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ABSTRACT
In this paper we address a problem from the field of network re-
liability, called diameter-constrained reliability. Specifically, we
are given a simple graph G = (V,E) with |V | = n nodes and
|E| = m links, a subset K ⊆ V of terminals, a vector p =
(p1, . . . , pm) ∈ [0, 1]m and a positive integer d, called diame-
ter. We assume nodes are perfect but links fail stochastically and
independently, with probabilities qi = 1 − pi. The diameter-
constrained reliability (DCR for short), is the probability that the
terminals of the resulting subgraph remain connected by paths com-
posed by d links, or less. This number is denoted by Rd

K,G(p).

The general DCR computation is inside the class of NP-Hard
problems, since is subsumes the complexity that a random graph
is connected. In this paper the computational complexity of DCR-
subproblems is discussed in terms of the number of terminal nodes
k = |K| and diameter d. A factorization formula for exact DCR
computation is provided, that runs in exponential time in the worst
case. Finally, a revision of graph-classes that accept DCR compu-
tation in polynomial time is then included. In this class we have
graphs with bounded co-rank, graphs with bounded genus, planar
graphs, and, in particular, Monma graphs, which are relevant in
robust network design. We extend this class adding arborescence
graphs. A discussion of trends for future work is offered in the
conclusions.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Reliability, availability, and ser-
viceability; D.2.8 [Mathematical Software]: Reliability and Ro-
bustness—computational complexity, performance measures

General Terms
Network Reliability

Keywords
Computational Complexity, Network Reliability, Diameter-Constrained
Reliability

1. INTRODUCTION
The definition of DCR has been introduced in 2001 by Héctor Can-
cela and Louis Petingi, inspired in delay-sensitive applications over
the Internet infrastructure [10]. Nevertheless, its applications over
other fields of knowledge enriches the motivation of this problem
in the research community [12].

We wish to communicate special nodes in a network, called termi-
nals, by d hops or less, in a scenario where nodes are perfect but
links fail stochastically and independently. The all-terminal case
with d = n − 1 is precisely the probability that a random graph is
connected, or classical reliability problem (CLR for short). Arnon
Rosenthal proved that the CLR is inside the class of NP-Hard
problems [24]. As a corollary, the general DCR is NP-Hard as
well, hence intractable unless P = NP .

The focus of this paper is the computational complexity of DCR
subproblems in terms of the number of terminals k and diameter d,
and the efficient computation of the DCR for distinguished graph
topologies.

In Section 4, a formal definition of DCR is provided as a particular
instance of a coherent stochastic binary system. The computational
complexity of the DCR is discussed in terms of the diameter and
number of terminals in Section 3. The contributions of this paper
are two-fold. First, we close the complexity analysis of the DCR
problem in terms of k and d. Indeed, we prove in this section that
the DCR is in the computational class ofNP-Hard problems in the
all-terminal scenario (k = n) with a given diameter d ≥ 2. The
computational complexity for other possible pairs for k and d is
already available from prior literature from this area.

Then, we provide an exact DCR computation by means of a factor-



ization technique inspired in [20], in Section 4. Finally, we extend
the class of known graphs that permit an efficient (i.e. polynomial
time) computation for the DCR in Section 5. A particular but rele-
vant family of these graphs are Monma graphs, which plays a key
role in the design of robust network design [19, 23, 8]. Concluding
remarks and open problems are summarized in Section 6.

2. TERMINOLOGY
We are given a system with m components. These components
are either “up” or “down”, and the binary state is captured by a bi-
nary word x = (x1, . . . , xm) ∈ {0, 1}m. Additionally, we have
a structure function φ : {0, 1}m → {0, 1} such that φ(x) = 1 if
the system works under state x, and φ(x) = 0 otherwise. When
the components work independently and stochastically with certain
probabilities of operation p = (p1, . . . , pm), the pair (φ, p) defines
a stochastic binary system, or SBS for short, following the termi-
nology from [1]. An SBS is coherent whenever x ≤ y implies that
φ(x) ≤ φ(y), where the partial order set (≤, {0, 1}m) is bit-wise
(i.e. x ≤ y if and only if xi ≤ yi for all i ∈ {1, . . . ,m}). If
{Xi}i=1,...,m is a set of independent binary random variables with
P (Xi = 1) = pi and X = (X1, . . . , Xm), then r = E(φ(X)) =
P (φ(X) = 1) is the reliability of the SBS.

Now, consider a simple graph G = (V,E), a subset K ⊆ V
and a positive integer d. A subgraph Gx = (V,Ex) ⊆ G is
d-K-connected if dx(u, v) ≤ d,∀{u, v} ⊆ K, where dx(u, v)
is the distance between nodes u and v in the graph Gx. Let us
choose an arbitrary order of the edge-set E = {e1, . . . , em}, ei ≤
ei+1. For each subgraph Gx = (V,Ex) with Ex ⊆ E, we iden-
tify a binary word x ∈ {0, 1}m, where xi = 1 if and only if
ei ∈ Ex; this is clearly a bijection. Therefore, we define the
structure φ : {0, 1}m → {0, 1} such that φ(x) = 1 if Gx is d-
K-connected, and φ(x) = 0 otherwise. If we assume nodes are
perfect but links fail stochastically and independently ruled by the
vector p = (p1, . . . , pm), the pair (φ, p) is a coherent SBS. Its
reliability, denoted by Rd

K,G(p), is called diameter constrained re-
liability, or DCR for short. A particular case is Rn−1

K,G(p), called
classical reliability, or CLR for short.

In a coherent SBS, a pathset is a state x such that φ(x) = 1. A
minpath is a state x such that φ(x) = 1 but φ(y) = 0 for all y < x
(i.e. a minimal pathset). A cutset is a state x such that φ(x) = 0,
while a mincut is a state x such that φ(x) = 0 but φ(y) = 1 if
y > x (i.e. a minimal cutset). We will denote OK

d (G) to the set of
all d-K-connected subgraphs of a ground graph G.

We recall a bit of terminology coming from graph theory, which
will be used throughout this treatment. A graph G = (V,E) is
bipartite if there exists a bipartition V = V1 ∪ V2 such that E ⊆
{{x, y} : x ∈ V1, y ∈ V2}. A vertex cover in a graph G = (V,E)
is a subset V ′ ⊆ V such that V ′ meets all links in E.

Given two graphs G1 and G2 with the same vertex set V , f : V →
V is a K-isomorphism from G1 to G2 if it is an isomorphism that
fixes the set K. In that case G1 and G2 are K-isomorphic. Given
a simple graph G = (V,E) and e = {x, y} ∈ E, an elementary
division of e is a couple of edges e1 = {x, z} and e2 = {z, y}
that replace e in G, where z /∈ V . Two graphs G1 and G2 are
homeomorphic if there exists a graphG such thatG1 andG2 can be
obtained from G by means of a sequence of elementary divisions.
If P = {V1, . . . , Vc} is a partition of V , the quotient graph is
G′ = (P,E′), where {Vi, Vj} ∈ E′ if and only if i 6= j and there
exists an edge from a vertex of Vi to a vertex of Vj in E. We say vj

is reachable from vi either when vi = vj or there is a path from vi
to vj . In a simple graph G, reachability is an equivalence relation,
and c, the number of classes in the quotient graph, is the number
of connected components. Given a simple graph G = (V,E) with
n = |V | vertices and m = |E| edges, its rank is r(G) = n − c,
while its co-rank is c(G) = m−n+c. A connected graph verifies
c = 1; then r(G) = n− 1 and c(G) = m− n+ 1. In topological
graph theory, the genus of a graph G is the least natural g such that
G can be drawn without crossing itself in a surface with genus g.
A planar graph verifies g = 0.

3. COMPUTATIONAL COMPLEXITY
The class NP is the set of problems polynomially solvable by a
non-deterministic Turing machine [15]. A problem is NP-Hard
if it is at least as hard as every problem in the set NP (formally,
if every problem in NP has a polynomial reduction to the for-
mer). It is widely believed that NP-Hard problems are intractable
(i.e. there is no polynomial-time algorithm to solve them). An
NP-Hard problem is NP-Complete if it is inside the class NP .
Stephen Cook proved that the joint satisfiability of an input set of
clauses in disjunctive form is an NP-Complete decision problem;
in fact, the first known problem of this class [13]. In this way, he
provided a systematic procedure to prove that a certain problem is
NP-Complete. Specifically, it suffices to prove that the problem
is inside the class NP , and that it is at least as hard as an NP-
Complete problem. Richard Karp followed this hint, and presented
the first 21 combinatorial problems inside this class [16]. Leslie
Valiant defines the class #P of counting problems, such that testing
whether an element should be counted or not can be accomplished
in polynomial time [26]. A problem is #P-Complete if it is in the
set #P and it is at least as hard as any problem of that class.

Recognition and counting minimum cardinality mincuts/minpaths
are at least as hard as computing the reliability of a coherent SBS [1].
Arnon Rosenthal proved the CLR is NP-Hard [24], showing that
the minimum cardinality mincut recognition is precisely Steiner-
Tree problem, included in Richard Karp’s list. The CLR for both
two-terminal and all-terminal cases are still NP-Hard, as Michael
Ball and J. Scott Provan proved by reduction to counting minimum
cardinality s − t cuts [22]. As a consequence, the general DCR
is NP-Hard as well. Later effort has been focused to particular
cases of the DCR, in terms of the number of terminals k = |K| and
diameter d.

When d = 1 all terminals must have a direct link,

R1
K,G =

∏
{u,v}⊆K

p(uv),

where p(uv) denotes the probability of operation of link {u, v} ∈
E, and p(uv) = 0 if {u, v} /∈ E. The problem is still simple when
k = d = 2. In fact,

R2
{u,v},G = 1− (1− p(uv))

∏
w∈V−{u,v}

(1− p(uw)p(wv)).

Héctor Cancela and Louis Petingi rigorously proved that the DCR
isNP-Hard when d ≥ 3 and k ≥ 2 is a fixed input parameter [11],
in strong contrast with the case d = k = 2.

The literature offers two proofs that the DCR has a polynomial-
time algorithm when d = 2 and k is a fixed input parameter [25,
6]. Pablo Sartor et. al. present a recursive proof [25], while Ed-
uardo Canale et. al. present an explicit expression for R2

K,G that is
computed in a polynomial time of elementary operations [7].



Here, we will prove that the DCR is inside the class of NP-Hard
problems in the all-terminal case with diameter d ≥ 2. The main
source of inspiration for the first result is the article authored by [11],
where they proved that the DCR is NP-Hard when d ≥ 3 and
k ≥ 2 is a fixed input parameter. There, the authors prove first that
the result holds for k = 2, and they further generalize the result for
fixed k ≥ 2. For our purpose it will suffice to revisit the first part.
Before, we state a technical result:

Lemma 1. Counting the number of vertex covers of a bipartite
graph is #P-Complete [2].

Proposition 1. The DCR is NP-Hard when k = 2 and d ≥
3 [11].

PROOF. Let d′ = d − 3 ≥ 0 and P = (V (P ), E(P )) a
simple path with node set V (P ) = {s, s1, . . . , sd′} and edge set
E(P ) = {{s, s1}, {s1, s2}, . . . , {sd′−1, sd′}}. For each bipartite
graph G = (V,E) with V = A ∪B and E ⊆ A×B we build the
following auxiliary network:

G′ = (A ∪B ∪ V (P ) ∪ {t}, E ∪ E(P ) ∪ I}, (1)

where I = {{sd′ , a}, a ∈ A}∪{{b, t}, b ∈ B}, and all links ofG′

are perfect but links in I , which fail independently with identical
probabilities p = 1/2. Consider the terminal set K = {s, t}. The
auxiliary graph G′ is illustrated in Fig. 1. The reduction from the
bipartite graph to the two-terminal instance is polynomial.

s s1 s2 s3

a1

a2

a3

b1

b2

b3

t

Figure 1: Example of auxiliary graph G′′ with terminal set
{s, t} and d = 6, for the bipartite instance C6.

A vertex coverA′∪B′ ⊆ A∪B induces a cutset I ′ = {{sd′ , a}, a ∈
A′}∪{{b, t}, b ∈ B′} (i.e. if all links in I ′ fail, the nodes {s, t} are
not connected). Reciprocally, that cutset determines a vertex cover.
Therefore, the number of cutsets |C| is precisely the number of ver-
tex covers of the bipartite graph |B|. When p = 1/2, all cutsets
are equally likely, and the source-terminal reliability evaluation at
p = 1/2 is:

Rd
{s,t},G′(1/2) = 1− |C|

2|A|+|B|

Finally, using the fact that |B| = |C| and by substitution:

|B| = 2|A|+|B|(1−Rd
{s,t},G′(1/2)).

Thus, the DCR for the two-terminal case is at least as hard as count-
ing vertex covers of bipartite graphs. ♠

The result for d ≥ 3 is a corollary of Proposition 1.

Theorem 1. The DCR isNP-Hard when k = n and d ≥ 3.

PROOF. Consider the auxiliary graphG′ = (V ′, E′) from Fig. 1.
ExtendG′ furthermore, and considerG′′ = (V ′′, E′′), where V ′′ =
V ′ and E′′ = E′ ∪ {{a, a′}, a 6= a′, a, a′ ∈ A} ∪ {{b, b′}, b 6=
b′, b, b′ ∈ B}. In words, just add links in order to connect all nodes
from A, and all nodes from B. We keep the same probabilities of
operation that in G′, and the new links are perfect.

Consider now the all-terminal case K = V ′′ for G′′, and given
diameter d ≥ 3. The key is to observe that the cutsets in the all-
terminal scenario for G′′ are precisely the s − t cutsets in G′, and
they have the same probability.

Indeed, each pair of terminals from the setA are directly connected
by perfect links; the same holds in B. The distance between s and
sd′ is d′ = d − 3 < d, so these nodes (and all the intermediate
ones) respect the diameter constraint. Finally, if there were an s− t
path (i.e. a path from s to t), the diameter of G′′ would be exactly
d. Therefore, Rd

{s,t},G′ = Rd
V ′′,G′′ , and again:

|B| = 2|A|+|B|(1−Rd
{s,t},G′(1/2))

= 2|A|+|B|(1−Rd
V ′′,G′′(1/2)).

Thus, the DCR for the all-terminal case is at least as hard as count-
ing vertex covers of bipartite graphs. ♠

Theorem 2. The DCR isNP-Hard when k = n and d = 2.

Given a graph G = (V,E), consider G′ = (V ∪ {a, b}, E ∪
{{x, a}, {x, b},∀x ∈ V }). By its definition, G′ has diameter d =
2. All links are perfect, except the ones incident to a, with p(ax) =
1/2. Consider the DCR for G′. We will show that the number
of minimum cardinality pathsets in G′ is precisely the number of
vertex covers in G′. Since counting minimum cardinality pathsets
is at least as hard as computing the reliability of a coherent SBS [1],
the result will follow.

A minimum cardinality pathset in G′ contains all perfect links,
and {a, x1}, . . . , {a, xr} for certain nodes xi ∈ V . Since H is
a minimum cardinality pathset, the graph GH = (V,H) has diam-
eter 2, but the diameter is increased under any link deletion. Let
Na = {x : {a, x} ∈ H} the set of neighbor vertices for the termi-
nal node a. The key is to observe that vertex a reaches every node
in two steps if and only if Na is a vertex cover.

Indeed, suppose a reaches every node in two steps. Then, for any
x ∈ V \ Na there exists a path xya, so y ∈ Na and thus Na is a
vertex cover. Conversely, if Na covers V , let x ∈ V . Then, either
x ∈ Na and x is adjacent with a, or x ∈ V \ Na and there exists
y ∈ Na ∩Nx, so xya is a path of two hops between x and a.

The minimality of Na as a cover follows from the minimality of H
as a pathset.

The whole picture of DCR complexity is provided in Fig. 2, which
closes the complexity analysis for different independent pairs (k, d).

4. FACTORIZATION IN DCR
Let us consider a network G = (V,E) with perfect nodes and
identical probabilities of operation pe = p ∀e ∈ E. Denote n =
|V | and m = |E| the respective number of nodes and links in the
network. Totaling exhaustive and mutually disjoint events, Michael
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n− 2
n− 1
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O(n) O(n)

NP-Hard

NP-Hard NP-Hard

k = n or free

NP-Hard

NP-Hard

Figure 2: DCR Complexity in terms of the diameter d and num-
ber of terminals k = |K|

Ball and Scott Provan observed that [2]

RV,G(p) =

n∑
i=0

Fip
m−i(1− p)i, (2)

being Fi the number of connected subgraphs H = (V,E′) for G
such that |E′| = m− i. Therefore, the problem can be reduced to
counting subgraphs. In particular, if c denotes the minimum cardi-
nality cutset (mincut) then Fm−c is the number of those cutsets.

The classical reliability problem, CLR, isNP-Hard (see Section 3
for a discussion of computational complexity). Since DCR is an ex-
tension of CLR, it is NP-Hard as well. Once these classical prob-
lems are known to be computationally hard, the research commu-
nity delved into the development of exact exponential algorithms,
close approximations and polynomially solvable subclasses of the
CLR.

The literature is vast, and we are forced to choose inspirational
and most cited works. Remarkably, Moskowitz [21] proposed se-
ries parallel reductions and deletion of irrelevant edges, as well
as the deletion-contraction principle (or Factoring Theorem): let
e = {x, y} ∈ E be an arbitrary edge, G − e = (V,E − e) repre-
sents edge-deletion, G ∗ e is an edge contraction (the nodes {x, y}
are both identified with x, and the graph G ∗ e has possibly mul-
tiple edges), and K′ is the new terminal-set after the identification
of nodes x and y. Then:

RK,G = (1− pe)RK,G−e + peRK′,G∗e. (3)

A notorious computational method for rough estimations of RK,G

is Crude Monte Carlo (CMC) and its enhancements [14]. The key
idea is to pick N independent random graphs G1, . . . , GN that re-
spect the correct probability law for the links, and set a binary ran-
dom variable Xi to 1 if the desired condition is met or Xi = 0
otherwise. By Kolmogorov’s strong law, the average random vari-
able XN converges almost surely to P (X = 1), precisely the tar-
get probability (K-connectedness in the CLR, for instance). This
estimation is unbiased, and its error can be reduced linearly with
the sample size N . Unbiased estimations for RK,G are usually
compared with respect to efficiency, which considers both expected
square error (i.e., variance) and computational effort. Héctor Can-
cela and Mohammed El Khadiri developed a Recursive Variance
Reduction (RVR) estimation for RK,G, with clearly winning ef-
ficiency with respect to CMC [9]. Other valuable approximation
methods are cross-entropy [18], antithetic variables and uniform
bounds [5]. Here we just touched on the surface of CLR. The curi-
ous reader can find a recent survey in [4].

The DCR additionally requires the terminals to be connected by
path composed not more that d hops. The new parameter d is called
the diameter, and the target probability is denoted by Rd

K,G, fol-
lowing the terminology of Héctor Cancela and Louis Petingi [10].
An analogous expression of (2) for the case of homogeneous links
holds:

Rd
K,G(p) =

n∑
i=0

F
(K,d)
i pm−i(1− p)i, (4)

where nowF
(K,d)
i is the number of d-K-connected subgraphsH =

(V,E′) for G such that |E′| = m− i, and the terminals are linked
by paths with d hops or less. Since DCR is a generalization of CLR
(the CLR occurs when d ≥ |V | − 1), the general DCR problem is
NP-Hard as well. Special care is needed to adapt Expression 3 for
the diameter constrained measure, since the node-contraction oper-
ation does not preserve distances. The reader can find an adaptation
of factorization the diameter-constrained measure in [10]. There,
the authors need to identify all paths that include the selected link.

Observe that if a link e ∈ E fails, the DCR event corresponds to
network G − e, where all link reliabilities are kept the same (but
pe = 0). On the other hand, if e operates, we should find the
DCR of network Ge, that is precisely G but pe = 1. A similar
factorization formula for the DCR is the following:

Rd
K,G = peR

d
K,Ge + (1− pe)Rd

K,G−e (5)

It is worth to notice that the recursion provided by Equation (5)
iteratively deletes or consolidate links. As a consequence, the it-
erative procedure finishes in non-connected instances, or, on the
other hand, in “strong” networks, where all links are perfect. In the
latter, the network is either d-K-connected (and the DCR equals
1) or not (where the DCR equals 0). Future work is required to
test exact DCR computations in polynomial time using this novel
factorization technique.

5. DCR IN SPECIAL GRAPHS
So far, an efficient (polynomial-time) computation of the DCR is
available only for special graphs, to know, paths, cycles, ladders,
generalized ladders and spanish fans [25]. The reader can appreci-
ate from Figure 2 that an efficient computation is also feasible for
diameter d = 2 and a fixed number of input terminals k [6]. An
explicit expression for Rd

K,G(p) is provided by [7].

In this article, we will extend the previous list, adding Weak graphs,
Monma graphs, Tree graphs and Arborescence graphs.

Definition 1. Let G = (V,E) a simple graph, K ⊆ V and d
a positive integer. The graph G is d-K-r weak if G − U is d-K
disconnected, for every set U ⊆ E with |U | ≥ r.

In words, “r-weakness” states the network fails (i.e. is not d-K
connected) whenever we remove an arbitrary set of r links (or
more). We consider an analogous notion of strong graphs.

Definition 2. Let G = (V,E) a simple graph, K ⊆ V and d a
positive integer. The graph G is d-K-s strong if G − U is d-K
connected, for every set U ⊆ E with |U | ≤ s.

Theorem 3. Let G = (V,E) a d-K-r weak graph, for some r
independent of n. Then, the DCR can be found in polynomial time
in n.



PROOF. Given an arbitrary configuration G′ = (V,H) ⊆ G,
we can decide in polynomial time whether G′ is d-K-connected or
not. Let us denote Or to the set of all configurations (V,H), with
|H| ≥ m− r, where m = |E|. Since G′ is d-K-r weak, summing
the probability of disjoint events with positive probability we get
that

Rd
K,G =

∑
G′∈Or

1{G′∈OK
D

(G)}

∏
e∈E(G′)

p(e)
∏

e 6∈E(G′)

(1− p(e)),

(6)
where 1{x} = 1 if x is true, and 1{x} = 0 otherwise. It suffices
to show that the number of terms in the sum is polynomial with
respect to n. In fact, by Sum-rule, the cardinality |Or| is precisely:

|Or| =
r−1∑
i=0

(
m

m− i

)
∼ mr−1, (7)

where the symbol ∼ means that both real sequences are equivalent
when m tends to infinity. Observe that m < n2 holds for all con-
nected graphs. Therefore, |Or| ∼ mr−1 ≤ n2r−2, and the num-
ber of terms from Expression (7) is bounded by a polynomial in n.
Thus, Rd

K,G can be found in a polynomial number of elementary
operations in n. ♠

An analogous argument holds for strong graphs.

Corollary 1. Let G = (V,E) a d-K-s strong graph, for some s
independent of n. Then, the DCR can be found in polynomial time
in n.

PROOF. There is a polynomial number of potential non-d-K-
connected subgraphs in G. As a consequence, the complement of
the DCR, 1−Rd

K,G, can be found in polynomial time in n. ♠

Corollary 2. The DCR in connected graphs G = (V,E) with
bounded co-rank c(G) = m − n + 1 can be found in polynomial
time in n.

PROOF. Consider a simple graph G = (V,E), with bounded
co-rank c(G), a terminal set K ⊆ V and diameter d. If we delete
an arbitrary link set U ⊆ E of cardinality c(G) + 1, the resulting
subgraph has less links than a tree. Then, G − U us disconnected,
andG is d-K-(c(G)+1) weak. Since c(G)+1 is a constant bound,
Theorem 3 applies, and the DCR can be found in polynomial time
in n. ♠

Corollary 3. If the number of faces of a connected graph G of
genus g has a constant bound, the diameter-constrained reliability
can be computed in polynomial time.

PROOF. Follows from the fact that the number of faces f of a
graph of genus g is f = m−n+2−2g = c(G)− (2g−1). Then,
the co-rank c(G) = f + 2g − 1 has a constant bound. ♠

Corollary 4. Consider a graph G with genus g and a constant
bound on its faces. Then, if we consider an arbitrary arborescence
forG, its diameter-constrained reliability can be computed in poly-
nomial time.

PROOF. Trees do not add faces, and Corollary 3 holds for any
arborescence of G. ♠

The relevance of the following corollary comes from the fact that
most telecommunication networks are planar.

Corollary 5. If the number of faces of a planar graphG has a con-
stant bound, the diameter-constrained reliability can be computed
in polynomial time.

PROOF. A planar graph has genus 0. ♠

The property is unaffected by elementary subdivisions of a graph:

Corollary 6. If a family of graphs F has all its elements homeo-
morphic to a fixed graph, its diameter-constrained reliability can
be computed in polynomial time with respect to its order.

PROOF. Homeomorphic graphs have the same co-rank. ♠

Now we focus on a distinguished family of graphs coming from
robust network design. Specifically, Clyde Monma et. al. studied
the minimum cost two-connected network design problem, for the
metric case spanning all nodes in the set V [19]. There, the authors
prove that there exists a solution G′ = (V,H) ⊆ G such that ev-
ery vertex in G′ has degree 2 or 3, and the deletion of one or two
links from G′ leaves one bridge in one of the resultant connected
components. Moreover, those graphs are either a Hamiltonian cy-
cle in G or contain a Monma graph as an induced subgraph. The
term Monma graph was introduced in later works with this family
of graphs [8]. Figure 3 sketches a general Monma graph.

u v

1 2 l1

1 2 l2

1 2 l3

Figure 3: Monma’s graph structure.

The following corollary provides the dimension of reliability in the
study of Monma graphs:

Corollary 7. The diameter-constrained reliability of Monma graphs
can be computed in polynomial time respect to its order.

PROOF. Monma graphs are those homeomorphic to the general
graph consisting in two vertices and three edges joining them. ♠

Observe that Monma graphs are 3-K-weak for every selection of
the terminal set K. Therefore, Theorem 3 also proves Corollary 7.
All sub-trees in a Monma graph are obtained removing two links
from different u-v-paths (see Figure 3). If we delete more than
three links, the resulting subgraph is disconnected. In Appendix A
we count the number of spanning trees in an arbitrary Monma
graph. Also, trees are 1-K-weak for every subset of terminals K,
and Theorem 3 states that the DCR computation in trees is feasible
in polynomial time. Indeed, we show in Appendix B that it is linear
in the order of the tree.



6. CONCLUSIONS
In this paper we address the diameter-constrained reliability. This

measure joints is the probability that all distinguished terminals
K ⊆ V in a network G = (V,E) remain connected by d hops
or less, where links e ∈ E may fail with certain probabilities
qe = 1− pe.

The DCR isNP-Hard, since it subsume the probability that a ran-
dom graph is connected. We summarize the computational com-
plexity of DCR sub-problems in terms of the number of terminals
k = |K| and diameter d. It remains NP-Hard in all cases but
d ≤ 2 and k finite.

Deletion-contraction formulas are available for the classical relia-
bility problem (CLR). However, contractions modify the diameter.
Therefore, we adapted this recursive technique with the introduc-
tion of a different factorization methodology.

An efficient (polynomial time) DCR computation is possible in spe-
cial graphs. Indeed, from prior literature we know that the DCR in
paths, cycles, ladders, generalized ladders and spanish fans can be
found efficiently [25].

In this paper we extended the previous list, including weak and
strong graphs, some graphs with bounded genus, arborescences,
graphs with bounded co-rank and special classes, to know, Monma
graphs and trees.

The best design (minimum cost) 2-node-connected metric network
must be either Hamiltonian or it has a Monma graph a an induced
subgraph. Then, this work connects reliability aspects of network
design in a probabilistic context with robust network design.

As a future work, we wish to find the DCR in Halin graphs, which
play a key role in robust network design (specially in 3-connected
minimum cost network design). Furthermore, we will analyze local
properties of the DCR (node contraction, link deletion and other lo-
cal movements) that will enrich our understanding in this measure
that connects quality (in hop-constrained applications) with relia-
bility. A hint for this study is DCR factorization.
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APPENDIX
A
The complexity of a simple graphG is its number of spanning trees,
denoted by κ(G). Gustav Kirchhoff provided an efficient way to
count κ(G), by means of a determinant [17]. Indeed, κ(G) is an
arbitrary minor of the Laplacian matrix L = AG − ∆, being AG

de adjacency matrix of G (i.e. A = (ai,j) : ai,j = 1 if {i, j} ∈ E;
or 0 otherwise) and ∆G a diagonal matrix with the degrees of the
vertices. The result is known as “Matrix-Tree Theorem”, and it is a
seminar result in the field called Algebraic Graph Theory [3].

In this appendix, we will study the complexity of Monma graphs,
κ(Ml1,l2,l3). To the best of our knowledge, even its simplicity
this is the first place where a closed expression for κ(Ml1,l2,l3) is
available.

We invite the reader to see Figure 3. All Monma graphs have co-
rank 2. As a consequence, in order to find spanning trees it is re-
quired to delete precisely two links. If both links are removed from
the same independent path between nodes u and v, the resulting
subgraph is disconnected. On the other hand, if two links from dif-
ferent paths are removed, a tree is obtained. Then, the complexity
of Ml1,l2,l3 is:

κ(Ml1,l2,l3) = l1l2 + l1l3 + l2l3 (8)

Expression (8) has the following combinatorial interpretation: it is
the number of ways to remove two balls from different bins, where
we have exactly li balls in bin i, where i ∈ {1, 2, 3}.

It is clear that l1 + l2 + l3 = m, the number of links from Monma
graph, and that κ(Ml1,l2,l3) ≤

(
m
2

)
, since some deletion of pairs of

links result in a tree. Now, we will find a tighter bound for the com-
plexity of Monma graphs. For that purpose, we will study the struc-
ture of Monma graphs with m links that maximize the complexity.
Consider the following combinatorial optimization problem:

max
l1,l2,l3

f(l1, l2, l3) = l1l2 + l1l3 + l2l3

s.t.

l1 + l2 + l3 = m

l1, l2, l3 ∈ N

By the symmetry of function f , we will assume that l1 ≥ l2 ≥
l3 without loss of generality. We will prove that the maximum is
attained when l1 = l2 = l3 if m = 3k for some k ≥ 1, l1 = l2 =
l3−1 ifm = 3k−2, for some k ≥ 1, or l3 = l2 = l1+1 otherwise.
In the combinatorial interpretation is the following: “the number of
ways to remove two balls from different bins is maximized when
the number of balls in each bin is balanced”.

Indeed, if l1 ≥ l2 − 2 then f(l1 − 1, l2 + 1, l3) = f(l1, l2, l3) +
l1 − l2. Therefore, we subtract a unit from l1 and it to l2, and
the objective is increased, respecting the constraint l1 + l2 + l3 =
m. Therefore, the integers l1, l2 and l3 that achieve the maximum

cannot differ in more than one unit. The reader can appreciate that
if we choose (w.l.o.g.) l1 ≥ l2 ≥ l3 then l1 = l2 = l3 if m is a
multiple of 3, or they differ in one unit, as mentioned before.

A graph reading is the following: “the complexity of Monma graphs
with a fixed size is maximized when the three independent paths
have roughly the same length”. This maximum is roughly 3(m

3
)2 =

m2

3
<
(
m
2

)
. In this case, roughly two-thirds of all pair deletion of

links are trees.

B
We already know that trees are 1-weak (i.e. an arbitrary link dele-
tion disconnects them). In this paragraph, we will reinforce this
result: The DCR of a tree can be computed in linear time with its
order.

PROOF. Let T = (V,E) be a tree and K ⊆ E the terminal set.
Since T is a tree, given two terminals u, v ∈ K there is precisely
one path Puv that connects them. All those links must be opera-
tional, and the length of Puv must be smaller than d. The links
not included the set P = ∪u,v∈KPuv are irrelevant. Let d′ be the
diameter of P . Therefore:

Rd
K,T = 1{d′≤d}

∏
e∈P

pe, (9)

being pe the probability of operation of link e, 1{x} equals one if x
is true and 0 otherwise. The setP can be found linearly in |V | using
breadth first search (BFS) with an arbitrary terminal u ∈ K as the
root node (the process finishes when all terminals are reached). Let
x ∈ K be the terminal that is farthest away from u during the BFS
process. If we apply BFS again starting from x as the root node
and y is farthest away we get d′ = d(x, y). So, the diameter d′ can
be obtained in linear time with |V |. Since the number of products
in Expression (9) is |P | ≤ |E| ≤ |V |, the whole computation of
Rd

K,T be obtained in order |V | elementary operations. ♠


