Formato Aprobado por resolución Nº113 del CFI de fecha 04.07.2017

Programa de MEDIDAS ELECTRICAS

1. NOMBRE DE LA UNIDAD CURRICULAR

Medidas Eléctricas

2. CRÉDITOS

10 créditos

3. OBJETIVOS DE LA UNIDAD CURRICULAR

El curso tiene tres objetivos básicos:

- a) Conocer la instrumentación básica utilizada para las medidas eléctricas, en particular corriente, tensión y resistencia. Aprender algunas técnicas de proyecto de instrumentos simples poniendo énfasis en la instrumentación digital.
- b) Ver la interacción con otras ramas de la ingeniería eléctrica y las ciencias básicas. Ejemplo son el procesamiento de señales, la comunicación de datos y conceptos aprendidos en los cursos de física.
- c) Conocer los principios de funcionamiento de algunos transductores frecuentemente utilizados en la industria y medidas de laboratorio. Se trabajarán algunos ejemplos de montajes concretos de aplicación.

4. METODOLOGÍA DE ENSEÑANZA

El curso comprende clases teórico prácticas, ejercicios de práctico y laboratorios. Se realizarán dos clases de teórico-práctico semanales de dos horas cada una. Habrá tres prácticos de laboratorio grupales, los grupos serán de tres estudiantes (excepcionalmente cuatro). Los laboratorios son obligatorios y tienen evaluación grupal durante el desarrollo del mismo e individual al comienzo (pre-informe) y al final (presentación oral sobre los resultados de la experiencia).

5. TEMARIO

- 1. Conceptos generales de medidas y medidas eléctricas.
- 1.1 Medidas, unidades y patrones
- 1.2 Apreciación e incertidumbre
- 2. Instrumentos analógicos de medida de corriente y tensión
- 2.1 Instrumento de imán permanente y bobina móvil

- 2.1 Ejemplos de medida de corriente y tensión
- 2.3 Ejemplos de otros instrumentos, electrodinámico, hierro móvil.
- 3. Instrumentos digitales de medida de corriente, tensión y resistencia
- 3.1 Arquitectura de un instrumento digital
- 3.2 Técnicas de conversión A/D
- 3.3 Circuitos de acondicionamiento para medida de tensión y corriente. Ejemplos.
- 4. Accesorios frecuentemente utilizados en medidas eléctricas.
- 4.1 Transformador de corriente
- 4.2 Pinza amperimétrica y punta de efecto Hall
- 5. Interfaces de comunicación y automatización de medidas
- 5.1 Comunicación RS232
- 5.2 Comunicación LAN
- 5.3 Arquitectura de software para instrumentos virtuales (VISA)
- 5.4 Lenguaje de comando para instrumentos programables (SCPI)
- 6. Osciloscopio y placas de adquisición de señal
- 6.1 Contexto histórico, osciloscopio TRC
- 6.2 Concepto de base de tiempo y escalas de amplitud
- 6.3 Arquitecturas de un osciloscopio digital
- 6.4 Métodos de adquisición de señal
- 6.5 Métodos de disparo
- 6.6 Impedancia de entrada y compensación con punta de prueba
- 6.7 Muestreo, ancho de banda y almacenamiento de señales digitales
- 7. Transductores y acondicionadores de señal
- 7.1 Transductores de temperatura. Termocúpla, termistor, RTD.
- 7.2 Transductores de medida de fuerza y deformación. Strain gauge.
- 7.3 Transductores piezoeléctricos. Fundamentos y ejemplos de aplicaciones.
- 7.4 Puentes de medida
- 7.5 Amplificadores de instrumentación

6. BIBLIOGRAFÍA

Tema	Básica	Complementaria
Conceptos generales de medidas y medidas eléctricas	1	5
8. Instrumentos analógicos de medida de corriente y tensión	2	
9. Instrumentos digitales de medida de corriente, tensión y resistencia	3	6,7,8
10. Accesorios frecuentemente utilizados en medidas eléctricas	2	
11. Interfaces de comunicación y automatización de medidas		
12. Osciloscopio y placas de adquisición de señal	3	9,10,11

13 <mark>.</mark>	Transductores y acondicionadores de señal	4	
			ı

6.1 Básica

- 1. Morris, Alan (2002). Principios de Mediciones e Instrumentación. Mexico: Pearson Educación
- 2. Notas del Curso, disponible EVA
- 3. Pallas Areny, Ramon (2006). Instumentos Electrónicos Básicos. Barcelona: Marcombo.
- 4. Pallas Areny, Ramon (2003). Transductores y Acondicionadores de Señal. Barcelona: Marcombo.

6.2 Complementaria

- 5. Pérez Hernandez, María (2012). Estimación de incertidumbres. Guia GUM. Revista española de metrología, 2012.
- 6. IEEE Standards Board (1987). IEEE Standard Digital Interfase for Programable Instrumentation.
- 7. National Instruments. NI VISA User Manual. Disponible en: http://www.ni.com/pdf/manuals/370423a.pdf
- 8. Eurpean SCPI Consortion Contact (1999). Standard Commands for Programable Instruments. Disponible en: http://www.ivifoundation.org/docs/scpi-99.pdf
- 9. ni.com/instrument-fundamentals. Analog Sample Quality. Disponible en: ftp://ftp.ni.com/evaluation/pxi/Analog_Sample_Quality.pdf
- ni.com/instrument-fundamentals. Adquirir una Señal Analógica: Ancho de Banda, Teorema de Muestreo de Nyquist y Aliasing. Disponible en http://www.ni.com/white-paper/2709/es/
- 11. ni.com/instrument-fundamentals. Understanding Frequency Performance Especifications. Disponible en: http://www.ni.com/white-paper/3359/en/

7. CONOCIMIENTOS PREVIOS EXIGIDOS Y RECOMENDADOS

- 7.1 Conocimientos Previos Exigidos: Cursos básicos de Calculo y Física. Teoría de circuitos. Muestreo de señales. Diseño Lógico. Espectro de señales.
- 7.2 Conocimientos Previos Recomendados: Electromagnetismo. Microprocesadores. Filtros.

ANEXO A Para todas las Carreras

A1) INSTITUTO

Instituto de Ingeniería Eléctrica

A2) CRONOGRAMA TENTATIVO

Semana 1	Tema 1: Introducción al curso. Conceptos generales de medidas y medidas eléctricas (4 hs de clase)		
Semana 2	Tema 2: Instrumentos analógicos de medida de corriente y tensión (4 hs de clase)		
Semana 3	14. Tema 3: Instrumentos digitales de medida de corriente, tensión y resistencia (4 hs de clase)		
Semana 4	15. Tema 3: Instrumentos digitales de medida de corriente, tensión y resistencia (4 hs de clase) Laboratorio 1 (4 hr de clase)		
Semana 5	16. Tema 4: Accesorios frecuentemente utilizados en medidas eléctricas		
	(4 hr de clase)		
Semana 6	17. Tema 5: Interfaces de comunicación y automatización de medidas		
	(4 hr de clase)		
Semana 7	Ejercicios para parcial y recuperación (4 hr de clase)		
Semana 8	Tema 6: Osciloscopio y placas de adquisición de señal		
Semana 9	Tema 6: Osciloscopio y placas de adquisición de señal		
Semana 10	Tema 6: Osciloscopio y placas de adquisición de señal (12 hr de clase)		
Semana 11	Tema 7: Transductores y acondicionaldores de señal Laboratorio 2 (4 hr de clase)		
Semana 12	Tema 7: Transductores y acondicionaldores de señal		
Semana 13	Tema 7: Transductores y acondicionaldores de señal (12 hr de clase)		
Semana 14	Tema 7: Transductores y acondicionaldores de señal (4 hr de clase) Laboratorio 3. (4 hr de clase)		
Semana 15	Ejercicio para parcial y recuperacion (4 hr de clase)		

A3) MODALIDAD DEL CURSO Y PROCEDIMIENTO DE EVALUACIÓN

El procedimiento de evaluación consta de dos actividades. Pruebas parciales (85 %), Nota de la actuación en laboratorio (15 %)

Se realizarán dos pruebas parciales en los períodos regulares de parciales de la Facultad de Ingeniería. La primer prueba parcial tiene un peso de 40 % y la segunda de 45%.

Se calificará la actuación en laboratorio de forma individual y grupal. Cada estudiante deberá presentar un preinforme de forma oral e individual. Cada estudiante deberá hacer la presentación de los resultados de una práctica de forma oral e individual. El grupo de trabajo de laboratorio se califica durante la practica.

Para la ganancia del curso se exige 25% y la aprobación del laboratorio.

Para la exoneración del curso se exige 65% y la aprobación del laboratorio.

Para la aprobación del laboratorio debe obtener como mínimo 50% en la actuación del laboratorio. La asistencia al laboratorio es obligatoria.

A4) CALIDAD DE LIBRE

No admite la Calidad de Libre.

A5) CUPOS DE LA UNIDAD CURRICULAR

No hay cupos.

ANEXO B para la carrera Ingeniería Eléctrica

B1) ÁREA DE FORMACIÓN

Fundamentos de Ingeniería Eléctrica

B2) UNIDADES CURRICULARES PREVIAS

Curso:

Examen de Teoría de Circuitos, Examen de Diseño Lógico, Curso de Señales aleatorias y modulación, No tener aprobado el examen de Medidas Eléctricas (13 créditos)

Alternativamente se podrá cursar si se tiene el examen de Sistemas Lineales 1 o Sistemas Lineales 2 y no tener aprobado el examen de Medidas Eléctricas (13 créditos).

Examen: Curso de Medidas Eléctricas

APROB REC CONCEIN DE EAC. ING.
38601 29/10/2019 - 000180 - 002450-19