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Abstract. Let G = (V,E) be a simple graph with |V | = n nodes and |E| = m links, a subset K ⊆ V

of terminals, a vector p = (p1, . . . , pm) ∈ [0, 1]m and a positive integer d, called diameter. We assume

nodes are perfect but links fail stochastically and independently, with probabilities qi = 1 − pi. The

diameter-constrained reliability (DCR for short), is the probability that the terminals of the resulting

subgraph remain connected by paths composed by d links, or less. This number is denoted by Rd
K,G(p).

The general DCR computation is inside the class of NP-Hard problems, since is subsumes the com-

plexity that a random graph is connected.

The contributions of this paper are two-fold. First, a full analysis of the computational complexity of

DCR-subproblems is presented in terms of the number of terminal nodes k = |K| and diameter d.

Second, we extend the class of graphs that accept efficient DCR computation. In this class we include

graphs with bounded co-rank, graphs with bounded genus, planar graphs, and, in particular, Monma

graphs, which are relevant in robust network design.
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1 Introduction

The definition of DCR has been introduced in 2001 by Héctor Cancela and Louis Petingi,

inspired in delay-sensitive applications over the Internet infrastructure (Cancela and Petingi,

2001). Nevertheless, its applications over other fields of knowledge enriches the motivation of

this problem in the research community (Colbourn, 1999).

We wish to communicate special nodes in a network, called terminals, by d hops or less,

in a scenario where nodes are perfect but links fail stochastically and independently. The all-

terminal case with d = n − 1 is precisely the probability that a random graph is connected, or

classical reliability problem (CLR for short). Arnon Rosenthal proved that the CLR is inside the

class of NP-Hard problems (Rosenthal, 1977). As a corollary, the general DCR is NP-Hard

as well, hence intractable unless P = NP .

The focus of this paper is the computational complexity of DCR subproblems in terms of

the number of terminals k and diameter d, and the efficient computation of the DCR for distin-

guished graph topologies.

In Section 2, a formal definition of DCR is provided as a particular instance of a coherent

stochastic binary system. The computational complexity of the DCR is discussed in terms of

the diameter and number of terminals in Section 3. The contributions of this paper are two-fold.

First, we close the complexity analysis of the DCR problem in terms of k and d. Indeed, we

prove in Section 4 that the DCR is in the computational class of NP-Hard problems in the

all-terminal scenario (k = n) with a given diameter d ≥ 2. The computational complexity for

other possible pairs for k and d is already available from prior literature from this area.

Second, we extend the class of known graphs that permit an efficient (i.e. polynomial time)

computation for the DCR in Section 5. A particular but relevant family of these graphs are

Monma graphs, which plays a key role in the design of robust network design (Monma et al.,

1990; Robledo, 2005; Canale et al., 2009). Concluding remarks and open problems are summa-

rized in Section 6.



2 Terminology

We are given a system with m components. These components are either “up” or “down”,

and the binary state is captured by a binary word x = (x1, . . . , xm) ∈ {0, 1}m. Additionally, we

have a structure function φ : {0, 1}m → {0, 1} such that φ(x) = 1 if the system works under

state x, and φ(x) = 0 otherwise. When the components work independently and stochastically

with certain probabilities of operation p = (p1, . . . , pm), the pair (φ, p) defines a stochastic

binary system, or SBS for short, following the terminology from Ball (1986). An SBS is co-

herent whenever x ≤ y implies that φ(x) ≤ φ(y), where the partial order set (≤, {0, 1}m) is

bit-wise (i.e. x ≤ y if and only if xi ≤ yi for all i ∈ {1, . . . ,m}). If {Xi}i=1,...,m is a set

of independent binary random variables with P (Xi = 1) = pi and X = (X1, . . . , Xm), then

r = E(φ(X)) = P (φ(X) = 1) is the reliability of the SBS.

Now, consider a simple graph G = (V,E), a subset K ⊆ V and a positive integer d. A

subgraph Gx = (V,Ex) ⊆ G is d-K-connected if dx(u, v) ≤ d,∀{u, v} ⊆ K, where dx(u, v)

is the distance between nodes u and v in the graph Gx. Let us choose an arbitrary order of

the edge-set E = {e1, . . . , em}, ei ≤ ei+1. For each subgraph Gx = (V,Ex) with Ex ⊆ E,

we identify a binary word x ∈ {0, 1}m, where xi = 1 if and only if ei ∈ Ex; this is clearly

a bijection. Therefore, we define the structure φ : {0, 1}m → {0, 1} such that φ(x) = 1

if Gx is d-K-connected, and φ(x) = 0 otherwise. If we assume nodes are perfect but links

fail stochastically and independently ruled by the vector p = (p1, . . . , pm), the pair (φ, p) is a

coherent SBS. Its reliability, denoted by Rd
K,G(p), is called diameter constrained reliability, or

DCR for short. A particular case is Rn−1
K,G(p), called classical reliability, or CLR for short.

In a coherent SBS, a pathset is a state x such that φ(x) = 1. A minpath is a state x such that

φ(x) = 1 but φ(y) = 0 for all y < x (i.e. a minimal pathset). A cutset is a state x such that

φ(x) = 0, while a mincut is a state x such that φ(x) = 0 but φ(y) = 1 if y > x (i.e. a minimal

cutset). We will denote OK
d (G) to the set of all d-K-connected subgraphs of a ground graph G.

We recall a bit of terminology coming from graph theory, which will be used throughout this

treatment. A graph G = (V,E) is bipartite if there exists a bipartition V = V1 ∪ V2 such that

E ⊆ {{x, y} : x ∈ V1, y ∈ V2}. A vertex cover in a graph G = (V,E) is a subset V ′ ⊆ V such

that V ′ meets all links in E.



Given two graphs G1 and G2 with the same vertex set V , f : V → V is a K-isomorphism

from G1 to G2 if it is an isomorphism that fixes the set K. In that case G1 and G2 are K-

isomorphic. Given a simple graph G = (V,E) and e = {x, y} ∈ E, an elementary division

of e is a couple of edges e1 = {x, z} and e2 = {z, y} that replace e in G, where z /∈ V . Two

graphs G1 and G2 are homeomorphic if there exists a graph G such that G1 and G2 can be

obtained from G by means of a sequence of elementary divisions. If P = {V1, . . . , Vc} is a

partition of V , the quotient graph is G′ = (P,E ′), where {Vi, Vj} ∈ E ′ if and only if i 6= j

and there exists an edge from a vertex of Vi to a vertex of Vj in E. We say vj is reachable

from vi either when vi = vj or there is a path from vi to vj . In a simple graph G, reachability

is an equivalence relation, and c, the number of classes in the quotient graph, is the number of

connected components. Given a simple graph G = (V,E) with n = |V | vertices and m = |E|

edges, its rank is r(G) = n − c, while its co-rank is c(G) = m − n + c. A connected graph

verifies c = 1; then r(G) = n − 1 and c(G) = m − n + 1. In topological graph theory, the

genus of a graph G is the least natural g such that G can be drawn without crossing itself in a

surface with genus g. A planar graph verifies g = 0.

3 Computational Complexity

The class NP is the set of problems polynomially solvable by a non-deterministic Turing

machine (Garey and Johnson, 1979). A problem is NP-Hard if it is at least as hard as ev-

ery problem in the set NP (formally, if every problem in NP has a polynomial reduction

to the former). It is widely believed that NP-Hard problems are intractable (i.e. there is no

polynomial-time algorithm to solve them). An NP-Hard problem is NP-Complete if it is in-

side the classNP . Stephen Cook proved that the joint satisfiability of an input set of clauses in

disjunctive form is an NP-Complete decision problem; in fact, the first known problem of this

class (Cook, 1971). In this way, he provided a systematic procedure to prove that a certain prob-

lem isNP-Complete. Specifically, it suffices to prove that the problem is inside the class NP ,

and that it is at least as hard as anNP-Complete problem. Richard Karp followed this hint, and

presented the first 21 combinatorial problems inside this class (Karp, 1972). Leslie Valiant de-

fines the class #P of counting problems, such that testing whether an element should be counted

or not can be accomplished in polynomial time (Valiant, 1979). A problem is #P-Complete if



it is in the set #P and it is at least as hard as any problem of that class.

Recognition and counting minimum cardinality mincuts/minpaths are at least as hard as com-

puting the reliability of a coherent SBS (Ball, 1986). Arnon Rosenthal proved the CLR isNP-

Hard (Rosenthal, 1977), showing that the minimum cardinality mincut recognition is precisely

Steiner-Tree problem, included in Richard Karp’s list. The CLR for both two-terminal and all-

terminal cases are still NP-Hard, as Michael Ball and J. Scott Provan proved by reduction to

counting minimum cardinality s − t cuts (Provan and Ball, 1983). As a consequence, the gen-

eral DCR is NP-Hard as well. Later effort has been focused to particular cases of the DCR, in

terms of the number of terminals k = |K| and diameter d.

When d = 1 all terminals must have a direct link, R1
K,G =

∏
{u,v}⊆K p(uv), where p(uv)

denotes the probability of operation of link {u, v} ∈ E, and p(uv) = 0 if {u, v} /∈ E. The

problem is still simple when k = d = 2. In fact, R2
{u,v},G = 1 − (1 − p(uv))

∏
w∈V−{u,v}(1 −

p(uw)p(wv)). Héctor Cancela and Louis Petingi rigorously proved that the DCR is NP-Hard

when d ≥ 3 and k ≥ 2 is a fixed input parameter (Cancela and Petingi, 2004), in strong contrast

with the case d = k = 2. Its proof is the main source of inspiration of this paper, and will

be revisited in Section 4. The literature offers two proofs that the DCR has a polynomial-time

algorithm when d = 2 and k is a fixed input parameter (Sartor, 2013; Canale et al., 2013).

Pablo Sartor et. al. present a recursive proof (Sartor, 2013), while Eduardo Canale et. al.

present an explicit expression for R2
K,G that is computed in a polynomial time of elementary

operations (Canale et al., 2014).

Fig. 1 summarizes the known results for the computational complexity of the DCR in terms

of d and k.

4 Main theorem

The DCR is inside the class of NP-Hard problems in the all-terminal case with diameter

d ≥ 2. We first prove the result when d ≥ 3, and separately establish the case d = 2.

The main source of inspiration for the first result is the article authored by Cancela and

Petingi (2004), where they proved that the DCR is NP-Hard when d ≥ 3 and k ≥ 2 is a fixed

input parameter. There, the authors prove first that the result holds for k = 2, and they further

generalize the result for fixed k ≥ 2. For our purpose it will suffice to revisit the first part.



k (fixed)

d

2 3 . . .

2

3

...

n− 2

n− 1

...

O(n) O(n)

NP-Hard

NP-Hard NP-Hard

k = n or free

Unknown

Unknown

Figure 1: DCR Complexity in terms of the diameter d and number of terminals k = |K|

Before, we state a technical result:

Lemma 1. Counting the number of vertex covers of a bipartite graph is #P-Complete (Ball and

Provan, 1983).

Proposition 1. The DCR is NP-Hard when k = 2 and d ≥ 3 (Cancela and Petingi, 2004).

Proof. Let d′ = d − 3 ≥ 0 and P = (V (P ), E(P )) a simple path with node set V (P ) =

{s, s1, . . . , sd′} and edge set E(P ) = {{s, s1}, {s1, s2}, . . . , {sd′−1, sd′}}. For each bipartite

graph G = (V,E) with V = A∪B and E ⊆ A×B we build the following auxiliary network:

G′ = (A ∪B ∪ V (P ) ∪ {t}, E ∪ E(P ) ∪ I}, (1)

where I = {{sd′ , a}, a ∈ A} ∪ {{b, t}, b ∈ B}, and all links of G′ are perfect but links in

I , which fail independently with identical probabilities p = 1/2. Consider the terminal set

K = {s, t}. The auxiliary graph G′ is illustrated in Fig. 2. The reduction from the bipartite

graph to the two-terminal instance is polynomial.

A vertex coverA′∪B′ ⊆ A∪B induces a cutset I ′ = {{sd′ , a}, a ∈ A′}∪{{b, t}, b ∈ B′} (i.e.

if all links in I ′ fail, the nodes {s, t} are not connected). Reciprocally, that cutset determines a

vertex cover. Therefore, the number of cutsets |C| is precisely the number of vertex covers of
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Figure 2: Example of auxiliary graph G′′ with terminal set {s, t} and d = 6, for the bipartite instance C6.

the bipartite graph |B|. When p = 1/2, all cutsets are equally likely, and the source-terminal

reliability evaluation at p = 1/2 is:

Rd
{s,t},G′(1/2) = 1− |C|

2|A|+|B|

Finally, using the fact that |B| = |C| and by substitution:

|B| = 2|A|+|B|(1−Rd
{s,t},G′(1/2)).

Thus, the DCR for the two-terminal case is at least as hard as counting vertex covers of bipartite

graphs.

The result for d ≥ 3 is a corollary of Proposition 1.

Theorem 1. The DCR is NP-Hard when k = n and d ≥ 3.

Proof. Consider the auxiliary graph G′ = (V ′, E ′) from Fig. 2. Extend G′ furthermore, and

consider G′′ = (V ′′, E ′′), where V ′′ = V ′ and E ′′ = E ′ ∪ {{a, a′}, a 6= a′, a, a′ ∈ A} ∪

{{b, b′}, b 6= b′, b, b′ ∈ B}. In words, just add links in order to connect all nodes from A, and

all nodes from B. We keep the same probabilities of operation that in G′, and the new links are

perfect.

Consider now the all-terminal case K = V ′′ for G′′, and given diameter d ≥ 3. The key is to

observe that the cutsets in the all-terminal scenario for G′′ are precisely the s− t cutsets in G′,

and they have the same probability.

Indeed, each pair of terminals from the set A are directly connected by perfect links; the

same holds in B. The distance between s and sd′ is d′ = d − 3 < d, so these nodes (and all

the intermediate ones) respect the diameter constraint. Finally, if there were an s − t path (i.e.



a path from s to t), the diameter of G′′ would be exactly d. Therefore, Rd
{s,t},G′ = Rd

V ′′,G′′ , and

again:

|B| = 2|A|+|B|(1−Rd
{s,t},G′(1/2))

= 2|A|+|B|(1−Rd
V ′′,G′′(1/2)).

Thus, the DCR for the all-terminal case is at least as hard as counting vertex covers of bipartite

graphs.

Theorem 2. The DCR is NP-Hard when k = n and d = 2.

Proof. Given a graph G = (V,E), consider G′ = (V ∪ {a, b}, E ∪ {{x, a}, {x, b}, ∀x ∈ V }).

By its definition,G′ has diameter d = 2. All links are perfect, except the ones incident to a, with

p(ax) = 1/2. Consider the DCR for G′. We will show that the number of minimum cardinality

pathsets in G′ is precisely the number of vertex covers in G′. Since counting minimum cardi-

nality pathsets is at least as hard as computing the reliability of a coherent SBS (Ball, 1986), the

result will follow.

A minimum cardinality pathset in G′ contains all perfect links, and {a, x1}, . . . , {a, xr} for

certain nodes xi ∈ V . Since H is a minimum cardinality pathset, the graph GH = (V,H) has

diameter 2, but the diameter is increased under any link deletion. Let Na = {x : {a, x} ∈ H}

the set of neighbor vertices for the terminal node a. The key is to observe that vertex a reaches

every node in two steps if and only if Na is a vertex cover.

Indeed, suppose a reaches every node in two steps. Then, for any x ∈ V \ Na there exists

a path xya, so y ∈ Na and thus Na is a vertex cover. Conversely, if Na covers V , let x ∈ V .

Then, either x ∈ Na and x is adjacent with a, or x ∈ V \Na and there exists y ∈ Na ∩Nx, so

xya is a path of two hops between x and a.

The minimality of Na as a cover follows from the minimality of H as a pathset.

Theorems 1 and 2 jointly close the complexity analysis for the DCR problem. The whole

picture of DCR complexity is provided in Fig. 3, which closes the complexity analysis for

different independent pairs (k, d).
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Figure 3: DCR Complexity in terms of the diameter d and number of terminals k = |K|

5 Exact DCR Computation

So far, an efficient (polynomial-time) computation of the DCR is available only for special

graphs, to know, paths, cycles, ladders, generalized ladders and spanish fans (Sartor, 2013). The

reader can appreciate from Figure 3 that an efficient computation is also feasible for diameter

d = 2 and a fixed number of input terminals k Canale et al. (2013). An explicit expression for

Rd
K,G(p) is provided by Canale et al. (2014).

We will include now a sketch of the proof. First, observe that RK(G, d) can be computed

adding the probability of all pathsets

Rd
K,G =

∑
G′∈OK

d (G)

p(G′) (2)

=
∑

G′∈OK
d (G)

∏
e∈E(G′)

p(e)
∏

e6∈E(G′)

(1− p(e)). (3)

If a link has non-terminal ends it can be removed without loss of generality when d = 2.

We will follow the terminology from Bollobás (2004), where A(i) represents the set of all

subsets ofAwith exactly i elements. For instance, if {1, 2, 3}(2) = {{1, 2}, {1, 3}, {3, 2}}. Two

pathsets are equivalent if they are K-isomorphic. We will introduce an equivalence relation be-

tween the node set in order to rewrite Expression (2). Two vertices v and w are equivalent, and

we write v ≡ w, if either they are the same or they are twin vertices in KC , i.e., they do not

belong to K and they are adjacent to exactly the same vertices. Now, let us consider the set of



quotient graphs under ≡.

Theorem 3. Given a fixed k, it is possible to compute the diameter-constrained reliability in

linear time on the order of the graph when the diameter is 2.

Proof. We will show that the number of non K-isomorphic quotient of minpaths is a function

of k. Therefore, this number is constant respect to the cardinal of n. Indeed, there are at most

2k(k−1)/2 ways to link vertices in K, and 2k − 1 possible non-twin vertices in KC , thus we

have at most 2
k(k−1)

2 22
k−1 possible non K-isomorphic quotient of minpaths. Notice that the set

OK
d (G)/ ≡ of non K-isomorphic quotient of minpaths can be identified with the set of non

K-isomorphic minpaths without twin vertices in KC .

Therefore, in order to compute R2
K,G it is enough to run over the quotients Q in OK

D (G)/ ≡

and to find the probability that a subgraph G′ has Q as a quotient, i.e.

RK(G, 2) =
∑

Q∈OK
d (G)/≡

p({G′ : Q = (G′/ ≡)})

=
∑

Q∈OK
D (G)/≡

∑
G′:Q=(G′/≡)

p(G′). (4)

Without loss of generality, assume that G is a complete graph (just take p(e) = 0 if e is not

part of the target graph). Let Q be a quotient graph, and Qext := Q \ K. Let us find the last

sum in the last member of (4). For each subgraph G′ such that G′/ ≡= Q, there is a function

fG′ : K
C → Qext ∪ {a} defined by

fG′(x) =


the class of x under ≡ if x ∈ V (G′),

a otherwise.

Conversely, given a function f : KC → Qext ∪ {a} such that every element of Qext has a

preimage, there is a minpath G′ with quotient Q such that f = fG′ .

We can generate all such functions considering the following polynomial form in the vari-



ables Px,v with x ∈ KC and v ∈ Qext:

F =
∏

x∈KC

(1 +
∑

v∈Qext

Px,v) (5)

+

|Qext|∑
i=1

(−1)i
∑

S∈(Qext)(i)

∏
x∈KC

(1 +
∑

v∈Qext\S

Px,v). (6)

Each term of the polynomial F corresponds to a function fG′ , with the following interpretation:

if Px,v is in a term, this means that the corresponding function maps x to v. Indeed, the first sum

takes into account all the functions f : KC → Qext ∪ {a} without the restriction of covering

Qext. The remaining summations apply Inclusion-Exclusion principle to take into account those

functions that do not cover i = 1, 2, . . . , |Qext| vertices of Qext.

Now, we will compute the probability of each graph G′, or equivalently, of the function

fG′ . In order to do it, let us notice that the probability that a vertex x ∈ KC has image vertex

v ∈ Qext is the probability px,v of vertex x to be adjacent to exactly the same vertices than v,

which is

px,v =
∏
y∈Nv

p(xy)
∏
y 6∈Nv

q(xy),

whereNv are the set of vertices adjacent with v. Besides, the probability of those edges between

vertices in K is

pQ =
∏

e∈EQ∩K(2)

p(e)
∏

e∈K(2)\EQ

q(e).

It is clear that pQ depends only on Q, so is common to all graphs G′ with quotient Q. Finally

the probability of G′ is:

p(G′) = pQ
∏

x∈KC

px,fG′ (x).

All the computations can be done linearly on n.

But the last product is exactly the term in (5) corresponding to function fG′ assigning the

probabilities px,v to the variables Px,v. Thus, the second sum in (4) is pQ times F evaluated in

the probabilities px,v. Therefore,

R2
K,G =

∑
Q∈OK

D (G)/≡

pQ
∏

x∈KC

(1 +
∑

v∈Qext

px,v)

+

|Qext|∑
i=1

(−1)i
∑

s∈(Qext)(i)

∏
x∈KC

(1 +
∑

v∈Qext\s

px,v),



This expression can be computed in linear time with respect to n = |G|. In fact, it is linear in

the cardinal of KC which is smaller than n, since the cardinal of Qext depends only on |K|.

We will further extend the previous list of graphs with efficient computation. The key is to

bound the number of minpaths.

Theorem 4. Given a connected graph G = (V,E). If its co-rank c(G) = |E| − |V | + 1 has a

constant bound, the diameter-constrained reliability can be computed in polynomial time.

Proof. Given an arbitrary configuration G′ = (V,H) ⊆ G, it is efficient to decide whether

G′ ∈ OK
D (G) or not. Let us call S(G) to the set of connected configurations of G. Then

Rd
K,G =

∑
G′∈S(G)

1{G′∈OK
D (G)}

∏
e∈E(G′)

p(e)
∏

e6∈E(G′)

(1− p(e)), (7)

where 1{x} = 1 if x is true, and 1{x} = 0 otherwise. The cardinal of a configuration G′ ∈ S(G)

is at least |V | − 1, which corresponds to a spanning tree. Thus, the complement of G′ in G has

at most |E| − |V | + 1 links. The number of ways to choose these links give us the following

bound

|S(G)| ≤
(

|E|
|E| − |V |+ 1

)
. (8)

which is polynomial in |V | if c(G) = |E| − |V | + 1, the co-rank of G, is a constant, since

|E| < |V |2. If the co-rank is bounded by h, then the diameter-constrained reliability can be

found in |E|h|K||E| ≤ |V |2h+3 elementary operations.

Corollary 1. If the number of faces of a connected graph G of genus g has a constant bound,

the diameter-constrained reliability can be computed in polynomial time.

Proof. Follows from the fact that the number of faces f of a graph of genus g is f = m− n+

2− 2g = c(G)− (2g − 1). Then, the co-rank c(G) = f + 2g − 1 has a constant bound.

The relevance of the following corollary comes from the fact that most telecommunication

networks are planar.



Corollary 2. If the number of faces of a planar graph G has a constant bound, the diameter-

constrained reliability can be computed in polynomial time.

Proof. A planar graph has genus 0.

The property is unaffected by elementary subdivisions of a graph:

Corollary 3. If a family of graphs F has all its elements homeomorphic to a fixed graph, its

diameter-constrained reliability can be computed in polynomial time with respect to its order.

Proof. Homeomorphic graphs have the same co-rank.

Now we focus on a distinguished family of graphs coming from robust network design.

Specifically, Clyde Monma et. al. studied the minimum cost two-connected network design

problem, for the metric case spanning all nodes in the set V Monma et al. (1990). There, the

authors prove that there exists a solution G′ = (V,H) ⊆ G such that every vertex in G′ has

degree 2 or 3, and the deletion of one or two links from G′ leaves one bridge in one of the

resultant connected components. Moreover, those graphs are either a Hamiltonian cycle in G

or contain a Monma graph as an induced subgraph. The term Monma graph was introduced in

later works with this family of graphs Canale et al. (2009). Figure 4 sketches a general Monma

graph.

u v

1 2 l1

1 2 l2

1 2 l3

Figure 4: Monma’s graph structure.

The following corollary provides the dimension of reliability in the study of Monma graphs:

Corollary 4. The diameter-constrained reliability of Monma graphs can be computed in poly-

nomial time respect to its order.



Proof. Monma graphs are those homeomorphic to the general graph consisting in two vertices

and three edges joining them.

Finally, we further generalize Theorem 4.

Definition 1. Let G = (V,E) a simple graph, K ⊆ V and d a positive integer. The graph G is

d-K-r weak if G− U is d-K disconnected, for every set U ⊆ E with |U | ≥ r.

In words, “r-weakness” states the network fails (i.e. is not d-K connected) whenever we

remove an arbitrary set of r links (or more).

Theorem 5. Let G = (V,E) a d-K-r weak graph, for some r independent of n. Then, the DCR

can be found in polynomial time with n = |V |.

Proof. Analogous to Theorem 4. Given an arbitrary configuration G′ = (V,H) ⊆ G, we can

decide in polynomial time whether G is d-K-connected or not. Let us denote Or to the set of

all configurations (V,H), with |H| ≥ m − r, where m = |E|. By hypotesis we know that

OK
D (G) ⊆ Or. Then, by Expression (7) we get that:

Rd
K,G =

∑
G′∈Or

1{G′∈OK
D (G)}

∏
e∈E(G′)

p(e)
∏

e6∈E(G′)

(1− p(e)), (9)

It suffices to show that the number of terms in the sum is polynimial with respect to n. In fact,

the cardinality |Or| can be obtained with a sum-rule:

|Or| =
r−1∑
i=0

(
m

m− i

)
∼ mr−1, (10)

where the symbol ∼ means that both sides are equivalent when m tends to infinity. Observe

that m < n2 holds for all connected graphs. Therefore, |Or| ∼ mr−1 ≤ n2r−2, and the number

of terms from Expression (9) is bounded by a polynomial in n, and Rd
K,G can be found in a

polynomial number of elementary operations in n.

Remarks 1.

• Theorem 5 is in fact a generalization of Theorem 4. Consider a simple graphG = (V,E),

with bounded co-rank c(G), a terminal set K ⊆ V and diameter d. If we delete an

arbitrary link set U ⊆ E of cardinality c(G) + 1, the resulting subgraph has less links

than a tree. Then, G− U us disconnected, and G is d-K-(r + 1) weak.



• Let us show that Theorem 5 is a strict generalization. It suffices to find a d-K-r weak

graph for some r independent of n = |V | where its corank c(G) is a function of n.

Consider the complete bipartite graph G = K(n
2
,n
2
) = (V,E) in the all-terminal scenario

K = V with diameter d = 2. Its corank is c(G) =
(
n
2

)2 − n+ 1 is a function of n. Thus,

Theorem 4 cannot be applied. On the other hand, it is 2-V -1 weak. Indeed, consider an

arbitrary link e = {x, y} ∈ E. Now, the shortest path between nodes x and y in G − e

has length three, hence it is not 2-V connected.

• A graph d-K-1 weak is d-K critical, in the sense that all spanning subgraphs are not

d-K connected. The reliability of a d-K-1 weak graph G = (V,E) is just the product of

the reliabilities: Rd
K,G =

∏
e∈E pe.

6 Concluding Remarks

The computational complexity of a particular stochastic binary system has been discussed,

called diameter constrained reliability (DCR). This measure joints quality with reliability, and

it is the probability that all distinguished terminals K ⊆ V in a network G = (V,E) remain

connected by d hops or less, where links e ∈ E may fail with certain probabilities qe = 1− pe.

When the number of terminals k = |K| or diameter d are free, the DCR computation is

NP-Hard, since it subsumes the classical reliability problem. The cases d = 1 or d = 2 and k

fixed belong to the set P of polynomially solvable problems; moreover, the DCR is found in a

linear number of elementary operations in n for both cases.

In this paper we proved that the DCR isNP-Hard for the remaining cases (i.e. where k = n

and d ≥ 3). As a corollary, the result holds when d ≥ 2 and k is a free parameter as well.

The family of graphs that accept a polynomial algorithm to find the DCR has been enriched

in this work. To summarize, weak graphs, families with bounded co-rank and graphs with

bounded number of faces are included in this family. In particular, we add trees, some critical

bipartite graphs and Monma graphs as a corollary. In this way, this work connects reliability

aspects of network design in a probabilistic context with robust network design. Indeed, the

minimum-cost two-node connected subgraph of a metric graph G is either hamiltoninan or it

presents a Monma graph as an induced subgraph.



As a future work, we would like to extend this family using other graph invariants, and apply

these techniques to real-life scenarios, inspired in telecommunications. A challenging task is

to extend the family of polynomial computations to special families of planar graphs (where

the number of faces is a function of n = |V |), two and three-node connected networks, which

are useful in robust network design. In particular, we are addressing the complexity of DCR

computation in Halin graphs, where Theorems 4 and 5 cannot be applied.
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