Criptografía: Aspectos Teóricos y Prácticos — Práctico 4

- 1. Sean N=143041, k=247. Escribir una rutina en SAGE que, partiendo de b=1 y luego poniendo $b\leftarrow b+1$, halle un valor de $b\in\mathbb{Z}$ tal que $k\cdot N+b^2$ sea un cuadrado perfecto en \mathbb{Z} . A partir del valor de b hallado, hallar un factor no trivial de N.
- 2. Sea N=52907. Utilizando los datos provistos abajo, hallar a y b tales que $a^2\equiv b^2\mod N$, y luego calcular $\gcd(N,a-b)$ para hallar un factor no trivial de N.

```
■ 399^2 \equiv 480 \mod N, 480 = 2^5 \cdot 3 \cdot 5.
```

- $763^2 \equiv 192 \mod N$, $192 = 2^6 \cdot 3$.
- $773^2 \equiv 15552 \mod N, \quad 15552 = 2^6 \cdot 3^5.$
- $976^2 \equiv 250 \mod N, \qquad 250 = 2 \cdot 5^3.$
- 3. Escribir un algoritmo en SAGE que, dados un número B>0 y un número $n\in\mathbb{N}$, utilizando la criba de Eratóstenes, decida si n es B-liso, y que en caso afirmativo devuelva la factorización de n; por ejemplo, en formato de una lista L cuyos componentes sean los pares (p,e_p) con p primo y $e_p\in\mathbb{Z}_{\geq 0}$ tales que $n=\prod_p p^{e_p}$.
- 4. Sean p = 19079 y g = 17.
 - *a*) Hallar tres valores de $k \in \mathbb{N}$ tales que $g^k \mod p$ sea 5-liso.
 - b) Utilizando los cálculos del ítem anterior (o más, si hiciera falta), álgebra lineal sobre cuerpos finitos y el Teorema Chino del Resto, calcular los logaritmos discretos $\log_q(2), \log_q(3)$ y $\log_q(5)$. Notar que $p-1=2\cdot 9539$, y 9539 es primo.
 - c) Hallar $m \in \mathbb{N}$ tal que $19 \cdot g^m \mod p$ sea 5-liso.
 - *d*) Utilizando los logaritmos discretos obtenidos en *b*) y el *m* hallado en *c*), calcule el logaritmo discreto $\log_a(19)$. Verfique que el valor hallado es correcto.

Nota: En los ítems a) y c) se puede utilizar el algoritmo desarrollado en el ejercicio anterior.

- 5. Utilizando el critopsistema de clave pública Goldwasser-Micali, (des)encriptar los siguientes mensajes.
 - a) La clave pública de Beto está dada por N=1842338473 y a=1532411781. Alicia encripta tres bits y le envía a Beto los mensajes cifrados

```
1794677960, 525734818, y 420526487.
```

Desencriptar los mensajes de Alicia utilizando la factorización $N=32411\cdot 56843$.

b) La clave pública de Beto está dada por N=781044643 y a=568980706. Encriptar los bits, 1,1 y 0 usando, respectivamente, los valores aleatorios

$$r = 705130839, \quad r = 631364468, \quad y \quad r = 67651321.$$