM
3001 POINTZM \\ IN 3	XYZM
3002 LINESTRINGZM \\ IN 2	XYZM

Ejemplos de Operadores Espaciales en SQL

- Utilizaremos las siguientes feature tables:
 - Ciudades(gid, código, nombre, población, geom), capa de polígonos.
 - Calles (gid, código, nombre, geom), capa de líneas.
 - Hoteles (gid, nombre, dirección, estrellas, capacidad, geom) capa de puntos.
 - Rios(gid, nombre, geom), capa de líneas
- Operadores en el SELECT
 - Obtener nombre, código y área de la ciudad de Montevideo: SELECT c.nombre, c.codigo, ST_AREA(c.geom) AS area FROM Ciudades c WHERE c.nombre='Montevideo';

Ejemplos de Operadores Espaciales en SQL

- Obtener nombre y longitud de la calle con codigo=223
 SELECT r.nombre, ST_LENGTH(r.geom) AS longitud
 FROM Calles r WHERE r.codigo=223;
- Listar nombre y densidad de población de ciudades en orden decreciente de densidad:

SELECT c.nombre, c.poblacion/ST_AREA(c.geom) AS densidad FROM Ciudades c;

ORDER BY densidad DESC;

Ejemplos de Operadores Espaciales en SQL

- Operadores en el WHERE (Join Espacial):
 - Obtener la cantidad de hoteles 4 estrellas en la ciudad de Colonia:
 - SELECT COUNT(h.nombre) FROM Hoteles h, Ciudades c WHERE ST_CONTAINS(c.geom, h.geom)
 - AND c.nombre='Colonia' AND h.estrellas=4
 - Listar todas las ciudades que se encuentren a menos de 100 km del río Uruguay
 - SELECT c.nombre FROM Ciudades c, Rios r
 - WHERE ST_OVERLAPS(c.geom, ST_BUFFER(r.geom, 100))
 - AND r.nombre='Uruguay'

Referencias

Simple Features Standard

http://www.opengeospatial.org/standards/sfs

