Ejercicio sobre concentradores

Un sistema de calentamiento de agua utilizará un concentrador solar parabólico lineal y un receptor cilíndrico sin cobertura. La solicitación guía para el diseño impone que el coeficiente de pérdidas por convección por metro de receptor no supere el valor $\pi Dh_w = 10 \text{ W/m}^{\circ}\text{K}$ (D: diámetro del receptor; h_w : coeficiente de transferencia por convección) al considerar la situación extrema de un viento de v=10 m/s, una temperatura del receptor máxima de 110 °C y una temperatura del aire de T_a =15 °C.

a) Determine el diámetro máximo D_m para el receptor.

Se propone construir el reflector con un espejo con reflectividad $\rho=0.93$. El receptor se recubrirá con un tratamiento selectivo con coeficiente de absorción $\alpha=0.92$ para el espectro solar y una emisividad $\epsilon=0.13$ en la zona del IR. Considerando que en un determinado instante del día la irradiancia solar directa sobre la apertura del concentrador vale $G=500~kW/m^2$, y que el ángulo de incidencia es 20 °, se busca diseñar para que en estas condiciones el receptor absorba una potencia mínima de $Q_s=100~kW$. En base a criterios independientes se busca utilizar un ángulo de borde ("rim angle") $\psi=70$ °. Se estima que debido a errores de construcción el espejo presenta desviaciones aleatorias respecto de la geometría parabólica ideal acotadas por $\Delta\phi=0.3$ ° (dónde ϕ es el ángulo de la tangente a la superfície).

- b) Determine la geometría del concentrador (distancia focal, apertura y largo total), suponiendo que se optimizará el factor de recubrimiento $\gamma = 1$ sobre el receptor. ¿Cuál es el factor de concentración obtenido?
- c) Determine entonces el mínimo calor útil que podrá transferirse al agua. Determine cual es la principal fuente de pérdidas térmicas. (Considere $T_{skv} = 3$ °C).