Universidad de la República Facultad de Ingeniería - IMERL

Geometría y Álgebra Lineal 1 Curso Anual 2013

Examen Diciembre de 2013

Cédula	Apellido y Nombre

Ejercicio 1 (30 puntos)

- 1. Se consideran los puntos $P, Q, R \in \mathbb{R}^3$ tales que P = (1, 2, 1), Q = (0, 1, 0) y R = (-1, 1, -1).
 - a) Hallar las ecuaciones paramétricas y reducida del plano π_1 determinado por P, Q y R.
 - b) Hallar un plano paralelo a π_1 que pase por el punto (1,1,0).
- 2. Se considera el plano π_2 de ecuación reducida 2x+y-z=0.
 - a) Hallar $S = \pi_1 \cap \pi_2$ la intersección de los planos π_1 y π_2 . Interpretar geométricamente.
 - b) Probar que S es un subespacio vectorial de \mathbb{R}^3 . Hallar una base de S e indicar su dimensión.
- 3. a) Sea un plano π de ecuación ax + by + cz + d = 0 y el punto $A = (x_0, y_0, z_0)$. Probar que la distancia del punto A al plano π está dada por:

$$d(A,\pi) = \left| \frac{ax_0 + by_0 + cz_0 + d}{\sqrt{a^2 + b^2 + c^2}} \right|$$

b) Hallar $d(P, \pi_2)$ distancia del punto P = (1, 2, 1) al plano π_2 definido en la parte 2.

Ejercicio 2 (35 puntos)

- 1. Sea V un espacio vectorial sobre un cuerpo \mathbb{K} y S un subconjunto de V:
 - a) Definir S subespacio vectorial de V.
 - b) Probar que si S es un subespacio de V entonces $0 \in S$ (todo subespacio contiene al vector nulo).
 - c) Sean S_1 y S_2 dos subespacios de V:
 - 1) Probar que $S_1 \cap S_2$ es subespacio vectorial de V.
 - 2) $iS_1 \cup S_2$ es necesariamente un subespacio vectorial de V? Probar o dar un contraejemplo.

- 2. Sea $V = \mathcal{P}_5(\mathbb{R})$ el espacio vectorial de los polinomios de grado menor o igual a 5 con cuerpo en los reales. Se consideran en él los siguientes subconjuntos:
 - $S_1 = \{ p \in V : p(-x) = p(x) \, \forall \, x \in \mathbb{R} \},$
 - $S_2 = \{ p \in V : p(-x) = -p(x) \, \forall \, x \in \mathbb{R} \},$
 - $S_3 = \{ p \in V : p(0) = p'(1) = 0 \},$
 - $\bullet S_4 = \{ p \in V : \lim_{x \to \infty} p(x) = \infty \}.$
 - a) Indicar cuál de ellos es un subespacio y cuál no.
 - b) Cuando corresponda, hallar una base y la correspondiente dimensión de cada subespacio.
 - c) Hallar $S_1 + S_2$ e indicar si la suma es directa. Hallar $S_1 \cap S_3$ y dim $(S_1 + S_3)$.
 - d) Encontrar un subespacio W de V tal que $V = S_3 \oplus W$.

Ejercicio 3 (35 puntos)

1. Sea V un espacio vectorial sobre un cuerpo \mathbb{K} tal que $\mathcal{B} = \{v_1, v_2, v_3, v_4\}$ es una base de V. Sea $T: V \to V$ una transformación lineal tal que su matriz asociada en la base \mathcal{B} es:

$$\mathcal{B}((T))_{\mathcal{B}} = \begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & 1 \\ -1 & 1 & -1 & -1 \\ 0 & 0 & 1 & 1 \end{pmatrix}$$

- a) Para i = 1, 2, 3, 4, hallar $T(v_i)$ en función de v_1, v_2, v_3 y v_4 .
- b) Sin hallar los subespacios indicar las dimensiones de $\mathcal{N}(T)$ e $\mathrm{Im}(T)$ (núcleo e imagen de T). Justificar.
- c) Es T invertible? Justificar.
- d) Probar que $N(T) = [v_1 + v_2 + v_3 v_4]$ e $Im(T) = [v_1 v_3, v_2 + v_3, -2v_3 + v_4]$.
- 2. Sea $\mathcal{P}_2(\mathbb{R})$ el espacio vectorial de los polinomios reales de grado menor o igual que dos. Se consideran las transformaciones lineales $T: \mathbb{R}^4 \to \mathcal{P}_2(\mathbb{R})$ y $S: \mathcal{P}_2(\mathbb{R}) \to \mathcal{P}_2(\mathbb{R})$ tal que:

$$T(a, b, c, d) = ax^{2} + (b+c)x + d \quad y$$

$$\mathcal{B}((S))_{\mathcal{B}} = \begin{pmatrix} 0 & 1 & -1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \quad \text{donde} \quad \mathcal{B} = \{1, 1+x, 1+x+x^{2}\}$$

- a) Hallar una matriz asociada a la composición $S \circ T$ en bases a elección y hallar $(S \circ T)(X)$ $\forall X \in \mathbb{R}^4$.
- b) Hallar N(T) y N(S \circ T). Verificar que N(T) \subset N(S \circ T) y encontrar $v \in$ N(S \circ T) tal que $v \notin$ N(T).
- c) Probar que $\operatorname{Im}(S) = \operatorname{Im}(S \circ T)$.