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Product codes

Given C1 : [n1, k1] and C2 : [n2, k2], a codeword in the product code
C1 × C2 is shown in the figure (with r1 = n1 − k1, r2 = n2 − k2).
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Checks on checks

columns

��	
• Assume product code matrix is

C ≜ {cst}n2−1,n1−1
s=0, t=0 = [c0, c1, . . . , cn1−1].

• Assume we encode columns first, and
let the (systematic) generator matrix of C1
be [ Ik1×k1 |Ak1×(n1−k1) ]. When encoding rows,
a typical element in the redundancy columns is

cs,t =

k1−1∑
h=0

cs,hAh,t−k1 , 0 ≤ s < n2, k1 ≤ t < n1 ,

Therefore,

ct =

k1−1∑
h=0

Ah,t−k1ch .

• Redundancy columns are linear combinations of codewords in C2 ⇒ they
too are codewords in C2.

• “Checks on checks” satisfy both the C1 and C2 constraints.

• They are uniquely determined by the “checks on columns” region
and also by the “checks on rows” region =⇒ they are the same
regardless of whether columns or rows are encoded first.
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Code interleaving

• Special case of a product code with k1 = n1 (no redundancy on
rows).

• Useful for correcting burst errors (bursts run in the row direction).

• Can correct any burst of length ≤ n1τ = n1⌊(d2 − 1)/2⌋ using
straightforward error correction of columns with C2
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Burst correction with product codes

• Ch: [nh, kh = nh − rh], Cv: [nv, kv = nv − rv]

• Product code Ch × Cv:

• Overall redundancy R = rhnv + rvnh − rhrv.

• Ch and Cv assumed to be MDS codes (e.g. GRS).

• Data sent through a bursty channel row by row.
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A decoding strategy for bursts

• Use Ch to detect corrupted rows, mark as erased.

• Use Cv to correct errors and erasures, using the location information
provided by Ch.

• Choose
• rh so that Prob(Ch misses a corrupted row) (∝ q−rh) is “small

enough.”
• rv so that Prob(more than rv corrupted rows) is “small enough.”
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How about random errors?

• Use part of the redundancy of Ch to attempt correction. In the
figure, the marked column may be uncorrectble by Cv alone.

• Residual redundancy in Ch should be sufficient to correct bursts.

• An iterative, GMD-like procedure can be used.

• Can be useful in distributed storage where rows are local and
columns are global (distributed). Random errors are handled locally.

• We will focus on burst-only correction for now, will get back to
random errors at the end.
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Probabilistic decoding

• Assumption: Received data in burst region is uniformly distributed
over GF (q).

• Decoding does not guarantee correction of all error patterns affecting
rv rows or less. For that, redundancy ≥ 2nhrv would be required.

• Instead, we allow a small probability (∝ q−rh) of missing a pattern
of ≤ rv rows.
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Why is this scheme inefficient?

• Ch uses rh check symbols for each row to determine whether the
row is corrupted.

• That way, Ch can inform Cv about any combination of up to nv

corrupted rows.

• But Cv can correct only up to rv erasures =⇒ it can only handle up
to rv corrupted rows!

• Information about combinations of rv + 1 or more corrupted rows is
useless for Cv.

• But we are paying for that information ...
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Reference
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A coding scheme that eliminates “redundant” redundancy

• Forget (for the time being) the check symbols of Ch.
• For each row, compute a syndrome with respect to Ch (as if the row
was a “received word”), forming a syndrome array.

• Comparing the syndromes before and after the channel, each
syndrome changed corresponds to a corrupted row.

• In each column of the syndrome array, the number of “errors” is at
most the number of corrupted rows in the main array.
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Using the syndrome array to locate error patterns

• Suppose every column in the syndrome array
is a code block in an ECC (C0) capable of
correcting rv errors.

• Then, we can locate up to rv corrupted rows.

• As before, rh is chosen so that the
misdetection probability of a row (∝ q−rh) is
small enough.

• How do we make the columns of the syndrome array codewords in
the required ECC?
• We need a redundancy of 2rv to correct rv errors in each column

=⇒ we need a total of 2rhrv check symbols in the syndrome array.
• But, with our current assumptions, we have no freedom: the

syndrome array is completely determined by the main array ...
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How to get the needed redundancy in the syndrome array

• The columns of the syndrome array are linear combinations of
codewords in Cv ⇒ they are codewords of Cv ⇒ each contains
redundancy rv, for a total of rhrv in the array.

• We need rhrv more.
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Review: Useful properties of GRS codes

H =



1 1 . . . 1
α1 α2 . . . αn

α2
1 α2

2 . . . α2
n

...
...

...
...

αr′−1
1 αr′−1

2 . . . αr′−1
n

...
...

...
...

αr−1
1 αr−1

2 . . . αr−1
n


• GRS codes are nested. The code with redundancy r′ contains the
code with redundancy r > r′.

• C0 will be a subcode of Cv, obtained by adding rv parity checks to
the rv already in Cv.

• Systematic parity-check matrix: Hsys = [A | Ir×r ]. Here, the last r
coordinates of the code are parity checks. However, any subset of
r = n− k coordinates can be taken as parity check symbols.

• If i is chosen as a parity check location then we can write
ci +

∑
j ̸=i hj,icj = 0.
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Imposing a redundancy check on the syndrome array

• For the marked symbol in the syndrome array, from Ch:

s0,rh−1 = c0,nh−1 +

nh−2∑
j=0

h
(h)
rh−1,jc0,j . (∗)

1
=

rh−1
h
(h)
i,j

c0,∗ s0,∗

• Say we want to impose an additional parity check on the syndrome array

s0,rh−1 +

nv−1∑
j=1

h
(0)
0,jsj,rh−1 = 0 . (∗∗)

• Plugging s0,rh−1 from (∗) in (∗∗)

c0,nh−1 +

nh−2∑
j=0

h
(h)
rh−1,jc0,j +

nv−1∑
j=1

h
(0)
0,jsj,rh−1 = 0 .

���)

linear function of
ci,j , i > 0

Equivalent to imposing a parity check on c0,nh−1.
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Imposing redundancy checks on the syndrome array

c0,nh−1 +

nh−2∑
j=0

h
(h)
rh−1,jc0,j +

nv−1∑
j=1

h
(0)
0,jsj,rh−1 = 0 .

• Extends similarly to a full row of the syndrome array (imposing the same
parity check constraint).

Equivalent to imposing parity checks on c0,nh−rh . . . c0,nh−1.

• Extends to several rows of the syndrome array (imposing a different parity
check constraint for each row). The row locations are arbitrary, except for
the last rv rows, which are already taken.
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Imposing redundancy checks on the syndrome array
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How to get the needed redundancy in the syndrome array

• The additional required redundancy rhrv can be placed in the rhrv
shaded entries.

• Total redundancy R′ = rvnh + rhrv (≈ rn), compared with
R = rhnv + rvnh − rhrv (≈ 2rn) in conventional product codes
(r ≪ n).
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Decoding

• Upon receipt of a possibly corrupted nh × nv array.
• Use Ch on the rows of the main array to compute the syndrome array.
• Use C0 to locate up to rv errors in each column of the syndrome

array. This gives the locations of the corrupted rows of the main
array. Declare those rows erased.

• Use Cv to correct up to rv erasures in the columns of the main array.
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Encoding

• Stage 1:
• Compute Cv checks for the first nh − rh columns.
• Accumulate partial Ch syndromes for the corresponding partial rows.
• Save the last 2rv rows of partial Ch syndromes.
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Encoding

• Stage 2:
• Complete Ch syndromes for the first nv − 2rv rows.
• Compute C0 checks for the above Ch syndromes.
• Add the computed C0 checks to the saved partial syndromes from

Stage 1, and store in coded array.
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Progressive redundancy

Additional redundancy reduction:

• Decode the columns of the syndrome array one by
one.

• Errors located in the first column can be marked
as erasures in the second column ⇒ second
column needs less redundancy.

• Similarly for the rest of the columns.

Redundancy
in syndrome
array
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Progressive redundancy

Components:

• Ch satisfying the MDS supercode property:

6
?
j rows

MDS for all
1 ≤ j ≤ rh

Parity check
matrix of Ch

• A nested family of rh + 1
“vertical” codes

C0 ⊂ C1 ⊂ · · · ⊂ Cj ⊂ · · · ⊂ Crh = Cv .

• Redundancies of the Cj :
• rj = rv + ⌈rh/j⌉ − 1 but

not greater than 2rv.
• designed to minimize

redundancy for a given
miscorrection probability.

Total redundancy:
R′′ ≤ rvnh+rh(ln rv+O(1))+rv .
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Redundancy summary

Scheme Redundancy
Conventional rvnh + rhnv − rhrv
Constant redundancy rvnh + rhrv
Progressive redundancy rvnh + rh(ln rv +O(1)) + rv

• Example: for a so-called “cut-off row-error channel,” with
Prob(10− row burst) = 10−3, targeting Prob(array error) = 10−17.
Parameters: nh = 96, nv = 128, rv = 10.

Scheme Redundancy
Conventional 1786 (rh = 7)
Constant redundancy 1030 (rh = 7)
Progressive redundancy 986 (rh = 8)
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Handling random errors

• Add explicit redundancy for Ch
• handles combined burst and random errors.
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Handling random errors

• Assumption: In addition to burst errors, we handle at most s
random errors in an array, with at most t in each row.

• Strategy:
• Increase the redundancy of Ch by 2t.
• Increase the redundancy of C0 by 2s.
• Correct rv + s errors with C0, and t errors per corrupted row with Ch.

• The increased redundancy of C0 may result in increased decoder
hardware complexity. Possible trade-offs of complexity vs.
redundancy are:
• Reduce the parameters nh and nv, to decrease the values of s, t,

and rv.
• Handle random errors with “explicit” redundancy in Ch, as in

conventional product codes.
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