[1.](#page-0-0) Concatentated Codes

Gadiel Seroussi

October 17, 2022

1 [Concatentated Codes](#page-0-1)

- [Concatenated codes: review](#page-3-0)
- **[Properties and variants](#page-6-0)**
- [Review: Some notation and properties](#page-10-0)
- **[Asymptotically good codes \(in the min. distance sense\)](#page-11-0)**
- [Construction of good concatenated codes \(i\)](#page-13-0)
- **[The Wozencraft code ensemble](#page-14-0)**
- **[Properties of Wozencraft codes \(i\)](#page-16-0)**
- **[Justesen codes](#page-18-0)**
- **[The minimum distance of the Justesen code](#page-20-0)**
- **[Justesen code: general case asymptotics](#page-23-0)**
- **[Rate-minimum distance trade-off for the Justesen code](#page-26-0)**
- [Justesen codes—Asymptotics](#page-28-0)
- [Gilbert-Varshamov revisited](#page-30-0)
- [Construction of good concatenated codes \(ii\)](#page-32-0)
- **[The Zyablov bound](#page-34-0)**
- [Decoding of concatenated codes](#page-36-0)
- **[Forney's Generalized Minimum Distance Decoder \(GMD\)](#page-46-0)**
- [GMD complexity](#page-47-0)
- [Concatenated codes that attain channel capacity](#page-49-0)
- [Channel capacity—a \(very brief\) review: Converse theorem](#page-52-0)
- [Channel capacity—a \(very brief\) review: Coding theorem](#page-53-0)
- \blacksquare [The construction](#page-54-0)
- **[Bounding error probability and rate](#page-59-0)**
- [Summary](#page-64-0)

Concatenated codes: review

- \blacktriangleright Let \mathcal{C}_{in} be an $[n, k, d]$ code over $F = \mathbb{F}_q$ (the *inner code*), and let \mathcal{C}_{out} be an $[N,K,D]$ code over $\Phi = \mathbb{F}_{q^k}$ (the *outer code*).
	- We focus only on *linear* codes.
- ▶ Represent Φ as vectors in F^k using a fixed basis of Φ over F

Concatenated codes: review

- \blacktriangleright Let \mathcal{C}_{in} be an $[n, k, d]$ code over $F = \mathbb{F}_q$ (the *inner code*), and let \mathcal{C}_{out} be an $[N,K,D]$ code over $\Phi = \mathbb{F}_{q^k}$ (the *outer code*).
	- We focus only on *linear* codes.
- ▶ Represent Φ as vectors in F^k using a fixed basis of Φ over F

Concatenated codes: review

- \blacktriangleright Let \mathcal{C}_{in} be an $[n, k, d]$ code over $F = \mathbb{F}_q$ (the *inner code*), and let \mathcal{C}_{out} be an $[N,K,D]$ code over $\Phi = \mathbb{F}_{q^k}$ (the *outer code*).
	- We focus only on *linear* codes.
- ▶ Represent Φ as vectors in F^k using a fixed basis of Φ over F

A concatenated code \mathcal{C}_{cct} is constructed by replacing each \mathbb{F}^k -symbol in \mathcal{C}_{out} by its mapping to \mathbb{F}^n according to \mathcal{C}_{in} .

- ▶ \mathcal{C}_{cct} has parameters $[nN, kK, \geq dD]$ over F
- \triangleright \mathcal{C}_{out} is typically taken to be a GRS code.
- ▶ Variants:
	- Use a different inner code $\mathcal{C}_{\text{in}}^{(j)},\ j=1,2,\ldots,N$ for each coordinate of C_{out} .

- ▶ \mathcal{C}_{cct} has parameters $[nN, kK, \geq dD]$ over F
- \triangleright \mathcal{C}_{out} is typically taken to be a GRS code.
- ▶ Variants:
	- Use a different inner code $\mathcal{C}_\textrm{in}^{(j)},\ j=1,2,\ldots,N$ for each coordinate of C_{out} .
	- Product code: given C_1 : $[n_1, k_1]$ and C_2 : $[n_2, k_2]$, a codeword in the product code $C_1 \times C_2$ is shown in the figure.

- ▶ \mathcal{C}_{cct} has parameters $[nN, kK, \geq dD]$ over F
- \triangleright \mathcal{C}_{out} is typically taken to be a GRS code.
- ▶ Variants:
	- Use a different inner code $\mathcal{C}_\textrm{in}^{(j)},\ j=1,2,\ldots,N$ for each coordinate of C_{out} .
	- Product code: given C_1 : $[n_1, k_1]$ and C_2 : $[n_2, k_2]$, a codeword in the product code $C_1 \times C_2$ is shown in the figure.

- ▶ \mathcal{C}_{cct} has parameters $[nN, kK, \geq dD]$ over F
- \triangleright \mathcal{C}_{out} is typically taken to be a GRS code.
- ▶ Variants:
	- Use a different inner code $\mathcal{C}_\textrm{in}^{(j)},\ j=1,2,\ldots,N$ for each coordinate of C_{out} .
	- Product code: given C_1 : $[n_1, k_1]$ and C_2 : $[n_2, k_2]$, a codeword in the product code $C_1 \times C_2$ is shown in the figure.

More on this later.

Review: Some notation and properties

• Volume of Hamming sphere of radius t in F^n , $F = GF(q)$.

$$
V_q(n,t) = \sum_{i=0}^{t} {n \choose i} (q-1)^i.
$$

\n- Symmetric
$$
q
$$
-ary entropy function
\n- $H_q : [0,1] \rightarrow [0,1]$
\n- $H_q(x) = -x \log_q x - (1-x) \log_q(1-x) + x \log_q(q-1)$
\n

• Bounds on $V_q(n,t)$

$$
\frac{1}{\sqrt{8t(1-(t/n))}} \cdot q^{n\mathsf{H}_q(t/n)} \le V_q(n,t) \le q^{n\mathsf{H}_q(t/n)}.
$$

 $H_q(x), q = 5$

Asymptotically good codes (in the min. distance sense)

We seek a sequence of linear codes $\{\mathcal{C}_i:[n_i,k_i,d_i]\}_{i=1}^\infty$, with $n_i \xrightarrow{i \to \infty} \infty$, such that

- with $R_i = k_i/n_i$, $\liminf_{i \to \infty} R_i > 0$ rate bounded away from zero,
- with $\delta_i = d_i/n_i$, $\lim\inf\limits_{i\to\infty} \delta_i > 0$ relative distance bounded away from zero,
- \mathcal{C}_i can be *constructed* in time polynomial in n_i ,
- \mathcal{C}_i can be encoded and decoded in time polynomial in n_i .

Asymptotically good codes (in the min. distance sense)

We seek a sequence of linear codes $\{\mathcal{C}_i:[n_i,k_i,d_i]\}_{i=1}^\infty$, with $n_i \xrightarrow{i \to \infty} \infty$, such that

- with $R_i = k_i/n_i$, $\liminf_{i \to \infty} R_i > 0$ rate bounded away from zero,
- with $\delta_i = d_i/n_i$, $\lim\inf\limits_{i\to\infty} \delta_i > 0$ relative distance bounded away from zero,
- \mathcal{C}_i can be *constructed* in time polynomial in n_i ,
- \mathcal{C}_i can be encoded and decoded in time polynomial in n_i .

Construction of good concatenated codes (i)

▶ Consider a finite field $F=GF(q)$, its extension $\Phi=GF(q^k)$, and an element $\beta \in \Phi$. The map

$$
x\mapsto \beta\cdot x\,,
$$

acting on elements of Φ , is a linear transformation over F.

► Given a basis $\Omega = (\omega_1 \omega_2 \dots \omega_k)$ of Φ over F, this map is represented by a $k \times k$ matrix $M(\beta)$, such that if $y = \beta x$, $x \in \Phi$, then $\mathbf{v} = M(\beta) \cdot \mathbf{x}$.

where x and y are (column) vector representations of x and y, respectively, with respect to the basis Ω , i.e., $x = \Omega \cdot x$ and $y = \Omega \cdot y$.

▶ Consider the code $C(\beta)$ generated by

 $G_{\beta} = [I_{k \times k} \mid M(\beta)^{T}]$.

 $\mathcal{C}(\beta)$ is an $[n = 2k, k, d]$ code over F.

The Wozencraft code ensemble

Definition

The *Wozencraft* $[2k, k]$ code ensemble over F is the set

$$
\mathcal{W}_F(2k,k) = \{ \mathcal{C}(\beta) \, : \, \beta \in \Phi \}
$$

All nonzero codewords in $\mathcal{C}(\beta)$ are of the form $[\mathbf{a} \mid \mathbf{b}]$ with $b/a = \beta$ $(a \neq 0)$.

The Wozencraft code ensemble

Definition

The *Wozencraft* $[2k, k]$ code ensemble over F is the set

$$
\mathcal{W}_F(2k,k) = \{ \mathcal{C}(\beta) \, : \, \beta \in \Phi \}
$$

All nonzero codewords in $\mathcal{C}(\beta)$ are of the form [a | b] with $b/a = \beta$ ($a \neq 0$).

The definition of Wozencraft codes is extended to cover lengths n , $k < n \leq 2k$ by defining the $[n, k]$ code $\mathcal{C}_{\beta,n}$ as

 $\mathcal{C}_{\beta,n} = \{ (c_1 c_2 \ldots c_n) : (c_1 c_2 \ldots, c_n, \ldots c_{2k}) \in \mathcal{C}(\beta) \}, k < n \leq 2k.$

Definition

The *Wozencraft* $[n, k]$ code ensemble over F is the set

 $\mathcal{W}_F(n,k) = \{ \mathcal{C}_{\beta,n} : \beta \in \Phi \}.$

Lemma

Every nonzero word $\mathbf{c} \in F^n$ belongs to at most q^{2k-n} codes in $\mathcal{W}_F(n,k).$

Proof.

For $n = 2k$, a nonzero word $\mathbf{c} = [\mathbf{a} | \mathbf{b}]$ can belong only to $\mathcal{C}(\beta)$ for $\beta = b/a$ ($a \neq 0$), or none if $a = 0$. When $2k > n$, c can be completed in q^{2k-n} ways into a word of length $2k.$ Each such completion belongs to at most one code $\mathcal{C}(\beta).$ Hence, there are at most q^{2k-n} values β such that $\mathbf{c} \in \mathcal{C}_{\beta,n}$.

Properties of Wozencraft codes (ii)

▶ What can we say about minimum distance of Wozencraft codes? For example, $C(0)$ contains the word $(10 \dots 000 \dots 0)$ (bad). However,

Proposition

The number of codes in $W_F(n, k)$ with minimum distance less than a given integer d is at most $q^{2k-n}(V_q(n,d-1)-1).$

Proof.

There are $V_q(n,d-1)-1$ nonzero words of weight less than d in $F^n.$ By the Lemma, each such word belongs to at most q^{2k-n} codes in $\mathcal{W}_F(n,k).$

Justesen codes

- ► Let k and n be positive integers such that $k < n \leq 2k$, and write, for convenience, $\Phi = {\beta_1, \beta_2, \ldots, \beta_{q^k}}.$
- \blacktriangleright Let \mathcal{E}_i denote an encoder for $\mathcal{C}_{\beta_i,n}$, and d_j its minimum distance.
- \blacktriangleright Let \mathcal{C}_{out} be a $[N,K,D]$ extended GRS code with $N=q^k,~K=\lceil RN\rceil$ for some given $R \in (0, 1]$, and $D = N - K + 1 > (1 - R)N$.

Justesen codes

- ► Let k and n be positive integers such that $k < n \leq 2k$, and write, for convenience, $\Phi = {\beta_1, \beta_2, \ldots, \beta_{q^k}}.$
- **►** Let \mathcal{E}_i denote an encoder for $\mathcal{C}_{\beta_i,n_i}$, and d_i its minimum distance.
- \blacktriangleright Let \mathcal{C}_{out} be a $[N,K,D]$ extended GRS code with $N=q^k,~K=\lceil RN\rceil$ for some given $R \in (0, 1]$, and $D = N - K + 1 > (1 - R)N$.

Definition

The *Justesen code* C_J is defined as follows

 $\mathcal{C}_\mathrm{J} = \left\{\,\left(\,\mathcal{E}_1(\mathbf{z}_1)\,|\,\mathcal{E}_2(\mathbf{z}_2)\,|\,\ldots\,|\,\mathcal{E}_N(\mathbf{z}_N)\,\right) \;:\; (\mathbf{z}_1\,\mathbf{z}_2\,\ldots\,\mathbf{z}_N) \in \mathcal{C}_{\text{out}} \,\right\}.$

- \blacktriangleright Like a concatenated code, but with a different inner code in each coordinate.
- \blacktriangleright As with concatenated codes, the parameters are $[nN, kK]$. How about the minimum distance D_1 ? It will not be of the form dD , because there is no fixed d for the inner codes.

The minimum distance of the Justesen code

- ▶ A codeword $\mathbf{c}_{\min} \in \mathcal{C}_J$ of minimum weight has at least D nonzero sub-blocks $\mathcal{E}_i(\mathbf{z}_i)$.
- \triangleright By the previous [proposition,](#page--1-0) for every positive integer d, we have

$$
D_J = \mathsf{wt}(\mathbf{c}_{\min}) > d \cdot \left(D - q^{2k-n} V_q(n, d-1)\right). \qquad (\blacklozenge)
$$

The minimum distance of the Justesen code

▶ A codeword $\mathbf{c}_{\min} \in \mathcal{C}_{\text{J}}$ of minimum weight has at least D nonzero sub-blocks $\mathcal{E}_i(\mathbf{z}_i)$.

 \triangleright By the previous [proposition,](#page--1-0) for every positive integer d, we have

$$
D_J = \mathsf{wt}(\mathbf{c}_{\min}) > d \cdot \left(D - q^{2k-n} V_q(n, d-1) \right) . \tag{\blacklozenge}
$$

► Example: $q = 2$, $n = 2k$. Let $\theta \in (0, 1)$ be such that $n\theta$ is an integer and $H_2(\theta) = \frac{1}{2} - \epsilon$, with $\epsilon \in (0, \frac{1}{2})$. Choose $d = n\theta + 1$. Then, we have

$$
D_J > d(D - V_q(n, d - 1)) > n\theta \left(N(1 - R) - 2^{nH(\theta)} \right)
$$

= $n\theta \left(N(1 - R) - 2^{2k(\frac{1}{2} - \epsilon)} \right) = n\theta \left(N(1 - R) - 2^{k - n\epsilon} \right)$
= $nN\theta \left(1 - R - o(1) \right)$. (recall $N = 2^k$)

Therefore, \mathcal{C}_{J} has rate $R_{\mathrm{J}}=\frac{1}{2}R>0$ and relative distance $\delta_{\rm J} = \frac{{\rm D}_{\rm J}}{nN} = \theta(1-R) - o(1) > 0.$

The minimum distance of the Justesen code

▶ A codeword $\mathbf{c}_{\min} \in \mathcal{C}_{\text{J}}$ of minimum weight has at least D nonzero sub-blocks $\mathcal{E}_i(\mathbf{z}_i)$.

 \triangleright By the previous [proposition,](#page--1-0) for every positive integer d, we have

$$
D_J = \mathsf{wt}(\mathbf{c}_{\min}) > d \cdot \left(D - q^{2k - n} V_q(n, d - 1) \right) . \tag{\blacklozenge}
$$

► Example: $q = 2$, $n = 2k$. Let $\theta \in (0, 1)$ be such that $n\theta$ is an integer and $H_2(\theta) = \frac{1}{2} - \epsilon$, with $\epsilon \in (0, \frac{1}{2})$. Choose $d = n\theta + 1$. Then, we have

$$
D_J > d(D - V_q(n, d - 1)) > n\theta \left(N(1 - R) - 2^{nH(\theta)} \right)
$$
\n
$$
= n\theta \left(N(1 - R) - 2^{2k(\frac{1}{2} - \epsilon)} \right) = n\theta \left(N(1 - R) - 2^{k - n\epsilon} \right)
$$
\n
$$
= nN\theta \left(1 - R - o(1) \right). \quad \text{(recall } N = 2^k \right)
$$
\n
$$
\text{Therefore, } C_J \text{ has rate } R_J = \frac{1}{2}R > 0 \text{ and relative distance } \delta_J = \frac{D_J}{nN} = \theta(1 - R) - o(1) > 0.
$$
\n
$$
\text{We've got constructive, asymptotically good codes!}
$$
\n
$$
\delta_{\text{lower bound}} = \frac{1}{2}n^2 \left(\frac{1}{2} + \frac{1}{2} \right)
$$
\n
$$
\text{We've got constructive,}
$$
\n
$$
\delta_{\text{lower bound}} = \frac{1}{2}n^2 \left(\frac{1}{2} + \frac{1}{2} \right)
$$
\n
$$
\text{We've got constructive,}
$$
\n
$$
\delta_{\text{lower bound}} = \frac{1}{2}n^2 \left(\frac{1}{2} + \frac{1}{2} \right)
$$

Justesen code: general case asymptotics

$$
D_J = \text{wt}(\mathbf{c}_{\min}) > d \cdot (D - q^{2k-n} V_q(n, d-1)) \ . \tag{\blacklozenge}
$$

 \triangleright To study the asymptotic trade-off R_{J} vs. δ_{J} in the general case, write $r = k/n$, and let θ be a real number (function) satisfying

$$
\theta = \mathsf{H}_q^{-1}(1 - r - \epsilon(n)),
$$

where

 $\lim_{n \to \infty} \epsilon(n) = 0$ and $\lim_{n \to \infty} n \epsilon(n) = \infty$ (e.g., $\epsilon(n) = \log n/n$).

Justesen code: general case asymptotics

$$
D_J = \text{wt}(\mathbf{c}_{\min}) > d \cdot \left(D - q^{2k - n} V_q(n, d - 1)\right). \qquad (\blacklozenge)
$$

 \blacktriangleright To study the asymptotic trade-off R_{J} vs. δ_{J} in the general case, write $r = k/n$, and let θ be a real number (function) satisfying

$$
\theta = \mathsf{H}_q^{-1}(1 - r - \epsilon(n)),
$$

where

 $\lim_{n \to \infty} \epsilon(n) = 0$ and $\lim_{n \to \infty} n \epsilon(n) = \infty$ (e.g., $\epsilon(n) = \log n/n$).

▶ Selecting $d = \lceil \theta n \rceil$ in ([♦](#page-20-1)), and recalling that $V_q(n,t) \le q^{n\mathsf{H}_q(t/n)}$ and $N=q^k=q^{rn}$, we obtain

$$
D_J > \theta n \cdot \left((1 - R)N - q^{(2r - 1)n} \cdot q^{nH_q(\theta)} \right)
$$

= $\theta nN \left((1 - R) - q^{n(r - 1 + H_q(\theta))} \right) = \theta nN \left((1 - R) - q^{n\epsilon(n)} \right)$
 $\implies \delta_J = \frac{D_J}{nN} > \theta (1 - R - o(1)).$

Justesen code: general case asymptotics

$$
D_J = \text{wt}(\mathbf{c}_{\min}) > d \cdot \left(D - q^{2k - n} V_q(n, d - 1)\right). \qquad (\blacklozenge)
$$

 \blacktriangleright To study the asymptotic trade-off R_{J} vs. δ_{J} in the general case, write $r = k/n$, and let θ be a real number (function) satisfying

$$
\theta = \mathsf{H}_q^{-1}(1 - r - \epsilon(n)),
$$

where

 $\lim_{n \to \infty} \epsilon(n) = 0$ and $\lim_{n \to \infty} n \epsilon(n) = \infty$ (e.g., $\epsilon(n) = \log n/n$).

▶ Selecting $d = \lceil \theta n \rceil$ in ([♦](#page-20-1)), and recalling that $V_q(n,t) \le q^{n\mathsf{H}_q(t/n)}$ and $N=q^k=q^{rn}$, we obtain

$$
D_J > \theta n \cdot \left((1 - R)N - q^{(2r - 1)n} \cdot q^{n \mathsf{H}_q(\theta)} \right)
$$

= $\theta n N \left((1 - R) - q^{n(r - 1 + \mathsf{H}_q(\theta))} \right) = \theta n N \left((1 - R) - q^{n\epsilon(n)} \right)$
 $\implies \delta_J = \frac{D_J}{nN} > \theta (1 - R - o(1)).$

 \blacktriangleright For the rate R_{I} of C_{I} , we have $R_{\text{J}} \ge rR = (1 - H_q(\theta) - \epsilon(n))R = (1 - H_q(\theta) - o(1))R$.

Rate-minimum distance trade-off for the Justesen code

 $\delta_J > \theta (1 - R - o(1)), \qquad R_J \ge (1 - H_q(\theta) - o(1))R$.

We can maximize the rate over θ , for a given δ_J (setting $R\approx 1-\frac{\delta}{\theta}).$ Notice, however, that the rates of the Wozencraft codes must be in the interval $[\frac{1}{2}, 1)$, so we must have $\theta \le H_q^{-1}(\frac{1}{2})$. $[q=2: \theta \le \theta_0 \approx 0.1100]$

Rate-minimum distance trade-off for the Justesen code

 $\delta_J > \theta (1 - R - o(1)), \qquad R_J \ge (1 - H_q(\theta) - o(1))R$.

We can maximize the rate over θ , for a given δ_J (setting $R \approx 1 - \frac{\delta}{\theta}$). Notice, however, that the rates of the Wozencraft codes must be in the interval $[\frac{1}{2}, 1)$, so we must have $\theta \le H_q^{-1}(\frac{1}{2})$. $[q=2: \theta \le \theta_0 \approx 0.1100]$ \bar{R}_{J} $(\delta_{\text{J}} = 0.02)$

> $0.3 0.2 0.1 -$

• We obtain the lower bound $R_J \geq \bar{R}_J(\delta, q) - o(1)$

$$
\bar{R}_{\mathrm{J}}(\delta, q) = \max_{\theta \in [\delta, \mathrm{H}_q^{-1}(\frac{1}{2})]} \left(1 - \mathrm{H}_q(\theta)\right) \left(1 - \frac{\delta}{\theta}\right)
$$

(note that for $\delta = \mathsf{H}_q^{-1}(\frac{1}{2})$ we get $R_\mathrm{J}(\delta, q) = 0$).

Example

For $q = 2$ we find, numerically, $\delta_0(2) \approx 0.0439$, $\bar{R}_{\rm J}(\delta_0(2), 2) \approx 0.3005$.

• When $\delta > \delta_0(q)$, the maximum is obtained at $\theta = \mathsf{H}_q^{-1}(\frac{1}{2})$, and the bound becomes $\bar{R}_{\text{J}}(\delta, q) = \frac{1}{2}$ $\left(1-\frac{\delta}{\delta}\right)$ $\overline{\mathsf{H}_q^{-1}(\frac{1}{2})}$), a straight line.

θ

 0.4

Justesen codes—Asymptotics

Justesen codes—Asymptotics

Theorem (Asymptotic Gilbert-Varshamov bound)

Let $F = GF(q)$ and n and nr be positive integers with $r \in [0,1]$. There exist a linear $[n, nr, \geq \delta n]$ code \mathcal{C}_{GV} over F with

$$
\delta = \mathsf{H}_q^{-1}(1-r).
$$

Theorem (Asymptotic Gilbert-Varshamov bound)

Let $F = GF(q)$ and n and nr be positive integers with $r \in [0,1]$. There exist a linear $[n, nr, \geq \delta n]$ code \mathcal{C}_{GV} over F with

$$
\delta = \mathsf{H}_q^{-1}(1-r).
$$

The code $C_{\rm GV}$ is constructed by building a parity-check matrix $H = [\mathbf{h}_1 \, \mathbf{h}_2 \, \dots \mathbf{h}_i \, \dots]$ column by column, according to the following rule:

Choose h_{i+1} among columns that are not linear combinations of $\lceil \delta n \rceil - 2$ columns from $\{h_1 h_2 ... h_i\}$.

The number of the linear combinations to check is $O(V_q(n-1, \lceil \delta n \rceil -2)) = q^{n(\mathsf{H}_q(\delta) - o(1))} \implies \text{construction of } H \text{ takes time}$ exponential in n for each fixed δ .

Exponential in n is polynomial in q^{rn} .

Construction of good concatenated codes (ii)

- \blacktriangleright We use $\mathcal{C}_{\mathrm{GV}}$ as the inner code $\mathcal{C}_{\mathrm{in}}$, concatenated with an $[N=q^{rn},K,D]$ extended primitive GRS code over $\Phi=GF(q^{rn})$ as $\mathcal{C}_{\text{out}}.$ Here, $K=RN$ and $D > (1 - R)N$ for some real $R \in (0, 1)$.
	- The parameters of $C_{\rm cct}$ are given by

 $n_{\rm cct}$ = $nN = nq^{n(1-\mathsf{H}_q(\delta))},$

$$
k_{\rm cct} = (1 - \mathsf{H}_q(\delta))R \cdot nN,
$$

 d_{cct} > $\delta(1-R) \cdot nN$.

- The length of C_{cct} can be arbitrarily large.
- The rate and relative minimum distance satisfy

 $R_{\text{cct}} = (1 - H_a(\delta))R$, $\delta_{\rm cct} \geq \delta(1-R)$.

Construction of good concatenated codes (ii)

- \blacktriangleright We use $\mathcal{C}_{\mathrm{GV}}$ as the inner code $\mathcal{C}_{\mathrm{in}}$, concatenated with an $[N=q^{rn},K,D]$ extended primitive GRS code over $\Phi=GF(q^{rn})$ as $\mathcal{C}_{\text{out}}.$ Here, $K=RN$ and $D > (1 - R)N$ for some real $R \in (0, 1)$.
	- The parameters of $C_{\rm cct}$ are given by

 $n_{\rm cct}$ = $nN = nq^{n(1-\mathsf{H}_q(\delta))},$

$$
k_{\rm cct} = (1 - \mathsf{H}_q(\delta))R \cdot nN,
$$

 d_{cct} > $\delta(1-R) \cdot nN$.

- The length of C_{cct} can be arbitrarily large.
- The rate and relative minimum distance satisfy

$$
R_{\rm cct} = (1 - H_q(\delta))R,
$$

\n
$$
\delta_{\rm cct} \geq \delta(1 - R).
$$

▶ Given a designed relative minimum distance $\delta_{\rm cct} \in (0,1-q^{-1})$, we can maximize R_{cct} over δ and R , subject to $\delta(1 - R) \leq \delta_{\text{cct}}$. This yields

Zyablov bound

$$
R_{\rm cct} \ge R_Z(\delta_{\rm cct}, q) = \max_{\delta \in [\delta_{\rm cct}, 1 - (1/q)]} \left(1 - \mathsf{H}_q(\delta)\right) \left(1 - \frac{\delta_{\rm cct}}{\delta}\right).
$$

The Zyablov bound

The Zyablov bound

-
- However, a generator matrix for a code \mathcal{C}_{cct} achieving the bound can be constructed in time *polynomial*
	- A parity check matrix for \mathcal{C}_{GV} can be constructed in $O(V_q(n-1, \lceil \delta n \rceil - 2)) =$ $O(n_{\text{cct}} {}^{(1/r)-1})$, where
		- $r = 1 H_q(\delta)$.
	- A matrix for the GRS code is also easily built.

Decoding of concatenated codes

Minimum distance is dD . Can we decode up to $|(dD-1)/2|$ errors?

▶ Suppose that a codeword

$$
\mathbf{c} = (\mathbf{c}_1 \,|\, \mathbf{c}_2 \,|\, \dots \,|\, \mathbf{c}_N) \in \mathcal{C}_{\mathrm{cct}}
$$

was transmitted through a noisy channel, and

$$
\mathbf{y} = (\mathbf{y}_1 \,|\, \mathbf{y}_2 \,|\, \ldots \,|\, \mathbf{y}_N) \in F^{nN}
$$

was received, where $\mathbf{y}_j \in F^n, \ j=1,2,\ldots,N,$ and assume $\mathsf{d}(\mathbf{y}, \mathbf{c}) < dD/2$ (as words in $F^{nN}).$

 \triangleright Suppose also that we have a *nearest codeword decoder* D_{in} for C_{in} .

▶ Let

$$
\hat{\mathbf{c}}_j = \mathcal{D}_{\text{in}}(\mathbf{y}_j)\,,\quad \text{ and } \quad \hat{\mathbf{z}}_j = \mathcal{E}_{\text{in}}^{-1}(\hat{\mathbf{c}}_j)\,,\;\;j=1,2,\ldots,N\,.
$$

Decoding of concatenated codes (ii)

- The following decoding strategy is parametrized by $\mu \in \{1, 2, \ldots, \lceil d/2 \rceil\}.$
	- Compute $\mathbf{x} = \mathbf{x}(\mu) = (\ \mathbf{x}_1\ \mathbf{x}_2\ \ldots\ \mathbf{x}_N\) \in (\ \Phi \cup \{?\ \})^N$, with

$$
\mathbf{x}_{j} = \begin{cases} \hat{\mathbf{z}}_{j} & \text{if } \mathsf{d}(\mathbf{y}_{j}, \hat{\mathbf{c}}_{j}) < \mu \\ ? & \text{(erasure) otherwise} \end{cases} \tag{\dagger\dagger}
$$

• Use an errors+erasures decoder \mathcal{D}_{out} for \mathcal{C}_{out} on x, obtaining a decoded word $\hat{\mathbf{c}} \in \mathcal{C}_{\text{out}}$, or a FAIL indicator.

The parameter μ is a threshold that \mathcal{D}_{in} utilizes to determine whether to attempt correction of a corrupted codeword or declare it erased.

Decoding of concatenated codes (ii)

- **►** The following decoding strategy is parametrized by $\mu \in \{1, 2, ..., [d/2]\}.$
	- Compute $\mathbf{x} = \mathbf{x}(\mu) = (\ \mathbf{x}_1\ \mathbf{x}_2\ \ldots\ \mathbf{x}_N\) \in (\ \Phi \cup \{?\ \})^N$, with

$$
\mathbf{x}_{j} = \begin{cases} \hat{\mathbf{z}}_{j} & \text{if } \mathsf{d}(\mathbf{y}_{j}, \hat{\mathbf{c}}_{j}) < \mu \\ ? & \text{(erasure) otherwise} \end{cases} \tag{\dagger\dagger}
$$

• Use an errors+erasures decoder \mathcal{D}_{out} for \mathcal{C}_{out} on x, obtaining a decoded word $\hat{\mathbf{c}} \in \mathcal{C}_{\text{out}}$, or a FAIL indicator.

The parameter μ is a threshold that \mathcal{D}_{in} utilizes to determine whether to attempt correction of a corrupted codeword or declare it erased.

 \blacktriangleright Let ρ_{μ} and τ_{μ} denote, respectively, the number of erasures in $\mathbf{x}(\mu)$ and of non-erased locations j where $x_j \neq \mathcal{E}^{-1}_{\text{in}}(\mathbf{c}_j)$. \mathcal{D}_{out} will reconstruct the original codeword $c \in \mathcal{C}_{\text{out}}$ if

$$
2\tau_{\mu} + \rho_{\mu} < D. \tag{*}
$$

We will prove that there exists $\mu \in \{1, 2, \ldots, \lceil d/2 \rceil\}$ such that $(*)$ holds whenever the total number of errors is $T \leq |(dD-1)/2|$.

Decoding of concatenated codes (iii)

► Define, for $\mu \in \{1, 2, ..., [d/2]\},$

$$
\chi_j(\mu) = \begin{cases}\n0 & \text{if } \hat{\mathbf{c}}_j = \mathbf{c}_j \text{ and } \mathsf{d}(\mathbf{y}_j, \hat{\mathbf{c}}_j) < \mu \\
1 & \text{if } \hat{\mathbf{c}}_j \neq \mathbf{c}_j \text{ and } \mathsf{d}(\mathbf{y}_j, \hat{\mathbf{c}}_j) < \mu \\
\frac{1}{2} & \text{if } \mathsf{d}(\mathbf{y}_j, \hat{\mathbf{c}}_j) \geq \mu\n\end{cases} .
$$

A "decoding penalty" for the j th block given the threshold μ .

 \blacktriangleright It is readily verified that

$$
2\tau_{\mu} + \rho_{\mu} = 2 \sum_{j=1}^{N} \chi_{j}(\mu).
$$

Decoding of concatenated codes (iii)

► Define, for $\mu \in \{1, 2, ..., [d/2]\},$

$$
\chi_j(\mu) = \begin{cases}\n0 & \text{if } \hat{\mathbf{c}}_j = \mathbf{c}_j \text{ and } \mathsf{d}(\mathbf{y}_j, \hat{\mathbf{c}}_j) < \mu \\
1 & \text{if } \hat{\mathbf{c}}_j \neq \mathbf{c}_j \text{ and } \mathsf{d}(\mathbf{y}_j, \hat{\mathbf{c}}_j) < \mu \\
\frac{1}{2} & \text{if } \mathsf{d}(\mathbf{y}_j, \hat{\mathbf{c}}_j) \geq \mu\n\end{cases}.
$$

A "decoding penalty" for the j th block given the threshold μ .

.

 \blacktriangleright It is readily verified that

$$
2\tau_{\mu} + \rho_{\mu} = 2\sum_{j=1}^{N} \chi_{j}(\mu).
$$

 \blacktriangleright Define the probability measure on μ

$$
P_{\mu} (\mu = x) = \begin{cases} 2/d & \text{if } x \in \{1, 2, ..., \lfloor d/2 \rfloor\} \\ 1/d & \text{if } d \text{ is odd and } x = \lceil d/2 \rceil \end{cases}
$$

Decoding of concatenated codes (iv)

Lemma

For every $j \in \{1, 2, ..., N\}$, $\mathsf{E}_{\mu} \left\{ \chi_j(\mu) \right\} \leq \frac{\mathsf{d}(\mathbf{y}_j, \mathbf{c}_j)}{d}$.

Decoding of concatenated codes (iv)

$$
\chi_j(\mu) = \begin{cases}\n0 & \hat{\mathbf{c}}_j = \mathbf{c}_j, \ \mathbf{d}(\mathbf{y}_j, \hat{\mathbf{c}}_j) < \mu \\
1 & \hat{\mathbf{c}}_j \neq \mathbf{c}_j, \ \mathbf{d}(\mathbf{y}_j, \hat{\mathbf{c}}_j) < \mu \\
\frac{1}{2} & \mathbf{d}(\mathbf{y}_j, \hat{\mathbf{c}}_j) \geq \mu\n\end{cases}, \qquad \mathsf{P}_{\mu}(x) = \begin{cases}\n2/d & 1 \leq x \leq \lfloor d/2 \rfloor \\
1/d & d \text{ odd}, \ x = \lceil d/2 \rceil\n\end{cases},
$$

Proof.

Case 1: $\hat{\mathbf{c}}_j = \mathbf{c}_j$ or $w_j \triangleq d(\mathbf{y}_j, \hat{\mathbf{c}}_j) \geq d/2$. Here, $\chi_j(\mu)$ takes either the value 0 (when $\mu>w_j)$ or $\frac{1}{2}$ (when $\mu\leq w_j)$, never the value $1.$ We have $\mathsf{E}_{\mu} \left\{ \chi_j (\mu) \right\} = \frac{1}{2} \mathsf{P}_{\mu} \left\{ \mu \leq w_j \right\} \leq \frac{w_j}{d} \stackrel{\text{def}}{=} \frac{\mathsf{d}(\mathbf{y}_j, \hat{\mathbf{c}}_j)}{d}$ d $\stackrel{\sf{MLD}}{\leq} \frac{\sf{d}({\bf y}_j, {\bf c}_j)}{n}$ $\frac{f(1,0)}{d}$. Case 2: $\hat{\mathbf{c}}_j \neq \mathbf{c}_j$ and $w_j < d/2$. Here, $\chi_j(\mu)$ takes the value 1 (when $\mu > w_j$), or $\frac{1}{2}$ (when $\mu \leq w_j$), never the value $0.$ We have $\mathsf{E}_{\mu} \left\{ \chi_j (\mu) \right\} = \frac{1}{2} \mathsf{P}_{\mu} \left\{ \mu \leq w_j \right\} + \mathsf{P}_{\mu} \left\{ \mu > w_j \right\} = 1 - \frac{1}{2} \left[\widetilde{\mathsf{P}_{\mu} \left\{ \mu \leq w_j \right\}} \right]$ $w_j \! < \! \frac{d}{2} \Rightarrow$ all $=$ $\frac{2}{d}$ $= 1 - \frac{w_j}{l}$ $\frac{w_j}{d} = \frac{d - \mathsf{d}(\mathbf{y}_j, \hat{\mathbf{c}}_j)}{d}$ d triangle $\underline{\mathsf{d}(\mathbf{y}_j, \mathbf{c}_j)}$ $\frac{f(\mathbf{v}_j)}{d}$. $y_j \neq$ $\sum_{i=1}^d a_i$ r Γ ╱ ❅ \mathbf{c}_j

Decoding of concatenated codes (iv)

Lemma

For every $j \in \{1, 2, ..., N\}$, $\mathsf{E}_{\mu} \left\{ \chi_j(\mu) \right\} \leq \frac{\mathsf{d}(\mathbf{y}_j, \mathbf{c}_j)}{d}$.

Proof.

Case 1: $\hat{\mathbf{c}}_i = \mathbf{c}_i$ or $w_i \triangleq d(\mathbf{y}_i, \hat{\mathbf{c}}_i) \geq d/2$. Here, $\chi_i(\mu)$ takes either the value 0 (when $\mu>w_j)$ or $\frac{1}{2}$ (when $\mu\leq w_j)$, never the value $1.$ We have $\mathsf{E}_{\mu} \left\{ \chi_j (\mu) \right\} = \frac{1}{2} \mathsf{P}_{\mu} \left\{ \mu \leq w_j \right\} \leq \frac{w_j}{d} \stackrel{\text{def}}{=} \frac{\mathsf{d}(\mathbf{y}_j, \hat{\mathbf{c}}_j)}{d}$ d $\stackrel{\sf{MLD}}{\leq} \frac{\sf{d}({\bf y}_j, {\bf c}_j)}{n}$ $\frac{f(1,0)}{d}$. Case 2: $\hat{\mathbf{c}}_j \neq \mathbf{c}_j$ and $w_j < d/2$. Here, $\chi_j(\mu)$ takes the value 1 (when $\mu > w_j$), or $\frac{1}{2}$ (when $\mu \leq w_j$), never the value $0.$ We have $E_{\mu}\left\{ \chi_{j}(\mu)\right\} =\frac{1}{2}P_{\mu}\left\{ \mu\leq w_{j}\right\} +P_{\mu}\left\{ \mu>w_{j}\right\} =1-\frac{1}{2}\left\{ \overline{P_{\mu}\left\{ \mu\leq w_{j}\right\} }\right\}$ $w_j \! < \! \frac{d}{2} \Rightarrow$ all $= \! \frac{2}{d}$ $= 1 - \frac{w_j}{l}$ $\frac{w_j}{d} = \frac{d - \mathsf{d}(\mathbf{y}_j, \hat{\mathbf{c}}_j)}{d}$ d triangle $\underline{\mathsf{d}(\mathbf{y}_j, \mathbf{c}_j)}$ $\frac{f(\mathbf{v}_j)}{d}$. $y_j \neq$ $\hat{\mathbf{c}}_j$ r Γ ╱ ❅ \sum d \mathbf{c}_j

Decoding of concatenated codes (v)

Theorem

There exists $\mu \in \{1, 2, ..., [d/2]\}$ such that $2\tau_{\mu} + \rho_{\mu} < D$.

Decoding of concatenated codes (v)

$\overline{\rm{Theorem}}$

There exists $\mu \in \{1, 2, ..., [d/2]\}$ such that $2\tau_{\mu} + \rho_{\mu} < D$.

Proof.

Taking expected values of both sides of $2\tau_{\mu}+\rho_{\mu}=2\sum_{j=1}^{N}\chi_{j}(\mu)$ we obtain

$$
\mathsf{E}_{\mu} \{ 2\tau_{\mu} + \rho_{\mu} \} = 2 \sum_{j=1}^{N} \mathsf{E}_{\mu} \{ \chi_{j}(\mu) \} .
$$

By the Lemma, we have

$$
2\sum_{j=1}^N \mathsf{E}_\mu\left\{\chi_j(\mu)\right\} \leq \frac{2}{d}\sum_{j=1}^N \mathsf{d}(\mathbf{y}_j, \mathbf{c}_j) = \frac{2\,\mathsf{d}(\mathbf{y}, \mathbf{c})}{d} < D\;.
$$

Combining the last two equations we obtain

 $E_{\mu} \{2\tau_{\mu} + \rho_{\mu}\} < D$.

 \Rightarrow There must be at least one $\mu \in \{1, 2, ..., [d/2]\}$ for which $2\tau_{\mu} + \rho_{\mu} < D$.

Forney's Generalized Minimum Distance Decoder (GMD)

Input: received word $\mathbf{y} = (\mathbf{y}_1 | \mathbf{y}_2 | \dots | \mathbf{y}_N) \in F^{nN}$. **Output:** codeword $\mathbf{c} \in \mathcal{C}_{\text{cct}}$ or a decoding-failure indicator FAIL.

- **1** For $i = 1, 2, ..., N$ do:
	- apply a nearest-codeword decoder for C_{in} to y_j to produce $\hat{c}_j \in C_{\text{in}}$, corresponding to $\mathbf{z}_j = \mathcal{E}_{\text{in}}^{-1}(\hat{\mathbf{c}}_j) \in \Phi$.

2 For
$$
\mu = 1, 2, ..., \lceil d/2 \rceil
$$
 do:

- **a** let $\mathbf{x}(\mu) = (\mathbf{x}_1 \mathbf{x}_2 \dots \mathbf{x}_N) (\Phi \cup \{?\})^N$ be as defined in $(\dagger \dagger)$, and let $\rho_{\mu} \leftarrow |\{j : \mathbf{x}_j = ?\}|$ // number of erasures in $\mathbf{x}(\mu)$
- **(b)** apply an error-erasure decoder for C_{out} to recover ρ_{μ} erasures and correct up to $\tau_\mu = \lfloor \frac{1}{2}(D{-}1{-}\rho_\mu) \rfloor$ errors in ${\bf x},$ producing either a codeword

 $(\mathbf{z}_1 \mathbf{z}_2 \dots \mathbf{z}_N) \in \mathcal{C}_{\text{out}}$, or FAIL;

 \bullet if decoding is successful in Step [b](#page-46-1) then do: (i) let $\mathbf{c} \leftarrow (\mathcal{E}_{\text{in}}(\mathbf{z}_1) \mathcal{E}_{\text{in}}(\mathbf{z}_2) \dots \mathcal{E}_{\text{in}}(\mathbf{z}_N));$ **if** if $d(y, c) < dD/2$ then output c and exit.

³ If no [c](#page-46-2)odeword c was produced in Step c then return FAIL.

GMD complexity

- \triangleright [Step 1](#page-46-3): Brute-force search for closest codeword takes $O(n|\Phi|) = O(nq^k).$ When $N \approx q^k$ (e.g. primitive RS codes), this is $O(nN)$ per block \mathbf{y}_j , or overall $O(nN^2).$
- ▶ [Step 2](#page-46-1): Assuming a GRS code is used, Step [2](#page-46-4)[b](#page-46-1) has complexity $O(ND) = O(N^2)$. Overall for Step [2:](#page-46-4) $O(dN^2) = O(nN^2)$. \implies overall complexity is $O(nN^2)$.

GMD complexity

- \triangleright [Step 1](#page-46-3): Brute-force search for closest codeword takes $O(n|\Phi|) = O(nq^k).$ When $N \approx q^k$ (e.g. primitive RS codes), this is $O(nN)$ per block \mathbf{y}_j , or overall $O(nN^2).$
- ▶ [Step 2](#page-46-1): Assuming a GRS code is used, Step [2](#page-46-4)[b](#page-46-1) has complexity $O(ND) = O(N^2)$. Overall for Step [2:](#page-46-4) $O(dN^2) = O(nN^2)$. \implies overall complexity is $O(nN^2)$.
- **Improvements:**
	- Step 1 can be done with a syndrome look-up table of size $O(nq^{n-k})$ in time $O(nN)$.
	- Further speed-up is possible by noticing that since $\mu < d/2$, only $(d-1)/2$ decoding is required for C_{in} . C_{in} can be chosen as a code with an efficient decoding algorithm (e.g., Hamming, Golay, BCH, alternant).
	- Step 2 for GRS codes can be accelerated to $(n^3 N \log^2 N \log \log N)$.

Concatenated codes that attain channel capacity

- \triangleright We will show that it is possible to approach the capacity of the q -ary symmetric channel (QSC) with linear concatenated codes that
	- can be constructed, deterministically, in polynomial time
	- can be encoded and decoded in polynomial time
	- achieve an exponentially decaying probability of decoding error

Concatenated codes that attain channel capacity

- \triangleright We will show that it is possible to approach the capacity of the q -ary symmetric channel (QSC) with linear concatenated codes that
	- can be constructed, deterministically, in polynomial time
	- can be encoded and decoded in polynomial time
	- achieve an exponentially decaying probability of decoding error

First, we need to review the basics of *channel capacity*.

Concatenated codes that attain channel capacity

- \triangleright We will show that it is possible to approach the capacity of the q -ary symmetric channel (QSC) with linear concatenated codes that
	- can be constructed, deterministically, in polynomial time
	- can be encoded and decoded in polynomial time
	- achieve an exponentially decaying probability of decoding error

First, we need to review the basics of *channel capacity*.

Channel capacity—a (very brief) review: Converse theorem

Theorem (Shannon Converse Coding Theorem for the q -ary symmetric channel)

Let C be an (n, q^{nR}) code over F where n and nR are integers such that $\mathsf{C}_q(p) < R \leq 1$, and let $\mathcal{D}: F^n \to \mathcal{C} \cup \{ {} \vphantom{?} 'E^r \}$ be a decoder for $\mathcal C$ over a q -ary symmetric channel with cross-over probability p. Then the decoding error probability P_{err} of \overline{D} satisfies

$$
P_{\rm err} \ge 1 - q^{-n(D_q(\theta_q(R)||p) - o(1))},
$$

where

$$
\theta_q(R) = \mathsf{H}_q^{-1}(1-R) \ .
$$

- ▶ $D_q(\theta|p) \triangleq \theta \log_q(\frac{\theta}{p}) + (1-\theta) \log_q(\frac{1-\theta}{1-p})$ is the (information) divergence or Kullback-Liebler distance of θ with respect to p (positive if $\theta \neq p$).
- ▶ Notice that $\theta_q(R) = \mathsf{C}_q^{-1}(R)$.
- \blacktriangleright The theorem says that communication is impossible at rates above the channel capacity.

Channel capacity—a (very brief) review: Coding theorem

Theorem (Shannon Coding Theorem for *linear codes* over the q -ary symmetric channel)

Let n and nR be integers such that $R < 1 - H_q(p)$ and let $P_{err}(\mathcal{C})$ denote the average of $P_{err}(\mathcal{C})$, under MLD, over all linear $[n, nR]$ codes $\mathcal C$ over F . Then, ,

$$
\overline{P_{\rm err}(\mathcal{C})} < 2q^{-nE_q(p,R)}
$$

where

$$
E_q(p,R)=1-\mathsf{H}_q(\theta_q^*(p,R))-R
$$

and

$$
\theta_q^*(p, R) = \frac{\log_q(1-p) + 1 - R}{\log_q(1-p) - \log_q(p/(q-1))}.
$$

Corollary

For every $\rho \in (0,1]$, all but a fraction at most ρ of the linear $[n,nR]$ codes C over F satisfy

 $P_{\text{err}}(\mathcal{C}) < (1/\rho) \cdot 2q^{-nE_q(p,R)}$.

The construction

- \triangleright We construct a linear concatenated code \mathcal{C}_{cct} .
- \blacktriangleright Choose, as inner code \mathcal{C}_{in} , an $[n, nr]$ code $\mathcal C$ over $F = GF(q)$, with

 $r < 1 - H_a(p)$

and such that the decoding error probability satisfies

 $P_{\text{err}}(\mathcal{C}) < 4q^{-nE_q(p,r)}$

where $E_q(p,r)$ is the exponent in Shannon's Coding Theorem for linear codes (we sacrifice some error probability to allow for computations with reduced precision—linear in n).

 \blacktriangleright Let $N_0(n, r, q)$ denote an upper bound on the number of operations over F required to construct C .

The construction (ii)

 \blacktriangleright Use, as outer code, a linear concatenated code \mathcal{C}_{out} of length N over $\Phi=GF(q^{rn})$, where $N\geq \max\{N_0,q^{rn}\}$. Furthermore, let \mathcal{C}_{out} attain Zyablov's bound, and assume its minimum distances satisfies $D_{\text{out}} \geq \lceil \delta N \rceil$ for some real parameter $\delta \in [0, 1]$ (we will determine a relation between r and δ later on).

The construction (ii)

- \blacktriangleright Use, as outer code, a linear concatenated code \mathcal{C}_{out} of length N over $\Phi=GF(q^{rn})$, where $N\geq \max\{N_0,q^{rn}\}$. Furthermore, let \mathcal{C}_{out} attain Zyablov's bound, and assume its minimum distances satisfies $D_{\text{out}} \geq \lceil \delta N \rceil$ for some real parameter $\delta \in [0, 1]$ (we will determine a relation between r and δ later on).
- **►** Given δ , the rate R of \mathcal{C}_{out} is lower-bounded by

 $R > R_Z(\delta, a^{rn})$

(the choice of δ will be such that R is close to 1).

The construction (ii)

- \blacktriangleright Use, as outer code, a linear concatenated code \mathcal{C}_{out} of length N over $\Phi=GF(q^{rn})$, where $N\geq \max\{N_0,q^{rn}\}$. Furthermore, let \mathcal{C}_{out} attain Zyablov's bound, and assume its minimum distances satisfies $D_{\text{out}} \geq \lceil \delta N \rceil$ for some real parameter $\delta \in [0, 1]$ (we will determine a relation between r and δ later on).
- **►** Given δ , the rate R of \mathcal{C}_{out} is lower-bounded by

 $R > R_Z(\delta, a^{rn})$

(the choice of δ will be such that R is close to 1).

 \triangleright We will skip the analysis of the encoding complexity, and go directly to decoding (more interesting). The gory details are in Roth (2005).

 \blacktriangleright Let

 $\mathbf{y} = (\mathbf{y}_1 \,|\, \mathbf{y}_2 \,|\, \ldots \,|\, \mathbf{y}_N) \in F^{nN}$

be the received word, where each $\mathbf{y}_j \in F^n.$

The construction (iii)

Decoder for C_{cct}

- **1** Apply a nearest-codeword decoder for $C_{\text{in}} = C$ to each sub-block y_j to produce a codeword $\hat{\mathbf{c}}_i$ of \mathcal{C} .
- **2** Apply a GMD decoder for C_{out} to correct up to $\lceil \delta N/2 \rceil$ errors in the word

 $\left(\mathcal{E}^{-1}(\hat{\mathbf{c}}_1) \, | \, \mathcal{E}^{-1}(\hat{\mathbf{c}}_2) \, | \, \ldots \, | \, \mathcal{E}^{-1}(\hat{\mathbf{c}}_N) \right) \in \Phi^N$

(note that $\lceil \delta N/2 \rceil - 1 = |(\lceil \delta N \rceil - 1)/2|$, and recall that $D_{\text{out}} \geq \lceil \delta N \rceil$).

As before, the decoding operation can be done in time $O((nN)^2)$ (actually less).

Bounding error probability and rate

Error probability: Decoding will fail only if $\tau = \lceil \delta N/2 \rceil$ or more of the sub-blocks y_i are decoded incorrectly by a nearest-codeword decoder for C . For each sub-block, this probability is $P = P_{err}(C)$. Hence, recalling that the channel is memoryless, we can write

$$
P_{\text{err}}(\mathcal{C}_{\text{cct}}) \leq \sum_{i=\tau}^{N} {N \choose i} P^{i} (1-P)^{N-i}
$$

\n
$$
\leq \sum_{i=\tau}^{N} {N \choose i} P^{i} \leq P^{\tau} \sum_{i=\tau}^{N} {N \choose i}
$$

\n
$$
\leq 2^{N} \cdot P^{\tau} \leq 2^{N} \cdot P^{N\delta/2} < 4^{N} q^{-NnE_{q}(p,r)\delta/2}
$$

\n
$$
\leq q^{-nN(E_{q}(p,r)\delta/2-o(1))}.
$$

Bounding error probability and rate (ii)

 \blacktriangleright Rate: It can be shown that

and, therefore,
\n
$$
R_Z(\delta, q^{rn}) = (1 - \sqrt{\delta})^2 - o(1)/r,
$$
\n
$$
R_{\text{cot}} \ge rR \ge r \cdot (1 - \sqrt{\delta})^2 - o(1).
$$
\n(**)

Bounding error probability and rate (ii)

 \triangleright Rate: It can be shown that $R_Z(\delta, q^{rn}) = (1 - \sqrt{q})$ and, therefore, $R_Z(\delta, q^{rn}) = (1-\sqrt{\delta})^2 - o(1)/r$, $R_{\rm cct} \geq rR \geq r\cdot (1 -$ √ $\overline{\delta})^2 - o(1)$. (**)

 \blacktriangleright Error (from previous slide):

$$
P_{\rm err}(\mathcal{C}_{\rm cct}) \le q^{-nN(E_q(p,r)\delta/2 - o(1))}.
$$
 (*)

Bounding error probability and rate (ii)

 \blacktriangleright Rate: It can be shown that $R_Z(\delta, q^{rn}) = (1 - \sqrt{q})$ and, therefore, $R_Z(\delta, q^{rn}) = (1-\sqrt{\delta})^2 - o(1)/r$, $R_{\rm cct} \geq rR \geq r\cdot (1 -$ √ $\overline{\delta})^2 - o(1)$. (**)

 \blacktriangleright Error (from previous slide):

$$
P_{\rm err}(\mathcal{C}_{\rm cct}) \le q^{-nN(E_q(p,r)\delta/2 - o(1))}.
$$
 (*)

▶ Given a designed rate $\mathcal{R} < 1 - H_q(p)$, we select the rate r of \mathcal{C}_{in} so that $\mathcal{R} \le r \le 1 - H_q(p)$ and set δ to

$$
\delta = (1 - \sqrt{\mathcal{R}/r})^2.
$$

Therefore, from $(**)$, we have $R_{\rm cct} \geq \mathcal{R} - o(1)$, while the error exponent in (∗) satisfies

$$
-\frac{\log_q P_{\text{err}}(\mathcal{C}_{\text{cct}})}{nN} \ge \frac{1}{2} E_q(p,r) (1 - \sqrt{\mathcal{R}/r})^2 - o(1) .
$$

Bounding error probability and rate (iii)

 \blacktriangleright By maximizing over r we obtain

$$
-\frac{\log_q P_{\text{err}}(\mathcal{C}_{\text{cct}})}{nN} \ge E_q^*(p, \mathcal{R}) - o(1),
$$

where

$$
E_q^*(p, \mathcal{R}) = \max_{\mathcal{R} \le r \le 1 - H_q(p)} \frac{1}{2} E_q(p, r) (1 - \sqrt{\mathcal{R}/r})^2.
$$

In particular, $E_q^*(p, \mathcal{R}) > 0$ whenever $\mathcal{R} < 1 - \mathsf{H}_q(p)$.

Theorem

Let $F = GF(q)$ and fix a crossover probability $p \in [0, 1-(1/q))$ of a QSC. For every $R < 1 - H_q(p)$ there exists an infinite sequence of linear concatenated codes $C_1, C_2, \cdots, C_i, \cdots$ over F such that the following holds.

- **(i)** Each code C_i is a linear $[n_i, k_i]$ code over F and the values n_i and k_i can be computed from \mathcal{R} , q, and i in time complexity that is polynomially large in the length of the bit representations of \mathcal{R} , q, i, and n_i .
- **f** The code rates k_i/n_i satisfy

$$
\liminf_{i \to \infty} \frac{k_i}{n_i} \geq \mathcal{R} .
$$

- \bigoplus A generator matrix of \mathcal{C}_i can be constructed in time $O(n_i^2)$, and can be used to encode also in time $O(n_i^2)$.
- \bullet There is a decoder for \mathcal{C}_i whose time complexity is $O(n_i^2)$ and its decoding error probability $P_{err}(\mathcal{C}_i)$ satisfies

$$
-\liminf_{i\to\infty}\frac{1}{n_i}\log_q P_{\text{err}}(\mathcal{C}_i)\geq E_q^*(p,\mathcal{R})>0.
$$