1. Concatentated Codes

Gadiel Seroussi

October 17, 2022

1 Concatentated Codes

- Concatenated codes: review
- Properties and variants
- Review: Some notation and properties
- Asymptotically good codes (in the min. distance sense)
- Construction of good concatenated codes (i)
- The Wozencraft code ensemble
- Properties of Wozencraft codes (i)
- Justesen codes
- The minimum distance of the Justesen code
- Justesen code: general case asymptotics
- Rate-minimum distance trade-off for the Justesen code
- Justesen codes—Asymptotics
- Gilbert-Varshamov revisited
- Construction of good concatenated codes (ii)
- The Zyablov bound
- Decoding of concatenated codes
- Forney's Generalized Minimum Distance Decoder (GMD)
- GMD complexity

- Concatenated codes that attain channel capacity
- Channel capacity—a (very brief) review: Converse theorem
- Channel capacity—a (very brief) review: Coding theorem
- The construction
- Bounding error probability and rate
- Summary

Concatenated codes: review

- ▶ Let C_{in} be an [n, k, d] code over $F = \mathbb{F}_q$ (the *inner code*), and let C_{out} be an [N, K, D] code over $\Phi = \mathbb{F}_{q^k}$ (the *outer code*).
 - We focus only on *linear* codes.
- Represent Φ as vectors in F^k using a fixed basis of Φ over F

Concatenated codes: review

- ▶ Let C_{in} be an [n, k, d] code over $F = \mathbb{F}_q$ (the *inner code*), and let C_{out} be an [N, K, D] code over $\Phi = \mathbb{F}_{q^k}$ (the *outer code*).
 - We focus only on *linear* codes.
- \blacktriangleright Represent Φ as vectors in F^k using a fixed basis of Φ over F

Concatenated codes: review

- Let C_{in} be an [n, k, d] code over F = 𝔽_q (the *inner code*), and let C_{out} be an [N, K, D] code over Φ = 𝔽_{q^k} (the *outer code*).
 - We focus only on *linear* codes.
- \blacktriangleright Represent Φ as vectors in F^k using a fixed basis of Φ over F

► A concatenated code C_{cct} is constructed by replacing each ℝ^k-symbol in C_{out} by its mapping to ℝⁿ according to C_{in}.

- ▶ C_{cct} has parameters $[nN, kK, \ge dD]$ over F
- C_{out} is typically taken to be a GRS code.
- Variants:
 - Use a different inner code $C_{in}^{(j)}, \ j = 1, 2, \dots, N$ for each coordinate of C_{out} .

- ▶ C_{cct} has parameters $[nN, kK, \ge dD]$ over F
- C_{out} is typically taken to be a GRS code.
- Variants:
 - Use a different inner code $C_{in}^{(j)}, j = 1, 2, ..., N$ for each coordinate of C_{out} .
 - **Product code**: given $C_1 : [n_1, k_1]$ and $C_2 : [n_2, k_2]$, a codeword in the product code $C_1 \times C_2$ is shown in the figure.

- ▶ C_{cct} has parameters $[nN, kK, \ge dD]$ over F
- C_{out} is typically taken to be a GRS code.
- Variants:
 - Use a different inner code $C_{in}^{(j)}, j = 1, 2, ..., N$ for each coordinate of C_{out} .
 - **Product code**: given $C_1 : [n_1, k_1]$ and $C_2 : [n_2, k_2]$, a codeword in the product code $C_1 \times C_2$ is shown in the figure.

- ▶ C_{cct} has parameters $[nN, kK, \ge dD]$ over F
- C_{out} is typically taken to be a GRS code.
- Variants:
 - Use a different inner code $C_{in}^{(j)}, j = 1, 2, ..., N$ for each coordinate of C_{out} .
 - **Product code**: given $C_1 : [n_1, k_1]$ and $C_2 : [n_2, k_2]$, a codeword in the product code $C_1 \times C_2$ is shown in the figure.

More on this later.

Review: Some notation and properties

• Volume of Hamming sphere of radius t in F^n , F = GF(q).

$$V_q(n,t) = \sum_{i=0}^t \binom{n}{i} (q-1)^i.$$

• Symmetric q-ary entropy function

$$H_q : [0, 1] \rightarrow [0, 1]$$

 $H_q(x) = -x \log_q x - (1-x) \log_q (1-x) + x \log_q (q-1)$.

• Bounds on $V_q(n,t)$

$$\frac{1}{\sqrt{8t(1-(t/n))}} \cdot q^{n\mathsf{H}_q(t/n)} \le V_q(n,t) \le q^{n\mathsf{H}_q(t/n)}$$

 $H_q(x), q = 5$

Asymptotically good codes (in the min. distance sense)

We seek a sequence of linear codes $\{C_i : [n_i, k_i, d_i]\}_{i=1}^{\infty}$, with $n_i \xrightarrow{i \to \infty} \infty$, such that

- with $R_i = k_i/n_i$, $\liminf_{i \to \infty} R_i > 0$ rate bounded away from zero,
- with $\delta_i = d_i/n_i$, $\lim_{i \to \infty} \delta_i > 0$ relative distance bounded away from zero.
- C_i can be *constructed* in time polynomial in n_i ,
- C_i can be *encoded* and *decoded* in time polynomial in n_i .

Asymptotically good codes (in the min. distance sense)

We seek a sequence of linear codes $\{C_i : [n_i, k_i, d_i]\}_{i=1}^{\infty}$, with $n_i \xrightarrow{i \to \infty} \infty$, such that

- with $R_i = k_i/n_i$, $\liminf_{i \to \infty} R_i > 0$ rate bounded away from zero,
- with $\delta_i = d_i/n_i$, $\lim_{i \to \infty} \delta_i > 0$ relative distance bounded away from zero.
- C_i can be *constructed* in time polynomial in n_i ,
- C_i can be *encoded* and *decoded* in time polynomial in n_i .

Construction of good concatenated codes (i)

► Consider a finite field F = GF(q), its extension $\Phi = GF(q^k)$, and an element $\beta \in \Phi$. The map

$$x \mapsto \beta \cdot x$$

acting on elements of Φ , is a linear transformation over F.

• Given a basis $\Omega = (\omega_1 \, \omega_2 \, \dots \, \omega_k)$ of Φ over F, this map is represented by a $k \times k$ matrix $M(\beta)$, such that if $y = \beta x$, $x \in \Phi$, then $\mathbf{y} = M(\beta) \cdot \mathbf{x}$,

where \mathbf{x} and \mathbf{y} are (column) vector representations of x and y, respectively, with respect to the basis Ω , i.e., $x = \Omega \cdot \mathbf{x}$ and $y = \Omega \cdot \mathbf{y}$.

• Consider the code $\mathcal{C}(\beta)$ generated by

 $G_{\beta} = \left[I_{k \times k} \mid M(\beta)^T \right] \,.$

 $\mathcal{C}(\beta)$ is an [n = 2k, k, d] code over F.

The Wozencraft code ensemble

Definition

The Wozencraft [2k, k] code ensemble over F is the set

$$\mathcal{W}_F(2k,k) = \{ \mathcal{C}(\beta) : \beta \in \Phi \}$$

▶ All nonzero codewords in $C(\beta)$ are of the form $[\mathbf{a} | \mathbf{b}]$ with $b/a = \beta$ $(a \neq 0)$.

The Wozencraft code ensemble

Definition

The Wozencraft [2k, k] code ensemble over F is the set

$$\mathcal{W}_F(2k,k) = \{ \mathcal{C}(\beta) : \beta \in \Phi \}$$

► All nonzero codewords in $C(\beta)$ are of the form $[\mathbf{a} | \mathbf{b}]$ with $b/a = \beta$ $(a \neq 0)$.

► The definition of Wozencraft codes is extended to cover lengths n, $k < n \le 2k$ by defining the [n, k] code $C_{\beta,n}$ as

 $\mathcal{C}_{\beta,n} = \{ (c_1 \, c_2 \, \dots \, c_n) : (c_1 \, c_2 \, \dots , c_n, \dots \, c_{2k}) \in \mathcal{C}(\beta) \}, k < n \le 2k.$

Definition

The Wozencraft [n, k] code ensemble over F is the set

 $\mathcal{W}_F(n,k) = \{\mathcal{C}_{\beta,n} : \beta \in \Phi\}.$

Lemma

Every nonzero word $\mathbf{c} \in F^n$ belongs to at most q^{2k-n} codes in $\mathcal{W}_F(n,k)$.

Proof.

For n = 2k, a nonzero word $\mathbf{c} = [\mathbf{a} | \mathbf{b}]$ can belong only to $\mathcal{C}(\beta)$ for $\beta = b/a \ (a \neq 0)$, or none if a = 0. When 2k > n, \mathbf{c} can be completed in q^{2k-n} ways into a word of length 2k. Each such completion belongs to at most one code $\mathcal{C}(\beta)$. Hence, there are at most q^{2k-n} values β such that $\mathbf{c} \in \mathcal{C}_{\beta,n}$.

Properties of Wozencraft codes (ii)

▶ What can we say about minimum distance of Wozencraft codes? For example, C(0) contains the word (10 ... 000 ... 0) (bad). However,

Proposition

The number of codes in $W_F(n,k)$ with minimum distance less than a given integer d is at most $q^{2k-n}(V_q(n,d-1)-1)$.

Proof.

There are $V_q(n, d-1) - 1$ nonzero words of weight less than d in F^n . By the Lemma, each such word belongs to at most q^{2k-n} codes in $\mathcal{W}_F(n, k)$.

Justesen codes

- Let k and n be positive integers such that k < n ≤ 2k, and write, for convenience, Φ = {β₁, β₂,..., β_{gk}}.
- ▶ Let \mathcal{E}_j denote an encoder for $\mathcal{C}_{\beta_j,n}$, and d_j its minimum distance.
- ▶ Let C_{out} be a [N, K, D] extended GRS code with $N = q^k$, $K = \lceil RN \rceil$ for some given $R \in (0, 1]$, and D = N K + 1 > (1 R)N.

Justesen codes

- Let k and n be positive integers such that k < n ≤ 2k, and write, for convenience, Φ = {β₁, β₂,..., β_{qk}}.
- ▶ Let \mathcal{E}_j denote an encoder for $\mathcal{C}_{\beta_j,n}$, and d_j its minimum distance.
- ▶ Let C_{out} be a [N, K, D] extended GRS code with $N = q^k$, $K = \lceil RN \rceil$ for some given $R \in (0, 1]$, and D = N K + 1 > (1 R)N.

Definition

The Justesen code \mathcal{C}_J is defined as follows

 $\mathcal{C}_{\mathrm{J}} = \left\{ \left(\left. \mathcal{E}_{1}(\mathbf{z}_{1}) \left| \left. \mathcal{E}_{2}(\mathbf{z}_{2}) \right| \ldots \right. \left| \left. \mathcal{E}_{N}(\mathbf{z}_{N}) \right. \right) \right. : \left. \left(\mathbf{z}_{1} \, \mathbf{z}_{2} \, \ldots \, \mathbf{z}_{N} \right) \in \mathcal{C}_{\mathrm{out}} \right. \right\}.$

- Like a concatenated code, but with a different inner code in each coordinate.
- ► As with concatenated codes, the parameters are [nN, kK]. How about the minimum distance D_J? It will not be of the form dD, because there is no fixed d for the inner codes.

The minimum distance of the Justesen code

- ► A codeword c_{min} ∈ C_J of minimum weight has at least D nonzero sub-blocks E_j(z_j).
- \blacktriangleright By the previous proposition, for every positive integer d, we have

$$\mathsf{D}_{\mathsf{J}} = \mathsf{wt}(\mathbf{c}_{\min}) > d \cdot \left(D - q^{2k-n} V_q(n, d-1) \right) \,. \tag{(\diamond)}$$

The minimum distance of the Justesen code

- ► A codeword c_{min} ∈ C_J of minimum weight has at least D nonzero sub-blocks E_j(z_j).
- ► By the previous proposition, for every positive integer d, we have $D_J = wt(\mathbf{c}_{\min}) > d \cdot (D - q^{2k-n}V_q(n, d-1))$. (♦)
- ▶ Example: q = 2, n = 2k. Let $\theta \in (0, 1)$ be such that $n\theta$ is an integer and $H_2(\theta) = \frac{1}{2} \epsilon$, with $\epsilon \in (0, \frac{1}{2})$. Choose $d = n\theta + 1$. Then, we have

$$\begin{split} \mathsf{D}_{\mathsf{J}} &> d \big(D - V_q(n, d-1) \big) > n \theta \left(N(1-R) - 2^{nH(\theta)} \right) \\ &= n \theta \left(N(1-R) - 2^{2k(\frac{1}{2} - \epsilon)} \right) = n \theta \left(N(1-R) - 2^{k-n\epsilon} \right) \\ &= n N \theta \big(1 - R - o(1) \big) \,. \quad (\text{recall } N = 2^k) \end{split}$$

Therefore, C_J has rate $R_J = \frac{1}{2}R > 0$ and relative distance $\delta_J = \frac{D_J}{nN} = \theta(1-R) - o(1) > 0$.

The minimum distance of the Justesen code

Ч

- ► A codeword c_{min} ∈ C_J of minimum weight has at least D nonzero sub-blocks E_j(z_j).
- ► By the previous proposition, for every positive integer d, we have $D_J = wt(\mathbf{c}_{\min}) > d \cdot (D - q^{2k-n}V_q(n, d-1))$. (♦)
- ► Example: q = 2, n = 2k. Let $\theta \in (0, 1)$ be such that $n\theta$ is an integer and $H_2(\theta) = \frac{1}{2} \epsilon$, with $\epsilon \in (0, \frac{1}{2})$. Choose $d = n\theta + 1$. Then, we have

$$\begin{split} \mathsf{D}_{\mathbf{J}} > d \big(D - V_q(n, d-1) \big) > n \theta \left(N(1-R) - 2^{nH(\theta)} \right) \\ &= n \theta \left(N(1-R) - 2^{2k(\frac{1}{2}-\epsilon)} \right) = n \theta \left(N(1-R) - 2^{k-n\epsilon} \right) \\ &= n N \theta \big(1 - R - o(1) \big) . \quad (\text{recall } N = 2^k) \\ \text{Therefore, } \mathcal{C}_{\mathbf{J}} \text{ has rate } R_{\mathbf{J}} = \frac{1}{2}R > 0 \text{ and relative istance } \delta_{\mathbf{J}} = \frac{\mathsf{D}_{\mathbf{J}}}{nN} = \theta(1-R) - o(1) > 0. \\ & \text{We've got constructive, asymptotically good codes!} \\ \end{split}$$

Justesen code: general case asymptotics

$$\mathsf{D}_{\mathsf{J}} = \mathsf{wt}(\mathbf{c}_{\min}) > d \cdot \left(D - q^{2k-n} V_q(n, d-1) \right) \,. \tag{(\diamondsuit)}$$

► To study the asymptotic trade-off R_J vs. δ_J in the general case, write r = k/n, and let θ be a real number (function) satisfying

$$\theta = \mathsf{H}_q^{-1}(1 - r - \epsilon(n)) \,,$$

where

 $\lim_{n\to\infty} \epsilon(n) = 0 \quad \text{ and } \quad \lim_{n\to\infty} n\,\epsilon(n) = \infty \quad (\text{e.g., } \epsilon(n) = \log n/n).$

Justesen code: general case asymptotics

$$\mathsf{D}_{\mathsf{J}} = \mathsf{wt}(\mathbf{c}_{\min}) > d \cdot \left(D - q^{2k-n} V_q(n, d-1) \right) \,. \tag{(\diamondsuit)}$$

► To study the asymptotic trade-off R_J vs. δ_J in the general case, write r = k/n, and let θ be a real number (function) satisfying

$$\theta = \mathsf{H}_q^{-1}(1 - r - \epsilon(n)) \,,$$

where

 $\lim_{n\to\infty}\epsilon(n)=0 \quad \text{ and } \quad \lim_{n\to\infty}n\,\epsilon(n)=\infty \quad (\text{e.g., }\epsilon(n)=\log n/n).$

▶ Selecting $d = \lceil \theta n \rceil$ in (♦), and recalling that $V_q(n,t) \leq q^{nH_q(t/n)}$ and $N = q^k = q^{rn}$, we obtain

$$\begin{split} \mathsf{D}_{\mathsf{J}} &> \theta n \cdot \left((1\!-\!R)N - q^{(2r-1)n} \cdot q^{n\mathsf{H}_q(\theta)} \right) \\ &= \theta n N \left((1\!-\!R) - q^{n(r-1+\mathsf{H}_q(\theta))} \right) = \theta n N \left((1\!-\!R) - q^{n\epsilon(n)} \right) \\ &\implies \delta_{\mathsf{J}} = \frac{\mathsf{D}_{\mathsf{J}}}{nN} > \theta \left(1 - R - o(1) \right). \end{split}$$

Justesen code: general case asymptotics

$$\mathsf{D}_{\mathsf{J}} = \mathsf{wt}(\mathbf{c}_{\min}) > d \cdot \left(D - q^{2k-n} V_q(n, d-1) \right) \,. \tag{(\diamondsuit)}$$

► To study the asymptotic trade-off R_J vs. δ_J in the general case, write r = k/n, and let θ be a real number (function) satisfying

$$\theta = \mathsf{H}_q^{-1}(1 - r - \epsilon(n)) \,,$$

where

 $\lim_{n\to\infty}\epsilon(n)=0 \quad \text{and} \quad \lim_{n\to\infty}n\,\epsilon(n)=\infty \quad (\text{e.g., }\epsilon(n)=\log n/n).$

▶ Selecting $d = \lceil \theta n \rceil$ in (♦), and recalling that $V_q(n, t) \leq q^{nH_q(t/n)}$ and $N = q^k = q^{rn}$, we obtain

$$\begin{split} \mathsf{D}_{\mathsf{J}} &> \theta n \cdot \left((1\!-\!R)N - q^{(2r-1)n} \cdot q^{n\mathsf{H}_q(\theta)} \right) \\ &= \theta n N \left((1\!-\!R) - q^{n(r-1+\mathsf{H}_q(\theta))} \right) = \theta n N \left((1\!-\!R) - q^{n\epsilon(n)} \right) \\ &\implies \delta_{\mathsf{J}} = \frac{\mathsf{D}_{\mathsf{J}}}{nN} > \theta \left(1 - R - o(1) \right). \end{split}$$

► For the rate R_J of C_J , we have $R_J \ge rR = (1 - \mathsf{H}_q(\theta) - \epsilon(n))R = (1 - \mathsf{H}_q(\theta) - o(1))R.$

15 / 64

Rate-minimum distance trade-off for the Justesen code

 $\delta_{\rm J} > \theta \, (1 - R - o(1)), \qquad R_{\rm J} \ge (1 - {\sf H}_q(\theta) - o(1)) R.$

We can maximize the rate over θ , for a given δ_J (setting $R \approx 1 - \frac{\delta}{\theta}$). Notice, however, that the rates of the Wozencraft codes must be in the interval $[\frac{1}{2}, 1)$, so we must have $\theta \leq \mathsf{H}_q^{-1}(\frac{1}{2})$. $[q=2: \theta \leq \theta_0 \approx 0.1100]$

Rate-minimum distance trade-off for the Justesen code

 $\delta_{\rm J} > \theta \, (1 - R - o(1)), \qquad R_{\rm J} \ge (1 - {\sf H}_q(\theta) - o(1)) R \,.$

We can maximize the rate over θ , for a given δ_J (setting $R \approx 1 - \frac{\delta}{\theta}$). Notice, however, that the rates of the Wozencraft codes must be in the interval $[\frac{1}{2}, 1)$, so we must have $\theta \leq \mathsf{H}_q^{-1}(\frac{1}{2})$. $[q=2: \theta \leq \theta_0 \approx 0.1100]$ $\bar{R}_J \quad (\delta_J = 0.02)$

0.3-

0.1-

• We obtain the lower bound $R_{
m J} \geq ar{R}_{
m J}(\delta,q) - o(1)$

$$\bar{R}_{\mathcal{J}}(\delta,q) = \max_{\theta \in [\delta,\mathsf{H}_q^{-1}(\frac{1}{2})]} \left(1 - \mathsf{H}_q(\theta)\right) \left(1 - \frac{\delta}{\theta}\right)$$

(note that for $\delta = \mathsf{H}_q^{-1}(\frac{1}{2})$ we get $R_{\mathrm{J}}(\delta, q) = 0$).

Example

For q = 2 we find, numerically, $\delta_0(2) \approx 0.0439$, $\bar{R}_J(\delta_0(2), 2) \approx 0.3005$.

• When $\delta > \delta_0(q)$, the maximum is obtained at $\theta = \mathsf{H}_q^{-1}(\frac{1}{2})$, and the bound becomes $\bar{R}_{\mathrm{J}}(\delta, q) = \frac{1}{2} \left(1 - \frac{\delta}{\mathsf{H}_q^{-1}(\frac{1}{2})} \right)$, a straight line.

0.4

Justesen codes—Asymptotics

Justesen codes—Asymptotics

Theorem (Asymptotic Gilbert-Varshamov bound)

Let F = GF(q) and n and nr be positive integers with $r \in [0,1]$. There exist a linear $[n, nr, \geq \delta n]$ code $C_{\rm GV}$ over F with

 $\delta = \mathsf{H}_q^{-1}(1-r) \,.$

Theorem (Asymptotic Gilbert-Varshamov bound)

Let F = GF(q) and n and nr be positive integers with $r \in [0,1]$. There exist a linear $[n, nr, \geq \delta n]$ code $C_{\rm GV}$ over F with

$$\delta = \mathsf{H}_q^{-1}(1-r) \,.$$

The code C_{GV} is constructed by building a parity-check matrix $H = [\mathbf{h}_1 \mathbf{h}_2 \dots \mathbf{h}_i \dots]$ column by column, according to the following rule:

Choose \mathbf{h}_{i+1} among columns that are not linear combinations of $\lceil \delta n \rceil - 2$ columns from $\{\mathbf{h}_1 \mathbf{h}_2 \dots \mathbf{h}_i\}$.

The number of the linear combinations to check is $O(V_q(n-1, \lceil \delta n \rceil - 2)) = q^{n(H_q(\delta) - o(1))} \implies$ construction of H takes time exponential in n for each fixed δ .

Exponential in n is polynomial in q^{rn} .

Construction of good concatenated codes (ii)

- ▶ We use C_{GV} as the inner code C_{in} , concatenated with an $[N = q^{rn}, K, D]$ extended primitive GRS code over $\Phi = GF(q^{rn})$ as C_{out} . Here, K = RN and D > (1 - R)N for some real $R \in (0, 1)$.
 - The parameters of $\mathcal{C}_{\mathrm{cct}}$ are given by

 $n_{\rm cct} = nN = nq^{n(1-\mathsf{H}_q(\delta))},$

$$k_{\text{cct}} = (1 - \mathsf{H}_q(\delta))R \cdot nN,$$

 $d_{\rm cct} \geq \delta(1-R) \cdot nN$.

- The length of C_{cct} can be arbitrarily large.
- The rate and relative minimum distance satisfy

 $R_{\rm cct} = (1 - \mathsf{H}_q(\delta))R,$ $\delta_{\rm cct} \geq \delta(1 - R).$

Construction of good concatenated codes (ii)

- ▶ We use C_{GV} as the inner code C_{in} , concatenated with an $[N = q^{rn}, K, D]$ extended primitive GRS code over $\Phi = GF(q^{rn})$ as C_{out} . Here, K = RN and D > (1 - R)N for some real $R \in (0, 1)$.
 - The parameters of \mathcal{C}_{cct} are given by

 $n_{\rm cct} = nN = nq^{n(1-\mathsf{H}_q(\delta))},$

$$k_{\text{cct}} = (1 - \mathsf{H}_q(\delta))R \cdot nN,$$

 $d_{\rm cct} \geq \delta(1-R) \cdot nN$.

- The length of C_{cct} can be arbitrarily large.
- The rate and relative minimum distance satisfy

 $R_{\rm cct} = (1 - \mathsf{H}_q(\delta))R,$ $\delta_{\rm cct} \geq \delta(1 - R).$

► Given a designed relative minimum distance $\delta_{\text{cct}} \in (0, 1 - q^{-1})$, we can maximize R_{cct} over δ and R, subject to $\delta(1 - R) \leq \delta_{\text{cct}}$. This yields

Zyablov bound

$$R_{\rm cct} \ge R_Z(\delta_{\rm cct}, q) = \max_{\delta \in [\delta_{\rm cct}, 1-(1/q)]} \left(1 - \mathsf{H}_q(\delta)\right) \left(1 - \frac{\delta_{\rm cct}}{\delta}\right) \,.$$

The Zyablov bound

The Zyablov bound

- The Zyablov bound is inferior to the GV bound.
- However, a generator matrix for a code C_{cct} achieving the bound can be constructed in time *polynomial* in n_{cct} .
 - A parity check matrix for $\mathcal{C}_{\rm GV}$ can be constructed in time

$$\begin{split} O\left(V_q(n-1,\lceil\delta n\rceil-2)\right) &= \\ O(n_{\rm cct}{}^{(1/r)-1}), \text{ where } \\ r &= 1 - \mathsf{H}_q(\delta). \end{split}$$

 A matrix for the GRS code is also easily built.

Decoding of concatenated codes

Minimum distance is dD. Can we decode up to $\lfloor (dD - 1)/2 \rfloor$ errors?

Suppose that a codeword

$$\mathbf{c} = (\mathbf{c}_1 \,|\, \mathbf{c}_2 \,|\, \dots \,|\, \mathbf{c}_N) \in \mathcal{C}_{\mathrm{cct}}$$

was transmitted through a noisy channel, and

$$\mathbf{y} = (\mathbf{y}_1 \,|\, \mathbf{y}_2 \,|\, \dots \,|\, \mathbf{y}_N) \in F^{nN}$$

was received, where $\mathbf{y}_j \in F^n$, j = 1, 2, ..., N, and assume $d(\mathbf{y}, \mathbf{c}) < dD/2$ (as words in F^{nN}).

▶ Suppose also that we have a *nearest codeword decoder* D_{in} for C_{in}.
 ▶ Let

 $\hat{\mathbf{c}}_j = \mathcal{D}_{\mathrm{in}}(\mathbf{y}_j), \quad \text{and} \quad \hat{\mathbf{z}}_j = \mathcal{E}_{\mathrm{in}}^{-1}(\hat{\mathbf{c}}_j), \ j = 1, 2, \dots, N.$

Decoding of concatenated codes (ii)

- ▶ The following decoding strategy is parametrized by $\mu \in \{1, 2, ..., \lceil d/2 \rceil\}$.
 - Compute $\mathbf{x} = \mathbf{x}(\mu) = (\mathbf{x}_1 \, \mathbf{x}_2 \, \dots \, \mathbf{x}_N) \in (\Phi \cup \{?\})^N$, with $\mathbf{x}_j = \begin{cases} \hat{\mathbf{z}}_j & \text{if } \mathsf{d}(\mathbf{y}_j, \hat{\mathbf{c}}_j) < \mu \\ ? & (\text{erasure}) \text{ otherwise} \end{cases}$ (††)
 - Use an errors+erasures decoder \mathcal{D}_{out} for \mathcal{C}_{out} on \mathbf{x} , obtaining a decoded word $\hat{\mathbf{c}} \in \mathcal{C}_{out}$, or a FAIL indicator.

The parameter μ is a threshold that \mathcal{D}_{in} utilizes to determine whether to attempt correction of a corrupted codeword or declare it erased.

Decoding of concatenated codes (ii)

- ▶ The following decoding strategy is parametrized by $\mu \in \{1, 2, ..., \lceil d/2 \rceil\}$.
 - Compute $\mathbf{x} = \mathbf{x}(\mu) = (\mathbf{x}_1 \, \mathbf{x}_2 \, \dots \, \mathbf{x}_N) \in (\Phi \cup \{?\})^N$, with $\mathbf{x}_j = \begin{cases} \hat{\mathbf{z}}_j & \text{if } \mathsf{d}(\mathbf{y}_j, \hat{\mathbf{c}}_j) < \mu \\ ? & (\text{erasure}) \text{ otherwise} \end{cases}$ (††)
 - Use an errors+erasures decoder \mathcal{D}_{out} for \mathcal{C}_{out} on x, obtaining a decoded word $\hat{c} \in \mathcal{C}_{out}$, or a FAIL indicator.

The parameter μ is a threshold that \mathcal{D}_{in} utilizes to determine whether to attempt correction of a corrupted codeword or declare it erased.

Let ρ_μ and τ_μ denote, respectively, the number of erasures in x(μ) and of non-erased locations j where x_j ≠ ε⁻¹_{in}(c_j).
D_{out} will reconstruct the original codeword c ∈ C_{out} if

$$2\tau_{\mu} + \rho_{\mu} < D. \qquad (*)$$

We will prove that there exists $\mu \in \{1, 2, \dots, \lceil d/2 \rceil\}$ such that (*) holds whenever the total number of errors is $T \leq \lfloor (dD - 1)/2 \rfloor$.

▶ Define, for $\mu \in \{1, 2, \dots, \lceil d/2 \rceil\}$,

$$\chi_j(\mu) = \begin{cases} 0 & \text{if } \hat{\mathbf{c}}_j = \mathbf{c}_j \text{ and } \mathsf{d}(\mathbf{y}_j, \hat{\mathbf{c}}_j) < \mu \\ 1 & \text{if } \hat{\mathbf{c}}_j \neq \mathbf{c}_j \text{ and } \mathsf{d}(\mathbf{y}_j, \hat{\mathbf{c}}_j) < \mu \\ \frac{1}{2} & \text{if } \mathsf{d}(\mathbf{y}_j, \hat{\mathbf{c}}_j) \geq \mu \end{cases}$$

A "decoding penalty" for the *j*th block given the threshold μ .

It is readily verified that

$$2\tau_{\mu} + \rho_{\mu} = 2\sum_{j=1}^{N} \chi_j(\mu).$$

▶ Define, for $\mu \in \{1, 2, \dots, \lceil d/2 \rceil\}$,

$$\chi_j(\mu) = \begin{cases} 0 & \text{if } \hat{\mathbf{c}}_j = \mathbf{c}_j \text{ and } \mathsf{d}(\mathbf{y}_j, \hat{\mathbf{c}}_j) < \mu \\ 1 & \text{if } \hat{\mathbf{c}}_j \neq \mathbf{c}_j \text{ and } \mathsf{d}(\mathbf{y}_j, \hat{\mathbf{c}}_j) < \mu \\ \frac{1}{2} & \text{if } \mathsf{d}(\mathbf{y}_j, \hat{\mathbf{c}}_j) \ge \mu \end{cases}$$

A "decoding penalty" for the *j*th block given the threshold μ .

It is readily verified that

$$2\tau_{\mu} + \rho_{\mu} = 2\sum_{j=1}^{N} \chi_j(\mu).$$

$$\mathsf{P}_{\mu}\left(\mu=x\right) = \left\{ \begin{array}{ll} 2/d & \text{ if } x \in \{1, 2, \dots, \lfloor d/2 \rfloor\}\\ 1/d & \text{ if } d \text{ is odd and } x = \lceil d/2 \rceil \end{array} \right.$$

Decoding of concatenated codes (iv)

Lemma

For every $j \in \{1, 2, ..., N\}$, $\mathsf{E}_{\mu} \{\chi_j(\mu)\} \leq \frac{\mathsf{d}(\mathbf{y}_j, \mathbf{c}_j)}{d}$.

Decoding of concatenated codes (iv)

$$\chi_{j}(\mu) = \begin{cases} 0 \quad \hat{\mathbf{c}}_{j} = \mathbf{c}_{j}, \ \mathsf{d}(\mathbf{y}_{j}, \hat{\mathbf{c}}_{j}) < \mu \\ 1 \quad \hat{\mathbf{c}}_{j} \neq \mathbf{c}_{j}, \ \mathsf{d}(\mathbf{y}_{j}, \hat{\mathbf{c}}_{j}) < \mu \\ \frac{1}{2} \quad \mathsf{d}(\mathbf{y}_{j}, \hat{\mathbf{c}}_{j}) \geq \mu \end{cases} \quad \mathsf{P}_{\mu}(x) = \begin{cases} 2/d \quad 1 \leq x \leq \lfloor d/2 \rfloor \\ 1/d \quad d \text{ odd}, \ x = \lceil d/2 \rceil \\ 1 \leq \mu \leq \lceil d/2 \rceil. \end{cases}$$

Proof.

Case 1: $\hat{\mathbf{c}}_{j} = \mathbf{c}_{j}$ or $w_{j} \triangleq d(\mathbf{y}_{j}, \hat{\mathbf{c}}_{j}) \ge d/2$. Here, $\chi_{j}(\mu)$ takes either the value 0 (when $\mu > w_{j}$) or $\frac{1}{2}$ (when $\mu \le w_{j}$), never the value 1. We have $\mathbf{E}_{\mu} \{\chi_{j}(\mu)\} = \frac{1}{2} \mathbf{P}_{\mu} \{\mu \le w_{j}\} \le \frac{w_{j}}{d} \stackrel{\text{def}}{=} \frac{d(\mathbf{y}_{j}, \hat{\mathbf{c}}_{j})}{d} \stackrel{\text{MLD}}{\le} \frac{d(\mathbf{y}_{j}, \mathbf{c}_{j})}{d}$. Case 2: $\hat{\mathbf{c}}_{j} \neq \mathbf{c}_{j}$ and $w_{j} < d/2$. Here, $\chi_{j}(\mu)$ takes the value 1 (when $\mu > w_{j}$), or $\frac{1}{2}$ (when $\mu \le w_{j}$), never the value 0. We have $\mathbf{E}_{\mu} \{\chi_{j}(\mu)\} = \frac{1}{2} \mathbf{P}_{\mu} \{\mu \le w_{j}\} + \mathbf{P}_{\mu} \{\mu > w_{j}\} = 1 - \frac{1}{2} \stackrel{\mathbf{v}_{j}}{\mathbf{P}_{\mu} \{\mu \le w_{j}\}}$ $= 1 - \frac{w_{j}}{d} = \frac{d - d(\mathbf{y}_{j}, \hat{\mathbf{c}}_{j})}{d} \stackrel{\text{triangle}}{\le} \frac{d(\mathbf{y}_{j}, \mathbf{c}_{j})}{d}$. $\mathbf{y}_{j} \stackrel{\mathbf{c}_{j}}{\underbrace{\mathbf{c}}_{j}} \stackrel{\mathbf{c}_{j}}{\underbrace{\mathbf{c}}_{j}}$

Decoding of concatenated codes (iv)

Lemma

For every $j \in \{1, 2, \dots, N\}$, $\mathsf{E}_{\mu}\left\{\chi_{j}(\mu)\right\} \leq rac{\mathsf{d}(\mathbf{y}_{j}, \mathbf{c}_{j})}{d}$.

Proof.

 $\begin{aligned} & \mathsf{Case 1:} \ \hat{\mathbf{c}}_{j} = \mathbf{c}_{j} \text{ or } w_{j} \triangleq \mathsf{d}(\mathbf{y}_{j}, \hat{\mathbf{c}}_{j}) \geq d/2. \text{ Here, } \chi_{j}(\mu) \text{ takes either the value 0} \\ & (\mathsf{when } \mu > w_{j}) \text{ or } \frac{1}{2} (\mathsf{when } \mu \leq w_{j}), \text{ never the value 1. We have} \\ & \mathsf{E}_{\mu} \{\chi_{j}(\mu)\} = \frac{1}{2}\mathsf{P}_{\mu} \{\mu \leq w_{j}\} \leq \frac{w_{j}}{d} \stackrel{\mathsf{def}}{=} \frac{\mathsf{d}(\mathbf{y}_{j}, \hat{\mathbf{c}}_{j})}{d} \stackrel{\mathsf{MLD}}{\leq} \frac{\mathsf{d}(\mathbf{y}_{j}, \mathbf{c}_{j})}{d} \text{ .} \\ & \mathsf{Case 2:} \ \hat{\mathbf{c}}_{j} \neq \mathbf{c}_{j} \text{ and } w_{j} < d/2. \text{ Here, } \chi_{j}(\mu) \text{ takes the value 1 (when } \mu > w_{j}), \\ & \mathsf{or } \frac{1}{2} (\mathsf{when } \mu \leq w_{j}), \text{ never the value 0. We have} \\ & \mathsf{E}_{\mu} \{\chi_{j}(\mu)\} = \frac{1}{2}\mathsf{P}_{\mu} \{\mu \leq w_{j}\} + \mathsf{P}_{\mu} \{\mu > w_{j}\} = 1 - \frac{1}{2} \stackrel{\mathsf{W}_{j}}{\mathsf{P}_{\mu} \{\mu \leq w_{j}\}} \\ & = 1 - \frac{w_{j}}{d} = \frac{d - \mathsf{d}(\mathbf{y}_{j}, \hat{\mathbf{c}}_{j})}{d} \stackrel{\mathsf{triangle}}{\leq} \frac{\mathsf{d}(\mathbf{y}_{j}, \mathbf{c}_{j})}{d}. \end{aligned}$

Decoding of concatenated codes (v)

Theorem

There exists $\mu \in \{1, 2, \dots, \lceil d/2 \rceil\}$ such that $2\tau_{\mu} + \rho_{\mu} < D$.

Decoding of concatenated codes (v)

Theorem

There exists $\mu \in \{1, 2, \dots, \lceil d/2 \rceil\}$ such that $2\tau_{\mu} + \rho_{\mu} < D$.

Proof.

Taking expected values of both sides of $2\tau_{\mu} + \rho_{\mu} = 2\sum_{j=1}^{N} \chi_j(\mu)$ we obtain

$$\mathsf{E}_{\mu} \{ 2\tau_{\mu} + \rho_{\mu} \} = 2 \sum_{i=1}^{N} \mathsf{E}_{\mu} \{ \chi_{j}(\mu) \} .$$

By the Lemma, we have

$$2\sum_{j=1}^{N}\mathsf{E}_{\mu}\left\{\chi_{j}(\mu)\right\} \leq \frac{2}{d}\sum_{j=1}^{N}\mathsf{d}(\mathbf{y}_{j},\mathbf{c}_{j}) = \frac{2\,\mathsf{d}(\mathbf{y},\mathbf{c})}{d} < D \; .$$

Combining the last two equations we obtain

 $\mathsf{E}_{\mu} \{ 2\tau_{\mu} + \rho_{\mu} \} < D$.

 \Rightarrow There must be at least one $\mu \in \{1, 2, \dots, \lceil d/2 \rceil\}$ for which $2\tau_{\mu} + \rho_{\mu} < D$.

Forney's Generalized Minimum Distance Decoder (GMD)

Input: received word $\mathbf{y} = (\mathbf{y}_1 | \mathbf{y}_2 | \dots | \mathbf{y}_N) \in F^{nN}$. **Output:** codeword $\mathbf{c} \in C_{\text{cct}}$ or a decoding-failure indicator FAIL.

- **1** For j = 1, 2, ..., N do:
 - apply a nearest-codeword decoder for C_{in} to y_j to produce ĉ_j ∈ C_{in}, corresponding to z_j = ε⁻¹_{in}(ĉ_j) ∈ Φ.

2 For
$$\mu = 1, 2, ..., \lceil d/2 \rceil$$
 do:

- **a** let $\mathbf{x}(\mu) = (\mathbf{x}_1 \ \mathbf{x}_2 \ \dots \ \mathbf{x}_N) (\Phi \cup \{?\})^N$ be as defined in (††), and let $\rho_{\mu} \leftarrow |\{j : \mathbf{x}_j = ?\}|$ // number of erasures in $\mathbf{x}(\mu)$
- **b** apply an error-erasure decoder for C_{out} to recover ρ_{μ} erasures and correct up to $\tau_{\mu} = \lfloor \frac{1}{2}(D-1-\rho_{\mu}) \rfloor$ errors in x, producing either a codeword

 $(\mathbf{z}_1 \, \mathbf{z}_2 \, \dots \, \mathbf{z}_N) \in \mathcal{C}_{\text{out}}, \quad \text{or} \quad \text{FAIL};$

- **c** if decoding is successful in Step b then do:
 - (i) let $\mathbf{c} \leftarrow (\mathcal{E}_{in}(\mathbf{z}_1) \mathcal{E}_{in}(\mathbf{z}_2) \dots \mathcal{E}_{in}(\mathbf{z}_N));$
 - (i) if $d(\mathbf{y}, \mathbf{c}) < dD/2$ then output \mathbf{c} and exit.

3 If no codeword **c** was produced in Step c then return FAIL.

GMD complexity

- ▶ Step 1: Brute-force search for closest codeword takes $O(n|\Phi|) = O(nq^k)$. When $N \approx q^k$ (e.g. primitive RS codes), this is O(nN) per block \mathbf{y}_j , or overall $O(nN^2)$.
- ▶ Step 2: Assuming a GRS code is used, Step 2b has complexity $O(ND) = O(N^2)$. Overall for Step 2: $O(dN^2) = O(nN^2)$. ⇒ overall complexity is $O(nN^2)$.

GMD complexity

- ▶ Step 1: Brute-force search for closest codeword takes $O(n|\Phi|) = O(nq^k)$. When $N \approx q^k$ (e.g. primitive RS codes), this is O(nN) per block \mathbf{y}_j , or overall $O(nN^2)$.
- ▶ Step 2: Assuming a GRS code is used, Step 2b has complexity O(ND) = O(N²). Overall for Step 2: O(dN²) = O(nN²).
 ⇒ overall complexity is O(nN²).
- Improvements:
 - Step 1 can be done with a syndrome look-up table of size O(nq^{n-k}) in time O(nN).
 - Further speed-up is possible by noticing that since $\mu < d/2$, only (d-1)/2 decoding is required for $C_{\rm in}$. $C_{\rm in}$ can be chosen as a code with an efficient decoding algorithm (e.g., Hamming, Golay, BCH, alternant).
 - Step 2 for GRS codes can be accelerated to $(n^3 N \log^2 N \log \log N)$.

Concatenated codes that attain channel capacity

- ▶ We will show that it is possible to approach the capacity of the *q*-ary symmetric channel (QSC) with linear concatenated codes that
 - can be constructed, deterministically, in polynomial time
 - can be encoded and decoded in polynomial time
 - achieve an exponentially decaying probability of decoding error

Concatenated codes that attain channel capacity

- ► We will show that it is possible to approach the capacity of the *q*-ary symmetric channel (QSC) with linear concatenated codes that
 - can be constructed, deterministically, in polynomial time
 - can be encoded and decoded in polynomial time
 - achieve an exponentially decaying probability of decoding error

First, we need to review the basics of *channel capacity*.

Concatenated codes that attain channel capacity

- ► We will show that it is possible to approach the capacity of the *q*-ary symmetric channel (QSC) with linear concatenated codes that
 - can be constructed, deterministically, in polynomial time
 - can be encoded and decoded in polynomial time
 - achieve an exponentially decaying probability of decoding error

First, we need to review the basics of *channel capacity*.

Channel capacity-a (very brief) review: Converse theorem

Theorem (Shannon Converse Coding Theorem for the *q*-ary symmetric channel)

Let C be an (n, q^{nR}) code over F where n and nR are integers such that $C_q(p) < R \leq 1$, and let $\mathcal{D} : F^n \to C \cup \{ E' \}$ be a decoder for C over a q-ary symmetric channel with cross-over probability p. Then the decoding error probability $P_{\rm err}$ of \mathcal{D} satisfies

$$P_{\text{err}} \ge 1 - q^{-n(\mathsf{D}_q(\theta_q(R) \| p) - o(1))}$$

where

$$\theta_q(R) = \mathsf{H}_q^{-1}(1-R) \; .$$

- ▶ $D_q(\theta|p) \triangleq \theta \log_q(\frac{\theta}{p}) + (1-\theta) \log_q(\frac{1-\theta}{1-p})$ is the *(information) divergence* or *Kullback-Liebler distance* of θ with respect to p (positive if $\theta \neq p$).
- ► Notice that $\theta_q(R) = \mathsf{C}_q^{-1}(R)$.
- The theorem says that communication is impossible at rates above the channel capacity.

Channel capacity—a (very brief) review: Coding theorem

Theorem (Shannon Coding Theorem for *linear codes* over the *q*-ary symmetric channel)

Let n and nR be integers such that $R < 1 - H_q(p)$ and let $\overline{P_{\text{err}}(C)}$ denote the average of $P_{\text{err}}(C)$, under MLD, over all linear [n, nR] codes Cover F. Then, $\overline{D_{\text{err}}(C)} \rightarrow 2 - \frac{\pi E_q(nR)}{2}$

$$\overline{P_{\rm err}(\mathcal{C})} < 2q^{-nE_q(p,R)}$$

where

$$E_q(p,R) = 1 - \mathsf{H}_q(\theta_q^*(p,R)) - R$$

and

$$\theta_q^*(p,R) = \frac{\log_q(1-p) + 1 - R}{\log_q(1-p) - \log_q(p/(q-1))} \,.$$

Corollary

For every $\rho \in (0,1]$, all but a fraction at most ρ of the linear [n, nR] codes C over F satisfy

$$P_{\operatorname{err}}(\mathcal{C}) < (1/\rho) \cdot 2q^{-nE_q(p,R)}$$

The construction

- We construct a linear concatenated code C_{cct} .
- ▶ Choose, as inner code C_{in} , an [n, nr] code C over F = GF(q), with

 $r < 1 - \mathsf{H}_q(p)$

and such that the decoding error probability satisfies

 $P_{\operatorname{err}}(\mathcal{C}) < 4q^{-nE_q(p,r)}$

where $E_q(p,r)$ is the exponent in Shannon's Coding Theorem for linear codes (we sacrifice some error probability to allow for computations with reduced precision—linear in n).

• Let $N_0(n, r, q)$ denote an upper bound on the number of operations over F required to construct C.

The construction (ii)

▶ Use, as outer code, a linear concatenated code C_{out} of length N over $\Phi = GF(q^{rn})$, where $N \ge \max\{N_0, q^{rn}\}$. Furthermore, let C_{out} attain Zyablov's bound, and assume its minimum distances satisfies $D_{out} \ge \lceil \delta N \rceil$ for some real parameter $\delta \in [0, 1]$ (we will determine a relation between r and δ later on).

The construction (ii)

- ▶ Use, as outer code, a linear concatenated code C_{out} of length N over $\Phi = GF(q^{rn})$, where $N \ge \max\{N_0, q^{rn}\}$. Furthermore, let C_{out} attain Zyablov's bound, and assume its minimum distances satisfies $D_{out} \ge \lceil \delta N \rceil$ for some real parameter $\delta \in [0, 1]$ (we will determine a relation between r and δ later on).
- Given δ , the rate R of C_{out} is lower-bounded by

 $R \ge R_Z(\delta, q^{rn})$

(the choice of δ will be such that R is close to 1).

The construction (ii)

- ▶ Use, as outer code, a linear concatenated code C_{out} of length N over $\Phi = GF(q^{rn})$, where $N \ge \max\{N_0, q^{rn}\}$. Furthermore, let C_{out} attain Zyablov's bound, and assume its minimum distances satisfies $D_{out} \ge \lceil \delta N \rceil$ for some real parameter $\delta \in [0, 1]$ (we will determine a relation between r and δ later on).
- Given δ , the rate R of C_{out} is lower-bounded by

 $R \ge R_Z(\delta, q^{rn})$

(the choice of δ will be such that R is close to 1).

▶ We will skip the analysis of the encoding complexity, and go directly to decoding (more interesting). The gory details are in Roth (2005).

Let

$$\mathbf{y} = (\mathbf{y}_1 \,|\, \mathbf{y}_2 \,|\, \dots \,|\, \mathbf{y}_N) \in F^{nN}$$

be the received word, where each $\mathbf{y}_j \in F^n$.

The construction (iii)

Decoder for $\mathcal{C}_{\mathrm{cct}}$

- **1** Apply a nearest-codeword decoder for $C_{in} = C$ to each sub-block \mathbf{y}_j to produce a codeword $\hat{\mathbf{c}}_j$ of C.
- 2 Apply a GMD decoder for $\mathcal{C}_{\rm out}$ to correct up to $\lceil \delta N/2 \rceil$ errors in the word

 $(\mathcal{E}^{-1}(\hat{\mathbf{c}}_1) | \mathcal{E}^{-1}(\hat{\mathbf{c}}_2) | \dots | \mathcal{E}^{-1}(\hat{\mathbf{c}}_N)) \in \Phi^N$

(note that $\lceil \delta N/2 \rceil - 1 = \lfloor (\lceil \delta N \rceil - 1)/2 \rfloor$, and recall that $D_{\text{out}} \ge \lceil \delta N \rceil$).

► As before, the decoding operation can be done in time O((nN)²) (actually less).

Bounding error probability and rate

▶ Error probability: Decoding will fail only if $\tau = \lceil \delta N/2 \rceil$ or more of the sub-blocks \mathbf{y}_j are decoded incorrectly by a nearest-codeword decoder for C. For each sub-block, this probability is $P = P_{\text{err}}(C)$. Hence, recalling that the channel is memoryless, we can write

$$P_{\rm err}(\mathcal{C}_{\rm cct}) \leq \sum_{i=\tau}^{N} {N \choose i} P^{i} (1-P)^{N-i}$$

$$\leq \sum_{i=\tau}^{N} {N \choose i} P^{i} \leq P^{\tau} \sum_{i=\tau}^{N} {N \choose i}$$

$$\leq 2^{N} \cdot P^{\tau} \leq 2^{N} \cdot P^{N\delta/2} < 4^{N} q^{-NnE_{q}(p,\tau)\delta/2}$$

$$\leq q^{-nN(E_{q}(p,\tau)\delta/2 - o(1))}. \qquad (*)$$

Bounding error probability and rate (ii)

▶ Rate: It can be shown that

and, therefore,

$$R_Z(\delta, q^{rn}) = (1 - \sqrt{\delta})^2 - o(1)/r,$$

$$R_{\text{cct}} \ge rR \ge r \cdot (1 - \sqrt{\delta})^2 - o(1). \quad (**)$$

Bounding error probability and rate (ii)

► Rate: It can be shown that and, therefore,
$$\begin{split} R_Z(\delta,q^{rn}) &= (1-\sqrt{\delta})^2 - o(1)/r \,, \\ R_{\rm cct} &\geq rR \geq r \cdot (1-\sqrt{\delta})^2 - o(1) \,. \end{split} \tag{**}$$

Error (from previous slide):

$$P_{\rm err}(\mathcal{C}_{\rm cct}) \le q^{-nN(E_q(p,r)\delta/2 - o(1))} \,. \tag{*}$$

Bounding error probability and rate (ii)

► Rate: It can be shown that and, therefore,
$$\begin{split} R_Z(\delta,q^{rn}) &= (1-\sqrt{\delta})^2 - o(1)/r \,, \\ R_{\rm cct} &\geq rR \geq r \cdot (1-\sqrt{\delta})^2 - o(1) \,. \end{split} \tag{**}$$

$$P_{\rm err}(\mathcal{C}_{\rm cct}) \le q^{-nN(E_q(p,r)\delta/2 - o(1))} \,. \tag{*}$$

▶ Given a designed rate $\mathcal{R} < 1 - \mathsf{H}_q(p)$, we select the rate r of \mathcal{C}_{in} so that $\mathcal{R} \leq r \leq 1 - \mathsf{H}_q(p)$ and set δ to

$$\delta = (1 - \sqrt{\mathcal{R}/r})^2$$
.

Therefore, from (**), we have $R_{\rm cct} \ge \mathcal{R} - o(1)$, while the error exponent in (*) satisfies

$$-\frac{\log_q P_{\text{err}}(\mathcal{C}_{\text{cct}})}{nN} \ge \frac{1}{2}E_q(p,r)(1-\sqrt{\mathcal{R}/r})^2 - o(1)$$

Bounding error probability and rate (iii)

 \blacktriangleright By maximizing over r we obtain

$$-\frac{\log_q P_{\text{err}}(\mathcal{C}_{\text{cct}})}{nN} \ge E_q^*(p,\mathcal{R}) - o(1)\,,$$

where

$$E_q^*(p, \mathcal{R}) = \max_{\mathcal{R} \le r \le 1 - \mathsf{H}_q(p)} \frac{1}{2} E_q(p, r) (1 - \sqrt{\mathcal{R}/r})^2 .$$

In particular, $E_q^*(p, \mathcal{R}) > 0$ whenever $\mathcal{R} < 1 - \mathsf{H}_q(p)$.

Theorem

Let F = GF(q) and fix a crossover probability $p \in [0, 1-(1/q))$ of a QSC. For every $\mathcal{R} < 1 - H_q(p)$ there exists an infinite sequence of linear concatenated codes $C_1, C_2, \dots, C_i, \dots$ over F such that the following holds.

- **()** Each code C_i is a linear $[n_i, k_i]$ code over F and the values n_i and k_i can be computed from \mathcal{R} , q, and i in time complexity that is polynomially large in the length of the bit representations of \mathcal{R} , q, i, and n_i .
- (i) The code rates k_i/n_i satisfy

$$\liminf_{i\to\infty}\frac{k_i}{n_i}\geq \mathcal{R}\;.$$

- **(1)** A generator matrix of C_i can be constructed in time $O(n_i^2)$, and can be used to encode also in time $O(n_i^2)$.
- There is a decoder for C_i whose time complexity is O(n_i²) and its decoding error probability P_{err}(C_i) satisfies

$$-\liminf_{i\to\infty}\frac{1}{n_i}\log_q P_{\operatorname{err}}(\mathcal{C}_i) \ge E_q^*(p,\mathcal{R}) > 0 \; .$$