[2.](#page-0-0) List Decoding of Generalized Reed-Solomon **Codes**

Gadiel Seroussi

October 14, 2022

2 [List Decoding of Generalized Reed-Solomon Codes](#page-0-1)

- **[List Decoding of Linear Codes](#page-4-0)**
- **[Bivariate polynomials](#page-11-0)**
- [GRS decoding through bivariate polynomials](#page-18-0)
- **List-** ℓ decoding for $\ell > 1$ [: Sudan's algorithm](#page-27-0)
- [Sudan's algorithm \(iv\)](#page-36-0)
- \blacksquare A list- ℓ [decoder for](#page-38-0) \mathcal{C}_{CRS}
- [Reverse engineering](#page-39-0)
- [Analysis of the computation](#page-42-0)
- [Sudan's algorithm: small example](#page-46-0)
- [Sudan's algorithm: small example](#page-47-0)
- [Sudan's algorithm: small example](#page-48-0)
- [Sudan's algorithm: bigger example](#page-49-0)
- [The Guruswami-Sudan algorithm](#page-50-0)
- **[Hasse derivatives](#page-51-0)**
- [Guruswami-Sudan algorithm: auxiliary lemma](#page-57-0)
- [Guruswami-Sudan interpolation lemma](#page-60-0)
- [Guruswami-Sudan factorization lemma](#page-64-0)
- [The Guruswami-Sudan \(GS\) decoder](#page-66-0)
- **[The Guruswami-Sudan algorithm: example](#page-67-0)**
- [Optimizing the decoding radius](#page-68-0)
- [Best values of](#page-71-0) r for $\ell = 4$
- **[Comparison with list-1 decoder and asymptotic behavior](#page-72-0)**
- [The average number of incorrect codewords in the list](#page-73-0)
- Finding z [-roots of bi-variate polynomials](#page-76-0)
- [Algoritm BiRoot \(Roth-Ruckenstein 2000\)](#page-79-0)
- [Algorithm BiRoot: correctness](#page-87-0)

[Algorithm BiRoot: complexity](#page-88-0)

List Decoding of Linear Codes

Given

- an $[n, k, d]$ linear code C over a field F,
- a channel $S = (F, F, P)$ (assuming for simplicity channel output alphabet $=$ input alphabet),
- a positive integer ℓ .

Definition

A *list-* ℓ *decoder* is a mapping $| \mathcal{D}: \ F^n \ \rightarrow \ 2^{\mathcal{C}}$ (subsets of \mathcal{C}), where $|\mathcal{D}(\mathbf{y})| \leq \ell$ for every $\mathbf{y} \in \mathbb{F}^n$.

Given a received word y, the decoder returns a *list* of at most ℓ codewords.

List Decoding of Linear Codes

Given

- an $[n, k, d]$ linear code C over a field F,
- a channel $S = (F, F, P)$ (assuming for simplicity channel output alphabet $=$ input alphabet),
- a positive integer ℓ .

Definition

A *list-* ℓ *decoder* is a mapping $| \mathcal{D}: \ F^n \ \rightarrow \ 2^{\mathcal{C}}$ (subsets of \mathcal{C}), where $|\mathcal{D}(\mathbf{y})| \leq \ell$ for every $\mathbf{y} \in \mathbb{F}^n$.

Given a received word y, the decoder returns a *list* of at most ℓ codewords.

We declare success if the list includes the transmitted codeword.

List Decoding of Linear Codes (ii)

D captures all codewords at distance τ or less from any received word y.

List Decoding of Linear Codes (ii)

D captures all codewords at distance τ or less from any received word y.

- If the number of errors that actually occurred is τ or less, then the returned list is guaranteed to contain the transmitted codeword.
- A nearest-codeword decoder for an $[n, k, d]$ linear code C is a list-1 decoder with decoding radius $|(d-1)/2|$.

List Decoding of Linear Codes (ii)

D captures all codewords at distance τ or less from any received word y.

- If the number of errors that actually occurred is τ or less, then the returned list is guaranteed to contain the transmitted codeword.
- A nearest-codeword decoder for an $[n, k, d]$ linear code C is a list-1 decoder with decoding radius $|(d-1)/2|$.

But, what good is a list of words if what we want is the *unique* codeword that was sent?

List Decoding of Linear Codes (iii)

How do we pick the right codeword from $\mathcal{D}(\mathbf{y})$?

- Maximizing likelihood: $P(y \text{ received} | c \text{ transmitted})$. Reduces *maximum likelihood decoding* for errors of weight up to τ to a search among ℓ codewords, with ties resolved according to some (deterministic or randomized) policy.
- Using side information on codewords, such as a priori probabilities (maybe derived from the context).

List Decoding of Linear Codes (iii)

How do we pick the right codeword from $\mathcal{D}(\mathbf{y})$?

- Maximizing likelihood: $P(y \text{ received} | c \text{ transmitted})$. Reduces *maximum likelihood decoding* for errors of weight up to τ to a search among ℓ codewords, with ties resolved according to some (deterministic or randomized) policy.
- Using side information on codewords, such as a *priori* probabilities (maybe derived from the context).
- The list may contain a single codeword even when $\tau > |(d-1)/2|!$ (We'll get back to this later.)

Bivariate polynomials

 \blacktriangleright $F[x, z] =$ set of all bivariate polynomials in x, z over a field F :

$$
F[x, z] = \left\{ \, f(x, z) = \sum_{i, j=0}^{m} f_{i, j} x^{i} z^{j} \; : \; m \in \mathbb{Z}_{\geq 0}, \; f_{i, j} \in F \, \, \right\}.
$$

 \triangleright We will also use the equivalent representation

$$
F[x][z] = \left\{ f(x, z) = \sum_{j=0}^{m} f_j(x) z^j \; : \; m \in \mathbb{Z}_{\geq 0}, \; f_j \in F[x] \; \right\}.
$$

Bivariate polynomials

 \blacktriangleright $F[x, z] =$ set of all bivariate polynomials in x, z over a field F:

$$
F[x, z] = \left\{ \, f(x, z) = \sum_{i, j=0}^{m} f_{i, j} x^{i} z^{j} \; : \; m \in \mathbb{Z}_{\geq 0}, \; f_{i, j} \in F \, \, \right\}.
$$

 \triangleright We will also use the equivalent representation

$$
F[x][z] = \left\{ f(x, z) = \sum_{j=0}^{m} f_j(x) z^j \; : \; m \in \mathbb{Z}_{\geq 0}, \; f_j \in F[x] \right\}.
$$

- \blacktriangleright $F[x, y]$ is a ring. Addition and multiplication are well defined, additive inverses exist, multiplicative ones do not in general (except for scalars).
- \blacktriangleright $F[x][z]$ is a ring of univariate polynomials with coefficients in $F[x]$, which is a ring of univariate polynomials with coefficients in F .

Bivariate polynomials: degree

Definition

The (μ, ν) -degree of $f(x, z) \in F[x, z]$, $\mu, \nu \geq 0$:

$$
\deg_{\mu,\nu} f(x,z) = \max_{i,j \,:\, f_{i,j} \neq 0} \{ i\mu + j\nu \} .
$$

Bivariate polynomials: degree

Definition

The (μ, ν) -degree of $f(x, z) \in F[x, z]$, $\mu, \nu \geq 0$:

$$
\deg_{\mu,\nu} f(x,z) = \max_{i,j \,:\, f_{i,j} \neq 0} \{ i\mu + j\nu \} .
$$

- $\deg_{1,1} f(x, z)$ is the ordinary degree of $f(x, z)$ in $F[x, z]$.
- $\bullet\;\deg_{0,1}f(x,z)$ is the ordinary degree of $f(x,z)$ when regarded as an element of $F[x][z]$ (degree in z).
- By convention, $deg_{u,v}(0) = -\infty$.

Definition

Let $f(x, z), g(x, z) \in \mathbb{F}[x, z], f(x, z) \neq 0$. We say that $f(x, z)$ divides (or is a *factor* of) $g(x, z)$ if $g(x, z) = f(x, z)h(x, z)$ for some $h \in F[x, z]$.

• $F[x, z]$ is not a Euclidean ring. However, $F[x][z]$ is, and $F[x, z]$ is a unique factorization domain.

Definition

Let $f(x, z), g(x, z) \in \mathbb{F}[x, z], f(x, z) \neq 0$. We say that $f(x, z)$ divides (or is a factor of) $g(x, z)$ if $g(x, z) = f(x, z)h(x, z)$ for some $h \in F[x, z]$.

• $F[x, z]$ is not a Euclidean ring. However, $F[x][z]$ is, and $F[x, z]$ is a unique factorization domain.

Definitions

- A (z-)linear factor of $Q(x, z)$ is a factor of the form $z f(x)$, $f(x) \in F[x]$.
- $f(x)$ is a z-root of $Q(x, z)$ if $Q(x, f(x)) = 0$ (identically).

Definition

Let $f(x, z), g(x, z) \in \mathbb{F}[x, z], f(x, z) \neq 0$. We say that $f(x, z)$ divides (or is a factor of) $g(x, z)$ if $g(x, z) = f(x, z)h(x, z)$ for some $h \in F[x, z]$.

• $F[x, z]$ is not a Euclidean ring. However, $F[x][z]$ is, and $F[x, z]$ is a unique factorization domain.

Definitions

- A (z-)linear factor of $Q(x, z)$ is a factor of the form $z f(x)$, $f(x) \in F[x]$.
- $f(x)$ is a *z*-root of $Q(x, z)$ if $Q(x, f(x)) = 0$ (identically).

Lemma

 $f(x)$ is a z-root of $Q(x, z)$ if and only if $z - f(x)$ is a factor of $Q(x, z)$.

• Proof not totally trivial since $F[x]$ is not a field—work over the field of rational functions $F(x)$.

 \triangleright \mathcal{C}_{GRS} : $[n, k, d]$ GRS code over a field F. For simplicity, we assume a generator matrix of the form

$$
G_{\rm GRS} = \left(\begin{array}{ccccc} 1 & 1 & \dots & 1 \\ \alpha_1 & \alpha_2 & \dots & \alpha_n \\ \alpha_1^2 & \alpha_2^2 & \dots & \alpha_n^2 \\ \vdots & \vdots & \vdots & \vdots \\ \alpha_1^{k-1} & \alpha_2^{k-1} & \dots & \alpha_n^{k-1} \end{array} \right)
$$

 \blacktriangleright \mathcal{C}_{GRS} : $[n, k, d]$ GRS code over a field F. For simplicity, we assume a generator matrix of the form

$$
G_{\text{GRS}} = \left(\begin{array}{ccccc} 1 & 1 & \dots & 1 \\ \alpha_1 & \alpha_2 & \dots & \alpha_n \\ \alpha_1^2 & \alpha_2^2 & \dots & \alpha_n^2 \\ \vdots & \vdots & \vdots & \vdots \\ \alpha_1^{k-1} & \alpha_2^{k-1} & \dots & \alpha_n^{k-1} \end{array} \right)
$$

▶ Associate $\mathbf{u} = (u_0, u_1, \dots, u_{k-1}) \in F^k$ with $u(x) = \sum_{i=0}^{k-1} u_i x^i \in F_k[x]$. $\mathcal{C}_{\text{GRS}} = \left\{ \mathbf{u} \, G_{\text{GRS}} = \big(\, u(\alpha_1), \ u(\alpha_2), \ \ldots, \ u(\alpha_n) \, \big) \ \ : \ \ u(x) \in F_k[x] \right\}$

Assume $\mathbf{c} = (c_1, c_2, \ldots, c_n)$ was sent, and $\mathbf{y} = (y_1, y_2, \ldots, y_n)$ was received, with $d(\mathbf{y}, \mathbf{c}) \leq \frac{1}{2}(d-1)$. Since $n \geq k$, reconstructing ${\bf c} = (u(\alpha_1), u(\alpha_2), \ldots, u(\alpha_n))$ is the same as reconstructing $u(x)$.

▶ Construct $Q(x, z) \in F[x, z]$ satisfying *degree constraints*

 $deg_{0,1} Q(x, z) \leq 1$ and $deg_{1,k-1} Q(x, z) < n - \frac{1}{2}(d-1)$

and interpolation constraints

$$
Q(\alpha_j, y_j) = 0, \quad j = 1, 2, \dots, n \quad (*)
$$

▶ Construct $Q(x, z) \in F[x, z]$ satisfying *degree constraints* $deg_{0,1} Q(x, z) \leq 1$ and $deg_{1,k-1} Q(x, z) < n - \frac{1}{2}(d-1)$ and interpolation constraints

$$
Q(\alpha_j, y_j) = 0, \quad j = 1, 2, \dots, n \quad (*)
$$

 \blacktriangleright The degree constraints mean that $Q(x, z)$ must be of the form

 $Q(x, z) = Q_0(x) + zQ_1(x)$

▶ Construct $Q(x, z) \in F[x, z]$ satisfying *degree constraints* $deg_{0,1} Q(x, z) \leq 1$ and $deg_{1,k-1} Q(x, z) < n - \frac{1}{2}(d-1)$ and interpolation constraints

$$
Q(\alpha_j, y_j) = 0, \quad j = 1, 2, \dots, n \quad (*)
$$

 \blacktriangleright The degree constraints mean that $Q(x, z)$ must be of the form

 $Q(x, z) = Q_0(x) + zQ_1(x),$ $\overline{\phantom{P_{k-1+\deg(Q_1)}}_{k-1+\deg(Q_1)} \cdot \phantom{P_{k-1}^{-1}}_{n-\frac{1}{2}(d-1)}}$ $deg(Q_0) < n - \frac{1}{2}(d-1)$ and $deg Q_1(x) < \frac{1}{2}(d+1)$

▶ Construct $Q(x, z) \in F[x, z]$ satisfying *degree constraints* $deg_{0,1} Q(x, z) \leq 1$ and $deg_{1,k-1} Q(x, z) < n - \frac{1}{2}(d-1)$ and interpolation constraints

$$
Q(\alpha_j, y_j) = 0, \quad j = 1, 2, \dots, n \quad (*)
$$

 \blacktriangleright The degree constraints mean that $Q(x, z)$ must be of the form

 $Q(x, z) = Q_0(x) + zQ_1(x),$ $\overline{\phantom{P_{k-1+\deg(Q_1)}}_{k-1+\deg(Q_1)} \cdot \phantom{P_{k-1}^{-1}}_{n-\frac{1}{2}(d-1)}}$ $deg(Q_0) < n - \frac{1}{2}(d-1)$ and $deg Q_1(x) < \frac{1}{2}(d+1)$

 \blacktriangleright This still allows $Q(x, z)$ to have

 $\lceil n - \frac{1}{2}(d-1) \rceil + \lceil \frac{1}{2}(d+1) \rceil \geq n+1$

significant (unknown) coefficients. On the other hand $(*)$ is a set of n homogeneous linear equations in these unknowns \implies there is at least one nonzero solution $Q(x, z)$ satisfying the constraints.

Let $n_0 = \deg(Q_0)$, $n_1 = \deg(Q_1)$. Then $Q(\alpha_j,y_j)=\sum^{n_0}\,$ $s=0$ $Q_{s,0}\alpha_j^s + \sum^{n_1}$ $t=0$ $Q_{t,1}\alpha_j^ty_j$. The equations (\ast) can be written as Г $Q_\mathrm{0,0}$ $Q_{1,0}$ $\,_{2,0}$ ı Q_0 , Q_1 , Q_2

There is at least one nonzero solution $Q(x, z)$ satisfying the constraints.

There is at least one nonzero solution $Q(x, z)$ satisfying the constraints.

Consider such a solution, and define

$$
\varphi(x) = Q(x, u(x)) = Q_0(x) + u(x)Q_1(x) \quad (**)
$$

Denote the set of error locations $J = \{ j : y_j \neq c_j \}$. For $j \notin J$ we have

$$
\varphi(\alpha_j)=Q(\alpha_j,u(\alpha_j))=Q(\alpha_j,c_j)=Q(\alpha_j,y_j)\stackrel{(*)}{=}0
$$

 $\implies \varphi(x)$ has at least $n - |J|$ distinct roots in F. But

 $\deg \varphi(x) \le \max\{\deg Q_0(x), \deg u(x) + \deg Q_1(x)\} < n - \frac{1}{2}(d-1) \le n - |J|$ $\deg \varphi(x) \le \max\{\deg Q_0(x), \deg u(x) + \deg Q_1(x)\} < n - \frac{1}{2}(d-1) \le n - |J|$ $\deg \varphi(x) \le \max\{\deg Q_0(x), \deg u(x) + \deg Q_1(x)\} < n - \frac{1}{2}(d-1) \le n - |J|$

 $\implies \varphi(x)$ must be identically zero \implies we can solve for $u(x)$ in $(**)$:

$$
u(x) = -\frac{Q_0(x)}{Q_1(x)}
$$

This recovers the transmitted codeword c.

► Since $\varphi \equiv 0$, we also have, for $j \in J$

$$
0 = \varphi(\alpha_j) = Q(\alpha_j, c_j) = Q_0(\alpha_j) + c_j Q_1(\alpha_j)
$$
 and
\n
$$
0 \stackrel{(*)}{=} Q(\alpha, y_j) = Q_0(\alpha_j) + y_j Q_1(\alpha_j)
$$

\n
$$
\implies \underbrace{(y_j - c_j)}_{\neq 0} Q_1(\alpha_j) = 0
$$

- ▶ Therefore, $Q_1(\alpha_j) = 0$ for all $j \in J$ $\Longrightarrow Q_1(x)$ is divisible by $V(x)=\prod_{j\in J}(x-\alpha_j)=x^{|J|}\Lambda(x^{-1})$ where Λ is the error locator polynomial we defined for standard GRS decoding.
- ▶ In fact, $Q(x, z) = V(x)(z u(x))$ is a solution to the degree and interpolation constraints and we have $V(x) = Q_1(x)$. This solution $Q(x, z)$ has the smallest possible $(1, k-1)$ -degree and is unique up to scalar multiples.
	- The GRS decoding scheme just described is closely related to the Welch-Berlekamp GRS decoding algorithm.

List- ℓ decoding for $\ell > 1$: Sudan's algorithm

 \blacktriangleright Consider an $[n, k, d]$ GRS code \mathcal{C}_{GRS} , and define

$$
R'=\frac{k-1}{n}.
$$

It will be convenient to use R' rather than R to represent code rate.

- \triangleright \mathcal{C}_{GRS} is MDS, so $n = k+d-1$, or $R' = 1-\delta$, where $\delta = d/n$.
- Madhu Sudan (1997) introduced a list-ℓ decoder for GRS codes, with decoding radius Δ ,

$$
\Delta = \left\lceil n \, \Theta_{\ell,1}(R') \right\rceil - 1 \,,
$$

where

$$
\Theta_{\ell,1}(R') = \frac{\ell}{\ell+1} - \frac{\ell}{2}R'
$$

(The second sub-index 1 of $\Theta_{\ell,1}$ will be justified later.)

Sudan's algorithm (ii)

$$
\Theta_{\ell,1}(R') = \frac{\ell}{\ell+1} - \frac{\ell}{2}R'
$$

Sudan's algorithm (ii)

$$
\Theta_{\ell,1}(R') = \frac{\ell}{\ell+1} - \frac{\ell}{2}R'
$$

Example

 $\ell = 1$: $\Theta_{1,1}(R') = (1 - R')/2 = \delta/2$ corresponding to $\Delta = |(d-1)/2|$, as expected.

$$
\ell = 2: \Theta_{2,1}(R') = \frac{2}{3} - R',
$$

corresponding to

$$
\Delta = \left\lceil \frac{2}{3}n \right\rceil - k = \left\lfloor \frac{2}{3}(n+1) \right\rfloor - k.
$$

When $R'>\frac{1}{3}$ there is no point in selecting $\ell = 2$ over $\ell = 1$.

In general, choose ℓ such that

 $\Theta_{\ell,1}(R') \geq \Theta_{\ell-1,1}(R')$ $\Leftrightarrow R' \leq 2/(\ell^2 + \ell).$

Sudan's algorithm (ii-cont.)

Example: GRS code with parameters $[18, 2, 17]$, $R' = 1/18$.

Sudan's algorithm (ii-cont.)

Example: GRS code with parameters $[18, 2, 17]$, $R' = 1/18$.

Lemma (Interpolation lemma)

Let $\ell, \tau \in \mathbb{Z}_{>0}$ be such that $\tau < n\Theta_{\ell,1}(R')$. For every vector $(y_1, y_2, \ldots, y_n) \in F^n$ there exists a nonzero bivariate polynomial $Q(x, z) \in F[x, z]$ that satisfies the constraints

 $\deg_{0,1} Q(x, z) \leq \ell$ and $\deg_{1,k-1} Q(x, z) < n - \tau$, (*) (degree)

 $Q(\alpha_j, y_j) = 0$, $j = 1, 2, ..., n$. (**) (interp.)

Proof of Sudan's interpolation lemma

 $\deg_{0,1} Q(x, z) \leq \ell$ and $\deg_{1,k-1} Q(x, z) < n - \tau$ (*) (degree)

Recall $\Theta_{\ell,1}(R') = \frac{\ell}{\ell+1} - \frac{\ell}{2}R'$ and $\tau < \Theta_{\ell,1}(R')$.

Proof.

 $Q(x, z)$ is of degree at most ℓ in z, i.e.:

$$
Q(x, z) = \sum_{t=0}^{\ell} Q_t(x) z^t.
$$

Let $n_t = \deg Q_t$. Then, by the second degree constraint, we must have $t(k-1) + n_t < n - \tau$. Therefore, the number of significant coefficients allowed by $(*)$ is: $\sum^{\ell} ((n-\tau) - t(k-1)) = (\ell+1)(n-\tau) - {\ell+1 \choose 2}(k-1) = (\ell+1)(n-\tau) - {\ell+1 \choose 2}nR'$ $t=0$ = $(\ell+1)(n-\tau-\frac{1}{2}\ell nR')$

Proof of Sudan's interpolation lemma

 $\deg_{0,1} Q(x, z) \leq \ell$ and $\deg_{1,k-1} Q(x, z) < n - \tau$ (*) (degree)

Recall $\Theta_{\ell,1}(R') = \frac{\ell}{\ell+1} - \frac{\ell}{2}R'$ and $\tau < \Theta_{\ell,1}(R')$.

Proof.

 $Q(x, z)$ is of degree at most ℓ in z, i.e.:

$$
Q(x, z) = \sum_{t=0}^{\ell} Q_t(x) z^t.
$$

Let $n_t = \deg Q_t$. Then, by the second degree constraint, we must have $t(k-1) + n_t < n - \tau$. Therefore, the number of significant coefficients allowed by $(*)$ is: \sum $t=0$ $((n-\tau) - t(k-1)) = (\ell+1)(n-\tau) - {\ell+1 \choose 2}(k-1) = (\ell+1)(n-\tau) - {\ell+1 \choose 2}nR'$ $= (\ell+1)(n-\tau-\frac{1}{2}\ell nR') = (\ell+1)(n-\sqrt{\frac{n}{\ell+1}})$ $\left(\frac{n}{\ell+1}\right)\tau-\frac{1}{2}\ell nR'\right)+\left(n\right)$ \sqrt{n} $\left(\begin{array}{c} \circ \\ \circ \end{array} \right)$

Proof of Sudan's interpolation lemma

 $\deg_{0,1} Q(x, z) \leq \ell$ and $\deg_{1,k-1} Q(x, z) < n - \tau$ (*) (degree) Recall $\Theta_{\ell,1}(R') = \frac{\ell}{\ell+1} - \frac{\ell}{2}R'$ and $\tau < \Theta_{\ell,1}(R')$.

Proof.

 $Q(x, z)$ is of degree at most ℓ in z , i.e.:

$$
Q(x, z) = \sum_{t=0}^{\ell} Q_t(x) z^t.
$$

Let $n_t = \deg Q_t$. Then, by the second degree constraint, we must have $t(k-1) + n_t < n - \tau$. Therefore, the number of significant coefficients allowed by $(*)$ is:

$$
\sum_{t=0}^{\ell} \left((n-\tau) - t(k-1) \right) = (\ell+1)(n-\tau) - {\ell+1 \choose 2}(k-1) = (\ell+1)(n-\tau) - {\ell+1 \choose 2}nR'
$$

=
$$
(\ell+1)(n-\tau-\frac{1}{2}\ell nR') = (\ell+1)(n-\frac{n}{\ell+1}-\tau-\frac{1}{2}\ell nR') + n
$$

=
$$
(\ell+1)\left(\frac{\ell}{\ell+1}n-\frac{1}{2}\ell nR'-\tau\right)+n = (\ell+1)\left(n\Theta_{\ell,1}(R')-\tau\right)+n > n.
$$

Hence, there must be at least one nontrivial solution to $(**)$.
Lemma (Factorization lemma)

Let $Q(x, z) \in F[x, z] \setminus \{0\}$ satisfy $(*) - (**)$ for some τ and y. Suppose there exists $u(x) \in F_k[x]$ such that $\mathbf{c} = (u(\alpha_i))_{i=1}^n$ satisfies $d(\mathbf{y}, \mathbf{c}) \leq \tau$. Then $(z - u(x)) | Q(x, z)$.

Lemma (Factorization lemma)

Let $Q(x, z) \in F[x, z] \setminus \{0\}$ satisfy $(*) - (**)$ for some τ and y. Suppose there exists $u(x) \in F_k[x]$ such that $\mathbf{c} = (u(\alpha_i))_{i=1}^n$ satisfies $d(\mathbf{y}, \mathbf{c}) \leq \tau$. Then $(z - u(x)) | Q(x, z)$.

Proof.

Let $J = \{ j : y_j \neq u(\alpha_j) \}$ and define $\varphi(x) = Q(x, u(x))$. We have

 $\deg \varphi(x) \ \leq \ \deg_{1,k-1} Q(x,z) \ \stackrel{(*)}{<}\ n-\tau \ \stackrel{\mathsf{d}(\mathbf{y},\mathbf{c})\leq \tau}{\leq}\ n-|J|.$ $\deg \varphi(x) \ \leq \ \deg_{1,k-1} Q(x,z) \ \stackrel{(*)}{<}\ n-\tau \ \stackrel{\mathsf{d}(\mathbf{y},\mathbf{c})\leq \tau}{\leq}\ n-|J|.$ $\deg \varphi(x) \ \leq \ \deg_{1,k-1} Q(x,z) \ \stackrel{(*)}{<}\ n-\tau \ \stackrel{\mathsf{d}(\mathbf{y},\mathbf{c})\leq \tau}{\leq}\ n-|J|.$

On the other hand, for all location indices $j \notin J$,

 $\varphi(\alpha_j) = Q(\alpha_j,u(\alpha_j)) \;\stackrel{(**)}{=} \; Q(\alpha_j,y_j) = 0 \,.$ $\varphi(\alpha_j) = Q(\alpha_j,u(\alpha_j)) \;\stackrel{(**)}{=} \; Q(\alpha_j,y_j) = 0 \,.$ $\varphi(\alpha_j) = Q(\alpha_j,u(\alpha_j)) \;\stackrel{(**)}{=} \; Q(\alpha_j,y_j) = 0 \,.$

As before, we conclude that $\varphi(x) \equiv 0$, and, thus, $u(x)$ is a z-root of $Q(x, z)$.

A list- ℓ decoder for $\mathcal{C}_{\text{\tiny{GRS}}}$

A list- ℓ decoder for C_{GRS} derives immediately from the interpolation and factorization lemmas above.

Input: received word $\mathbf{y} = (y_1, y_2, \dots, y_n)$, $\ell =$ list size. (Assume decoding radius $\tau = \lceil n \Theta_{\ell,1}(R') \rceil - 1$.) **Output:** list of up to ℓ codewords $\mathbf{c} \in \mathcal{C}_{\text{CRS}}$. **1** Interpolation step: find a nonzero $Q(x, z) \in F[x, z]$ satisfying deg_{0,1} $Q(x, z) \le \ell$, deg_{1,k-1} $Q(x, z) \le n(1 - \Theta_{\ell,1}(R'))$, and $Q(\alpha_i, y_i) = 0, \quad i = 1, 2, ..., n$. \bullet Factorization step: Compute the set U of all polynomials $u(x) \in F_{nR'+1}[x]$ such that $(z - u(x)) |Q(x, z)$. **3** Output all the codewords $\mathbf{c} = (u(\alpha_1), u(\alpha_2), \dots, u(\alpha_n))$ corresponding to $u(x) \in U$ such that $d(\mathbf{y}, \mathbf{c}) < n\Theta_{\ell, 1}(R').$

Reverse engineering

• deg_{0.1} $Q(x, z) \le \ell$ and deg_{1.k-1} $Q(x, z) < n - \tau$

Degree constraints, through interpolation/factorization lemmas, ensure we can catch up to ℓ codewords at distance τ or less from received word.

Reverse engineering

• deg_{0,1} $Q(x, z) \leq \ell$ and deg_{1,k-1} $Q(x, z) < n - \tau$

Degree constraints, through interpolation/factorization lemmas, ensure we can catch up to ℓ codewords at distance τ or less from received word.

• Count free coefficients allowed by degree constraints.

$$
Q(x, z) = \sum_{i=0}^{\ell} Q_i(x) z^i, \quad \deg Q_i < n - \tau - (k - 1)i
$$

$$
N_{\text{coeffs}} = \sum_{i=0}^{\ell} (n - \tau - (k - 1)i)
$$

$$
= (\ell + 1)(n - \tau) - (k - 1)\frac{\ell(\ell + 1)}{2} > n \quad \text{(we want)}
$$

Reverse engineering

• deg_{0,1} $Q(x, z) \leq \ell$ and deg_{1,k-1} $Q(x, z) < n - \tau$

Degree constraints, through interpolation/factorization lemmas, ensure we can catch up to ℓ codewords at distance τ or less from received word.

• Count free coefficients allowed by degree constraints.

$$
Q(x, z) = \sum_{i=0}^{\ell} Q_i(x) z^i, \qquad \deg Q_i < n - \tau - (k - 1)i
$$
\n
$$
N_{\text{coeffs}} = \sum_{i=0}^{\ell} (n - \tau - (k - 1)i)
$$
\n
$$
= (\ell + 1)(n - \tau) - (k - 1)\frac{\ell(\ell + 1)}{2} > n \quad \text{(we want)}
$$
\n
$$
\iff \frac{\tau}{n} < \underbrace{\frac{\ell}{\ell + 1} - \frac{\ell}{2}R'}_{\Theta_{\ell, 1}(R')}
$$

List-ℓ decoding can be done in polynomial time.

List-ℓ decoding can be done in polynomial time.

1 Interpolation step: find a nonzero $Q(x, z) \in F[x, z]$ satisfying deg_{0,1} $Q(x, z) \le \ell$, deg_{1,k-1} $Q(x, z) \le n(1 - \Theta_{\ell,1}(R'))$,

and $Q(\alpha_i, y_i) = 0, \quad i = 1, 2, ..., n$.

Gaussian elimination: $O(n^3)$ operations in F .

List- ℓ decoding can be done in polynomial time.

1 Interpolation step: find a nonzero $Q(x, z) \in F[x, z]$ satisfying deg_{0,1} $Q(x, z) \le \ell$, deg_{1,k-1} $Q(x, z) \le n(1 - \Theta_{\ell,1}(R'))$,

and $Q(\alpha_i, y_i) = 0, \quad i = 1, 2, ..., n$.

Gaussian elimination: $O(n^3)$ operations in F .

 \bullet Factorization step: Compute the set U of all polynomials $u(x) \in F_{nR'+1}[x]$ such that $(z - u(x)) |Q(x, z)|$.

Nontrivial, because the roots sought are in $F(x)$. Efficient solutions exist [Gao-Shokrollahi 1999, Roth-Ruckenstein 2000].

List- ℓ decoding can be done in polynomial time.

1 Interpolation step: find a nonzero $Q(x, z) \in F[x, z]$ satisfying deg_{0,1} $Q(x, z) \le \ell$, deg_{1,k-1} $Q(x, z) \le n(1 - \Theta_{\ell,1}(R'))$,

and $Q(\alpha_i, y_i) = 0, \quad i = 1, 2, ..., n$.

Gaussian elimination: $O(n^3)$ operations in F .

 \bullet Factorization step: Compute the set U of all polynomials $u(x) \in F_{nR'+1}[x]$ such that $(z - u(x)) |Q(x, z)|$.

Nontrivial, because the roots sought are in $F(x)$. Efficient solutions exist [Gao-Shokrollahi 1999, Roth-Ruckenstein 2000].

3 Output all the codewords $\mathbf{c} = (u(\alpha_1), u(\alpha_2), \dots, u(\alpha_n))$ corresponding to $u(x) \in U$ such that $d(y, c) < n\Theta_{\ell,1}(R').$

Getting c from $u(x)$ takes $O(nk)$ operations. Doing it for all codewords in the list takes $O(\ln k)$ operations.

Sudan's algorithm: small example

List-2 decoder for GRS $[7, 2, 6]$ over $F = \text{GF}(7)$ $\frac{d-1}{2}$]=2)

• Code locators
$$
\alpha_j = j
$$
, $j = 0, 1, ..., 6$.

$$
G_{\rm GRS} = \left(\begin{array}{rrrr} 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 & 4 & 5 & 6 \end{array}\right).
$$

Decoding radius:

$$
\tau = \left\lceil n\Theta_{\ell,1} \right\rceil - 1 = \left\lceil n\left(\frac{\ell}{\ell+1} - \frac{\ell}{2}R'\right) \right\rceil - 1 = \left\lceil 7\left(\frac{2}{3} - \frac{1}{7}\right) \right\rceil - 1 = 3.
$$

• Degree constraints on $Q: \deg_{0,1} Q \leq 2$, $\deg_{1,1} Q < n - \tau = 4$. $Q(x, z) = (q_{00} + q_{10}x + q_{20}x^2 + q_{30}x^3)$ $+(q_{01} + q_{11}x + q_{21}x^2)z + (q_{02} + q_{12}x)z^2$ 9 variables

- Sent word: [0000000] Received: [1110000]
- Interpolation constraints: $Q(\alpha_j, y_j) = 0, \quad 1 \le j \le 7.$

$$
[1, \alpha_j, \alpha_j^2, \alpha_j^3, y_j, \alpha_j y_j, \alpha_j^2 y_j, y_j^2, \alpha_j y_j^2] \cdot [q_{00}, q_{10}, q_{20}, q_{30}, q_{01}, q_{11}, q_{21}, q_{02}, q_{12}]' = 0
$$

Sudan's algorithm: small example

$$
[1, \alpha_j, \alpha_j^2, \alpha_j^3, y_j, \alpha_j y_j, \alpha_j^2 y_j, y_j^2, \alpha_j y_j^2] \cdot \mathbf{q}' = 0
$$

$$
\mathbf{q} = [q_{00}, q_{10}, q_{20}, q_{30}, q_{01}, q_{11}, q_{21}, q_{02}, q_{12}]
$$

- Solutions: $r[0, 0, 0, 0, 6, 0, 0, 1, 0] + s[0, 0, 0, 0, 0, 0, 6, 0, 0, 1], r, s \in F$.
- Set $r = 1$, $s = 0$: $q = [0, 0, 0, 0, 6, 0, 0, 1, 0]$
- $Q(x, z) = 6z + z^2 = z^2 z = z(z 1)$, roots $u(x) = 0$, $u(x) = 1$.
- $u(x) = 1$ corresponds to codeword $[1, 1, 1, 1, 1, 1, 1]$, at distance $4 > \tau$ from y: discarded.
- Codeword list: $\{ [0, 0, 0, 0, 0, 0, 0] \}$

Sudan's algorithm: small example

$$
[1, \alpha_j, \alpha_j^2, \alpha_j^3, y_j, \alpha_j y_j, \alpha_j^2 y_j, y_j^2, \alpha_j y_j^2] \cdot \mathbf{q}' = 0
$$

$$
\mathbf{q} = [q_{00}, q_{10}, q_{20}, q_{30}, q_{01}, q_{11}, q_{21}, q_{02}, q_{12}]
$$

• Solutions: $r[0, 0, 0, 0, 6, 0, 0, 1, 0] + s[0, 0, 0, 0, 0, 0, 6, 0, 0, 1], r, s \in F$.

 $Q(x, z) = 6rz + 6sxz + rz^2 + sxz^2 = (r + sx)(z^2 - z) = (r + sx)z(z - 1),$

roots $u(x) = 0, u(x) = 1.$

• Codeword list: $\{ [0, 0, 0, 0, 0, 0, 0] \}$

Sudan's algorithm: bigger example

List-4 decoder for GRS $[18, 2, 17]$ over $F = \text{GF}(19)$ $(\ell=4, R' = \frac{1}{18}, \lfloor \frac{d-1}{2} \rfloor = 8)$

• Code locators α^j = j, j = 1, 2, . . . , 18. GGRS = 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ¹ ² ³ ⁴ ⁵ ⁶ ⁷ ⁸ ⁹ ¹⁰ ¹¹ ¹² ¹³ ¹⁴ ¹⁵ ¹⁶ ¹⁷ ¹⁸ .

Decoding radius:

$$
\tau = \left\lceil n\Theta_{\ell,1} \right\rceil - 1 = \left\lceil n\left(\frac{\ell}{\ell+1} - \frac{\ell}{2}R'\right) \right\rceil - 1 = \left\lceil 18\left(\frac{4}{5} - \frac{1}{9}\right) \right\rceil - 1 = 12.
$$

• Degree constraints on $Q: \deg_{0,1} Q \leq 4$, $\deg_{1,1} Q < n - \tau = 6$. $Q(x,z)=\sum_{i=0}^4\left(\sum_{j=0}^{5-i}\right)$ $j=0$ $\left. f_{i,j}x^{j}\right\}$ z^i 20 indeterminates.

• Assume the transmitted codeword c corresponds to $u(x) = 18 + 14x$, i.e., $c = (13, 8, 3, 17, 12, 7, 2, 16, 11, 6, 1, 15, 10, 5, 0, 14, 9, 4),$ and the received word is

 $y = (5, 5, 1, 10, 10, 7, 2, 18, 6, 6, 1, 15, 13, 5, 14, 3, 1, 0).$

The Guruswami-Sudan algorithm

- ▶ The decoding radius of Sudan's algorithm can be increased by considering also the *derivatives* of $Q(x, z)$
- \blacktriangleright The quantity $\Theta_{\ell,1}(R')$ will be generalized to

$$
\Theta_{\ell,r}(R') = \frac{1}{(\ell+1)r} \left({\ell+1 \choose 2} (1-R') - {\ell+1-r \choose 2} \right)
$$

or, equivalently,

$$
\Theta_{\ell,r}(R') = 1 - \frac{r+1}{2(\ell+1)} - \frac{\ell}{2r} R', \quad r \leq \ell.
$$

As before, $R' \mapsto \Theta_{\ell,r}(R')$ represents a line in the real plane. When $r=1$, the expression reduces to the previous definition of $\Theta_{\ell,1}(R').$

 \blacktriangleright The additional parameter r will be optimized to obtain the largest possible decoding radius.

Hasse derivatives

- \triangleright We saw finite field derivatives in the computation of error values in GRS decoding, e.g.: $e_j = -\frac{\alpha_j}{v_i}$ $\frac{\alpha_j}{v_j} \cdot \frac{\Gamma(\alpha_j^{-1})}{\Lambda'(\alpha_i^{-1})}$ $\Lambda'(\alpha_j^{-1})$
	- Finite field derivatives have some familiar properties, e.g., β is a multiple root of $f(x)$ iff $f(\beta) = f'(\beta) = 0$.
	- But, in characteristic p , $f^{(p)}(x)\equiv 0$ for all f . E.g., $f''(x)\equiv 0$ in characteristic 2. Not good for characterizing root multiplicity.

Hasse derivatives

- \triangleright We saw finite field derivatives in the computation of error values in GRS decoding, e.g.: $e_j = -\frac{\alpha_j}{v_i}$ $\frac{\alpha_j}{v_j} \cdot \frac{\Gamma(\alpha_j^{-1})}{\Lambda'(\alpha_i^{-1})}$ $\Lambda'(\alpha_j^{-1})$
	- Finite field derivatives have some familiar properties, e.g., β is a multiple root of $f(x)$ iff $f(\beta) = f'(\beta) = 0$.
	- But, in characteristic p , $f^{(p)}(x)\equiv 0$ for all f . E.g., $f''(x)\equiv 0$ in characteristic 2. Not good for characterizing root multiplicity.

Definition (Hasse derivative)

Let $a(x) = \sum_{i=0}^n a_i x^i$ be a polynomial in $F[x]$. The ℓ th Hasse derivative of $a(x)$, denoted $a^{[\ell]}(x)$, is defined as

$$
a^{[\ell]}(x) = \sum_{i=\ell}^{n} {i \choose \ell} a_i x^{i-\ell} .
$$

 $i \choose \ell \geq 0$ when $i < \ell$

Hasse derivatives

- \triangleright We saw finite field derivatives in the computation of error values in GRS decoding, e.g.: $e_j = -\frac{\alpha_j}{v_i}$ $\frac{\alpha_j}{v_j} \cdot \frac{\Gamma(\alpha_j^{-1})}{\Lambda'(\alpha_i^{-1})}$ $\Lambda'(\alpha_j^{-1})$
	- Finite field derivatives have some familiar properties, e.g., β is a multiple root of $f(x)$ iff $f(\beta) = f'(\beta) = 0$.
	- But, in characteristic p , $f^{(p)}(x)\equiv 0$ for all f . E.g., $f''(x)\equiv 0$ in characteristic 2. Not good for characterizing root multiplicity.

Definition (Hasse derivative)

Let $a(x) = \sum_{i=0}^n a_i x^i$ be a polynomial in $F[x]$. The ℓ th Hasse derivative of $a(x)$, denoted $a^{[\ell]}(x)$, is defined as

$$
a^{[\ell]}(x) = \sum_{i=\ell}^n \binom{i}{\ell} a_i x^{i-\ell} .
$$

 $i \choose \ell \geq 0$ when $i < \ell$

Example:
$$
f(x) = x^4 + x^3 + 1 \in \text{GF}(2)[x]
$$
.
\n $f^{[1]}(x) = {4 \choose 1}x^3 + {3 \choose 1}x^2 = x^2 = f^{(1)}(x)$, $f^{[2]}(x) = {4 \choose 2}x^2 + {3 \choose 2}x = x$,
\n $f^{[3]}(x) = {4 \choose 3}x + {3 \choose 3} = 1$, $f^{[4]}(x) = 1$
\n $f^{[5]}(x) = 0$

Hasse derivatives (ii)

▶ Properties

- $a^{[1]}(x) = a^{(1)}(x)$.
- $(a(x)+b(x))^{|\ell|} = a^{[\ell]}(x)+b^{[\ell]}(x), \quad (c \cdot a(x))^{|\ell|} = c \cdot a^{[\ell]}(x)$ linear.
- $(a(x)b(x))^{[\ell]} = \sum_{m=0}^{\ell} a^{[m]}(x)b^{[\ell-m]}(x)$.

Hasse derivatives (ii)

▶ Properties

- $a^{[1]}(x) = a^{(1)}(x)$.
- $(a(x)+b(x))^{|\ell|} = a^{[\ell]}(x)+b^{[\ell]}(x), \quad (c \cdot a(x))^{|\ell|} = c \cdot a^{[\ell]}(x)$ linear.
- $(a(x)b(x))^{[\ell]} = \sum_{m=0}^{\ell} a^{[m]}(x)b^{[\ell-m]}(x)$.

Proposition

Let β be a root of $f(x) \in F[x]$ in some extension of F. The multiplicity of β as a root of f is exactly m iff

$$
f^{[\ell]}(x)\Big|_{x=\beta}=0, \; \ell=0,1,...,m-1, \text{ and } f^{[m]}(x)\Big|_{x=\beta}\neq 0\,.
$$

• Example: $f(x) = x^4 + 1 = (x+1)^4 \in GF(2)[x]$ vanishes at $x = 1$ $f^{[1]}(x)=0$ vanishes at $x=1$ $f^{[2]}(x)=0$ vanishes at $x=1$ $f^{[3]}(x)=0$ vanishes at $x=1$ $f^{[4]}(x)=1$ does not vanish at $x=1$

Hasse derivatives for bivariate polynomials

Definition (Hasse derivative for bivariate polynomials)

The (s, t) th Hasse derivative of $a(x, z) \in F[x, z]$ is defined as

$$
a^{[s,t]}(x,z) = \sum_{i,j} {i \choose s} {j \choose t} a_{i,j} x^{i-s} z^{j-t} .
$$

 $\binom{h}{m} \triangleq 0$ when $h < m$

Guruswami-Sudan algorithm: auxiliary lemma

▶ Define $T(r) = \{ (s, t) : s, t \in \mathbb{Z}_{\geq 0}, s + t < r \}$ notice: $|T(r)| = \binom{r+1}{2}$.

Guruswami-Sudan algorithm: auxiliary lemma

▶ Define $T(r) = \{ (s, t) : s, t \in \mathbb{Z}_{\geq 0}, s + t < r \}$ notice: $|T(r)| = \binom{r+1}{2}$. Lemma (auxiliary)

Given $u(x) \in F[x]$ and $a(x, z) \in F[x, z]$, let β and γ be elements of F such that $u(\beta) = \gamma$ and $a^{\left[s,t\right] }(x,z)\vert_{(x,z)=(\beta,\gamma)}=0\quad \textit{for all}\ (s,t)\in \mathrm{T}(r)\ .$ Then $(x - \beta)^r | a(x, u(x))$.

Guruswami-Sudan algorithm: auxiliary lemma

▶ Define $T(r) = \{ (s, t) : s, t \in \mathbb{Z}_{\geq 0}, s + t < r \}$ notice: $|T(r)| = \binom{r+1}{2}$. Lemma (auxiliary)

Given $u(x) \in F[x]$ and $a(x, z) \in F[x, z]$, let β and γ be elements of F such that $u(\beta) = \gamma$ and $a^{\left[s,t\right] }(x,z)\vert_{(x,z)=(\beta,\gamma)}=0\quad \textit{for all}\ (s,t)\in \mathrm{T}(r)\ .$ Then $(x - \beta)^r | a(x, u(x))$.

Proof.

Define $b(v, w) = a(v+\beta, w+\gamma) \triangleq \sum_{s,t} b_{s,t} v^s w^t$. We have $a(v+\beta, w+\gamma) = \sum$ $_{i,j}$ $a_{ij}(v+\beta)^i(w+\gamma)^j=\sum$ ij $a_{ij} \sum^{i}$ $s=0$ \sum $t=0$ $\binom{i}{s}\binom{j}{t}\beta^{i-s}\gamma^{j-t}v^s w^t$ Equating coefficients, we get $b_{s,t} = \sum \binom{i}{s} \binom{j}{t} a_{i,j} \beta^{i-s} \gamma^{j-t} = a^{[s,t]}(x,z)|_{x=\beta,z=\gamma}$ $_{i,j}$ and, so, $b_{s,t} = 0$ for every $(s,t) \in T(r)$. Hence, $a(x,u(x)) = b(x-\beta,u(x)-\gamma) = \sum_{s,t} b_{s,t}(x-\beta)^s (u(x)-\gamma)^t.$ $s,t : s+t \geq r$ The result follows by observing that $(x - \beta) | (u(x) - \gamma)$.

Lemma (Guruswami-Sudan interpolation lemma)

Let ℓ , r, n, $k = nR' + 1$, and τ be positive integers such that $r \leq \ell$, $k\leq n$, and $\tau < n\,\Theta_{\ell,r}(R')$. For every vector $\mathbf{y}\in F^n$ there exists a nonzero $Q(x, z) \in F[x, z]$ satisfying

 $\deg_{0,1} Q(x, z) \leq \ell$, $\deg_{1,k-1} Q(x, z) < r(n - \tau)$, \star

and

$$
Q^{[s,t]}(x, z)|_{(x, z)=(\alpha_j, y_j)} = 0 , \quad j = 1, 2, \dots, n , (s, t) \in T(r) .
$$

Guruswami-Sudan interpolation lemma (proof)

$$
\deg_{0,1} Q(x, z) \le \ell, \quad \deg_{1,k-1} Q(x, z) < r(n - \tau), \qquad (\star)
$$
\n
$$
\Theta_{\ell,r}(R') = \frac{1}{(\ell+1)r} \left(\binom{\ell+1}{2} (1 - R') - \binom{\ell+1-r}{2} \right)
$$

Proof.

Similar to the proof for Sudan's algorithm. The number of free coefficients allowed by the degree constraints is

$$
\sum_{t=0}^{\ell} \left(r(n-\tau) - t(k-1) \right) = (\ell+1)r(n-\tau) - {\ell+1 \choose 2}(k-1)
$$

= (\ell+1)r(n-\tau) - {\ell+1 \choose 2}nR'
= ({\ell+1 \choose 2}n(1-R') + ((\ell+1)r - {\ell+1 \choose 2})n - (\ell+1)r\tau

Guruswami-Sudan interpolation lemma (proof)

$$
\deg_{0,1} Q(x, z) \le \ell, \quad \deg_{1,k-1} Q(x, z) < r(n - \tau), \qquad (\star)
$$
\n
$$
\Theta_{\ell,r}(R') = \frac{1}{(\ell+1)r} \left(\binom{\ell+1}{2} (1 - R') - \binom{\ell+1-r}{2} \right)
$$

Proof.

Similar to the proof for Sudan's algorithm. The number of free coefficients allowed by the degree constraints is

$$
\sum_{t=0}^{\ell} \left(r(n-\tau) - t(k-1) \right) = (\ell+1)r(n-\tau) - {\ell+1 \choose 2}(k-1)
$$

= (\ell+1)r(n-\tau) - {\ell+1 \choose 2}nR'
= {\ell+1 \choose 2}n(1-R') + ((\ell+1)r - {\ell+1 \choose 2})n + (\ell+1)r\tau
= {\ell+1 \choose 2}n(1-R') - ({\ell+1-r \choose 2} - {\ell+1 \choose 2})n - (\ell+1)r\tau

Guruswami-Sudan interpolation lemma (proof)

$$
\deg_{0,1} Q(x, z) \le \ell, \quad \deg_{1,k-1} Q(x, z) < r(n - \tau), \qquad (\star)
$$
\n
$$
\Theta_{\ell,r}(R') = \frac{1}{(\ell+1)r} \left(\binom{\ell+1}{2} (1 - R') - \binom{\ell+1-r}{2} \right)
$$

Proof.

Similar to the proof for Sudan's algorithm. The number of free coefficients allowed by the degree constraints is

$$
\sum_{t=0}^{\ell} (r(n-\tau) - t(k-1)) = (\ell+1)r(n-\tau) - {\ell+1 \choose 2}(k-1)
$$

= (\ell+1)r(n-\tau) - {\ell+1 \choose 2}nR'
= {\ell+1 \choose 2}n(1-R') + ((\ell+1)r - {\ell+1 \choose 2})n - (\ell+1)r\tau
= {\ell+1 \choose 2}n(1-R') - ({\ell+1-r \choose 2} - {\ell+1 \choose 2})n - (\ell+1)r\tau
= (\ell+1)r(n \Theta_{\ell,r}(R') - \tau) + {\ell+1 \choose 2}n > {\ell+1 \choose 2}n = |T(r)|n.

Thus, the interpolation constraints have at least one nontrivial solution.

Lemma (Guruswami-Sudan factorization lemma)

Let a nonzero $Q(x, z) \in F[x, z]$ satisfy the degree and interpolation constraints of the previous lemma for $r, \tau \in \mathbb{Z}_{>0}$, and a word $\mathbf{y} \in F^n$. Suppose there exists $u(x) \in F_k[x]$ such that the respective codeword, $\mathbf{c} = (u(\alpha_i))_{i=1}^n$ satisfies $d(\mathbf{y}, \mathbf{c}) \leq \tau$. Then $(z - u(x)) | Q(x, z)$.

Lemma (Guruswami-Sudan factorization lemma)

Let a nonzero $Q(x, z) \in F[x, z]$ satisfy the degree and interpolation constraints of the previous lemma for $r, \tau \in \mathbb{Z}_{>0}$, and a word $\mathbf{y} \in F^n$. Suppose there exists $u(x) \in F_k[x]$ such that the respective codeword, $\mathbf{c} = (u(\alpha_i))_{i=1}^n$ satisfies $d(\mathbf{y}, \mathbf{c}) \leq \tau$. Then $(z - u(x)) | Q(x, z)$.

Proof.

Let \overline{J} be the set of indexes j for which $u(\alpha_j) = y_j$. By $(\star \star)$ and the [auxiliary](#page-57-0) [lemma](#page-57-0) we obtain $(x - \alpha_j)^r \mid Q(x, u(x))$, $j \in \overline{J}$

$$
\Rightarrow \quad \left(\prod_{j \in \overline{J}} (x - \alpha_j)^r \right) \mid Q(x, u(x)) \; . \qquad (\star \star \star)
$$

On the other hand, by (\star)

$$
\deg Q(x, u(x)) \leq \deg_{1,k-1} Q(x, z) < r(n - \tau) \leq r|\overline{J}|.
$$

Combining this with $(\star \star \star)$ we conclude that $Q(x, u(x))$ is identically zero. The result now follows from the lemma on z -roots.

The Guruswami-Sudan (GS) decoder

Input: received word $y = (y_1, y_2, \dots, y_n)$, $\ell =$ list size. (Assume decoding radius $\tau = \lceil n \Theta_{\ell,r}(R') \rceil - 1$.) **Output:** list of up to ℓ codewords $\mathbf{c} \in \mathcal{C}_{\text{GRS}}$. **1** Interpolation step: find a nonzero $Q(x, z) \in F[x, z]$ satisfying deg_{0,1} $Q(x, z) \le \ell$, deg_{1,k-1} $Q(x, z) \le n(1 - \Theta_{\ell,r}(R'))$, and $Q^{[s,t]}(x,z)|_{(x,z)=(\alpha_j,y_j)}=0\;,\quad j=1,2,\ldots,n\;,\;(s,t){\in}{\rm T}(r)$ \bullet Factorization step: Compute the set U of all polynomials $u(x) \in F_{nR'+1}[x]$ such that $z - u(x)|Q(x, z)$. **3** Output all the codewords $\mathbf{c} = (u(\alpha_1), u(\alpha_2), \dots, u(\alpha_n))$ corresponding to $u(x) \in U$ such that $d(\mathbf{y}, \mathbf{c}) < n\Theta_{\ell,r}(R').$

The algorithm is parametrized in $r \leq \ell$. What is the best value?

The Guruswami-Sudan algorithm: example

List-4 decoder for GRS [18, 4, 15] over $F = GF(19)$

• Parameters: $R' = (k-1)/n = 1/6$, $\ell = 4$. The function

$$
\Theta_{\ell,r}(R') = 1 - \frac{r+1}{2(\ell+1)} - \frac{\ell}{2r} R', \quad r \le \ell
$$

1 2 3 4 0.42 0.44 $\Theta_{\ell,r}(R') \atop{0.52 \ 0.50 \ 0.48 \ 0.46}$ ′) r

is maximized at $r = 2$, yielding $\Theta = 8/15$ and a decoding radius

$$
\tau = \lceil n\Theta(\ell, r) \rceil - 1 = 9
$$

(compare with $(d-1)/2=7$).

- Degree constraints on $Q: \deg_{0,1} Q \leq 4$, $\deg_{1,3} Q < r(n \tau) = 18$. $Q(x, z) = \sum_{j=0}^{4} \left(\sum_{i=0}^{17-3+j} \right)$ $\left|f_{i,j}x^{i}\right\rangle$ z^j 60 indeterminates.
- Assume the transmitted codeword c corresponds to $u(x) = 18 + 14x + 3x^2 + x^3$, i.e.,

 $c = (17, 9, 0, 15, 3, 8, 17, 17, 14, 14, 4, 9, 16, 12, 3, 14, 13, 6)$. error vector

 $e = (15, 9, 0, 0, 9, 17, 0, 8, 4, 0, 0, 0, 0, 4, 0, 7, 0, 12)$ (weight 9)

Optimizing the decoding radius

 \blacktriangleright We can optimize over r to obtain the best possible decoding radius for the GS decoder. Define

 $\Theta_{\ell}(R') = \max_{1 \leq r \leq \ell} \Theta_{\ell,r}(R')$.

▶ Define $\Upsilon_{\ell,r} = \frac{r(r-1)}{\ell(\ell+1)}$. It can be shown that

 $\Theta_{\ell,r}(R') \geq \Theta_{\ell,r-1}(R') \quad \Longleftrightarrow \quad R' \geq \Upsilon_{\ell,r}.$

 \implies Optimal r is the unique integer satisfying $\Upsilon_{\ell,r} \leq R' < \Upsilon_{\ell,r+1}$ (best r is a function of R' and ℓ).

Optimizing the decoding radius

 \blacktriangleright We can optimize over r to obtain the best possible decoding radius for the GS decoder. Define

 $\Theta_{\ell}(R') = \max_{1 \leq r \leq \ell} \Theta_{\ell,r}(R')$.

▶ Define $\Upsilon_{\ell,r} = \frac{r(r-1)}{\ell(\ell+1)}$. It can be shown that

 $\Theta_{\ell,r}(R') \geq \Theta_{\ell,r-1}(R') \quad \Longleftrightarrow \quad R' \geq \Upsilon_{\ell,r}.$

 \implies Optimal r is the unique integer satisfying $\Upsilon_{\ell,r} \leq R' < \Upsilon_{\ell,r+1}$ (best r is a function of R' and ℓ).

 \blacktriangleright We have:

$$
\Theta_{\ell}(R') = \begin{cases} \Theta_{\ell,1}(R') & \Upsilon_{\ell,1} \leq R' < \Upsilon_{\ell,2} \\ \Theta_{\ell,2}(R') & \Upsilon_{\ell,2} \leq R' < \Upsilon_{\ell,3} \\ \vdots & \vdots \\ \Theta_{\ell,\ell}(R') & \Upsilon_{\ell,\ell} \leq R' < \Upsilon_{\ell,\ell+1} \\ (\Upsilon_{\ell,1} \triangleq 0, \ \Upsilon_{\ell,\ell+1} \triangleq 1) \end{cases}
$$

Optimizing the decoding radius

 \blacktriangleright We can optimize over r to obtain the best possible decoding radius for the GS decoder. Define

 $\Theta_{\ell}(R') = \max_{1 \leq r \leq \ell} \Theta_{\ell,r}(R')$.

▶ Define $\Upsilon_{\ell,r} = \frac{r(r-1)}{\ell(\ell+1)}$. It can be shown that

 $\Theta_{\ell,r}(R') \geq \Theta_{\ell,r-1}(R') \quad \Longleftrightarrow \quad R' \geq \Upsilon_{\ell,r}.$

Optimal r is the unique integer satisfying $\Upsilon_{\ell,r} \leq R' < \Upsilon_{\ell,r+1}$ (best r is a function of R' and ℓ).

 \blacktriangleright We have:

$$
\Theta_{\ell}(R') = \begin{cases} \Theta_{\ell,1}(R') & \Upsilon_{\ell,1} \leq R' < \Upsilon_{\ell,2} \\ \Theta_{\ell,2}(R') & \Upsilon_{\ell,2} \leq R' < \Upsilon_{\ell,3} \\ \vdots & \vdots \\ \Theta_{\ell,\ell}(R') & \Upsilon_{\ell,\ell} \leq R' < \Upsilon_{\ell,\ell+1} \\ (\Upsilon_{\ell,1} \triangleq 0, \ \Upsilon_{\ell,\ell+1} \triangleq 1) \end{cases}
$$

Asymptotics

The value of $\Theta_{\ell}(R')$ is always non-decreasing with ℓ , and it can be shown that

 $\Theta_{\infty}(R') \triangleq \lim_{\ell \to \infty} \Theta_{\ell}(R') = 1 \sqrt{R'}$.

Best values of r for $\ell = 4$

Comparison with list-1 decoder and asymptotic behavior

It turns out that in *most cases* the list produced by the GS decoder contains *just one codeword* (the closest codeword to the received word). It turns out that in *most cases* the list produced by the GS decoder contains *just one codeword* (the closest codeword to the received word).

 \blacktriangleright McEliece (2003) shows that under a q -ary symmetric channel $(q = |F|)$, the average number of "bad" codewords in the list produced by a GS decoder of radius τ is very close to

$$
\bar{L}(\tau) = q^{-(n-k)} \sum_{s=0}^{\tau} {n \choose s} (q-1)^s.
$$

average number of codewords in a *random* sphere of radius τ It turns out that in *most cases* the list produced by the GS decoder contains *just one codeword* (the closest codeword to the received word).

 \blacktriangleright McEliece (2003) shows that under a q -ary symmetric channel $(q = |F|)$, the average number of "bad" codewords in the list produced by a GS decoder of radius τ is very close to

$$
\bar{L}(\tau) = q^{-(n-k)} \sum_{s=0}^{\tau} {n \choose s} (q-1)^s.
$$

average number of codewords in a *random* sphere of radius τ

 \blacktriangleright Ruckenstein (Ph.D. Thesis, 2001) gave the explicit estimate $\bar{L}_{\text{bad}} \leq q^{-\varepsilon n}$ whenever $\sqrt{k/n} - k/n - 1/\log_2 q \geq \varepsilon$.

Example

Consider a [256, 179] GRS code. We have $R = k/n \approx 0.7$, and thus

$$
\bar{L}_{\rm bad} \approx 256^{-(\sqrt{0.7}-0.7-0.125)\cdot 256} \approx 6.5 \times 10^{-8},
$$

with $\tau \approx 41$ (conventional list-1 decoder corrects 38 errors).

Finding z-roots of bi-variate polynomials

▶ The goal: given $Q(x, z) \in F[x, z]$, and an integer $k > 0$, find all factors of $Q(x, z)$ of the form $z - u(x)$, with $u(x) \in F[x]$ and $\deg u(x) < k$.

Finding z-roots of bi-variate polynomials

- ▶ The goal: given $Q(x, z) \in F[x, z]$, and an integer $k > 0$, find all factors of $Q(x, z)$ of the form $z - u(x)$, with $u(x) \in F[x]$ and $\deg u(x) < k$.
- ▶ The observation: if

 $(z-u_0-u_1x-\cdots-u_{k-1}x^{k-1})\bigg|\,Q(x,z)\,$ and $x\not|Q(x,z)$

then $(z - u_0) | Q(0, z) \implies u_0$ is a root of $Q(0, z) \in F[z]$.

• Find u_0 using a root-finding algorithm for univariate polynomials. For example, Chien search is $O(|F|)$, which is $O(n)$ when $n \approx |F|$ (e.g., primitive RS codes). More sophisticated methods exist.

Finding z-roots of bi-variate polynomials

- ▶ The goal: given $Q(x, z) \in F[x, z]$, and an integer $k > 0$, find all factors of $Q(x, z)$ of the form $z - u(x)$, with $u(x) \in F[x]$ and $\deg u(x) < k$.
- \blacktriangleright The observation: if

$$
(z - u_0 - u_1 x - \cdots - u_{k-1} x^{k-1}) | Q(x, z)
$$
 and $x | Q(x, z)$

then $(z - u_0) | Q(0, z) \implies u_0$ is a root of $Q(0, z) \in F[z]$.

- Find u_0 using a root-finding algorithm for univariate polynomials. For example, Chien search is $O(|F|)$, which is $O(n)$ when $n \approx |F|$ (e.g., primitive RS codes). More sophisticated methods exist.
- \blacktriangleright Let $z' = zx + u_0$. Then,

$$
z'-u(x) = zx - u_1x - u_2x^2 - \dots - u_{k-1}x^{k-1} = x(z - u_1 - u_2x - \dots - u_{k-1}x^{k-2})
$$

and we get that

$$
(z-u_1-u_2x-\cdots-u_{k-1}x^{k-2})\bigg|x^{-1}Q(x,xz+u_0).
$$

We proceed recursively, recovering $u_0, u_1, \ldots, u_{k-1}$.

BIROOT $(Q(x, z) \in F[x, y], k \in \mathbb{N}, \lambda \in \mathbb{N})$

- // Global variables: set $U \subseteq F_k[x]$, polynomial $g(x) = \sum_{s=0}^{k-1} g_s x^s \in F_k[x]$.
- // On output, U contains all *z*-linear factors of $Q(x, z)$.
- // Call procedure initially with $Q(x, z) \neq 0$, $k > 0$, and $\lambda = 0$.

BIROOT $(Q(x, z) \in F[x, y], k \in \mathbb{N}, \lambda \in \mathbb{N})$

- // Global variables: set $U \subseteq F_k[x]$, polynomial $g(x) = \sum_{s=0}^{k-1} g_s x^s \in F_k[x]$.
- // On output, U contains all *z*-linear factors of $Q(x, z)$.
- // Call procedure initially with $Q(x, z) \neq 0$, $k > 0$, and $\lambda = 0$.

$Bi\text{Root}$ ($\overline{Q}(x, z) \in F[x, y], k \in \mathbb{N}, \lambda \in \mathbb{N}$)

Input λ is the recursion depth. // Global variables: set $U \subseteq F_k[x]$, polynomial $g(x) = \sum_{s=0}^{k-1} g_s x^s \in F_k[x]$. On output, U contains all z-linear factors of $Q(x, z)$. Call procedure initially with $Q(x, z) \neq 0, k > 0$, and $\lambda = 0$. if $(\lambda == 0)$ // 1 // $U \leftarrow \emptyset;$ // 2 // $m \leftarrow$ largest integer such that $x^m \left| Q(x, z) \right|$; and the summary summary $\frac{m}{2}$ and $\frac{m}{$ $T(x, z) \leftarrow x^{-m} Q(x, z);$ // 4 // $Z \leftarrow$ set of all distinct (z-)roots of $T(0, z)$ in F; // 5 // for each $\gamma \in Z$ do { $\qquad \qquad$ // 6 // $g_{\lambda} \leftarrow \gamma;$ // 7 // // 7 // if $(\lambda < k-1)$ // 8 // $BiRoot(T(x, xz + \gamma), k, \lambda+1);$ // 9 // e lse $\frac{1}{2}$ // 10 // if $(Q(x, g_{k-1}) == 0)$ // 11 // $U \leftarrow U \cup \{q(x)\};$ // 12 // } $\{13 \frac{1}{12} \}$

BIROOT $(Q(x, z) \in F[x, y], k \in \mathbb{N}, \lambda \in \mathbb{N})$

- // Global variables: set $U \subseteq F_k[x]$, polynomial $g(x) = \sum_{s=0}^{k-1} g_s x^s \in F_k[x]$.
- // On output, U contains all *z*-linear factors of $Q(x, z)$.
- // Call procedure initially with $Q(x, z) \neq 0$, $k > 0$, and $\lambda = 0$.

BIROOT $(Q(x, z) \in F[x, y], k \in \mathbb{N}, \lambda \in \mathbb{N})$

- // Global variables: set $U \subseteq F_k[x]$, polynomial $g(x) = \sum_{s=0}^{k-1} g_s x^s \in F_k[x]$.
- // On output, U contains all *z*-linear factors of $Q(x, z)$.
- // Call procedure initially with $Q(x, z) \neq 0$, $k > 0$, and $\lambda = 0$.

BIROOT $(Q(x, z) \in F[x, y], k \in \mathbb{N}, \lambda \in \mathbb{N})$

- // Global variables: set $U \subseteq F_k[x]$, polynomial $g(x) = \sum_{s=0}^{k-1} g_s x^s \in F_k[x]$.
- // On output, U contains all *z*-linear factors of $Q(x, z)$.
- // Call procedure initially with $Q(x, z) \neq 0$, $k > 0$, and $\lambda = 0$.

BIROOT $(Q(x, z) \in F[x, y], k \in \mathbb{N}, \lambda \in \mathbb{N})$

- // Global variables: set $U \subseteq F_k[x]$, polynomial $g(x) = \sum_{s=0}^{k-1} g_s x^s \in F_k[x]$.
- // On output, U contains all *z*-linear factors of $Q(x, z)$.
- // Call procedure initially with $Q(x, z) \neq 0$, $k > 0$, and $\lambda = 0$.

BIROOT $(Q(x, z) \in F[x, y], k \in \mathbb{N}, \lambda \in \mathbb{N})$

- // Global variables: set $U \subseteq F_k[x]$, polynomial $g(x) = \sum_{s=0}^{k-1} g_s x^s \in F_k[x]$.
- // On output, U contains all *z*-linear factors of $Q(x, z)$.
- // Call procedure initially with $Q(x, z) \neq 0$, $k > 0$, and $\lambda = 0$.

if
$$
(\lambda == 0)
$$

\n $U \leftarrow \emptyset$; $W \leftarrow \emptyset$
\n $m \leftarrow$ largest integer such that $x^m | Q(x, z)$; $\{0, 1\} \neq \emptyset$
\n $T(x, z) \leftarrow x^{-m} Q(x, z)$; $\{0, 1\} \neq \emptyset$
\n $Z \leftarrow$ set of all distinct (z) -roots of $T(0, z)$ in F ; $\{0, 1\} \neq \emptyset$
\nfor each $\gamma \in Z$ do $\{0, 1\} \neq \emptyset$
\n $g_{\lambda} \leftarrow \gamma$; $\{0, 1\} \neq \emptyset$
\n $g_{\lambda} \leftarrow \gamma$; $\{0, 1\} \neq \emptyset$
\n $g_{\lambda} \leftarrow \gamma$; $\{0, 1\} \neq \emptyset$
\n $g_{\lambda} \leftarrow \gamma$; $\{0, 1\} \neq \emptyset$
\n $g_{\lambda} \leftarrow \gamma$; $\{0, 1\} \neq \emptyset$
\n $g_{\lambda} \leftarrow \gamma$; $\{0, 1\} \neq \emptyset$
\n $g_{\lambda} \leftarrow \gamma$; $\{0, 1\} \neq \emptyset$
\n $g_{\lambda} \leftarrow \gamma$; $\{0, 1\} \neq \emptyset$
\n $g_{\lambda} \leftarrow \gamma$; $\{0, 1\} \neq \emptyset$
\n $g_{\lambda} \leftarrow \gamma$; $\{0, 1\} \neq \emptyset$
\n $g_{\lambda} \leftarrow \gamma$; $\{0, 1\} \neq \emptyset$
\n $g_{\lambda} \leftarrow \gamma$; $\{0, 1\} \neq \emptyset$
\n $g_{\lambda} \leftarrow \gamma$; $\{0, 1\} \neq \emptyset$
\n $g_{\lambda} \leftarrow \gamma$; $\{0, 1\} \neq \emptyset$
\n

Proposition

Let $Q(x, z)$ be a nonzero bivariate polynomial in $F[x, z]$ and let U be the set that is computed by the call $\operatorname{BiRoot}(Q, k, 0)$. Then, every element of U is a z-root of $Q(x, z)$, and every z-root of $Q(x, z)$ is contained in U.

Proof: Roth & Ruckenstein (2000), Roth (2005).

Algorithm BiRoot: complexity

- \blacktriangleright The *z*-degree of $Q_i(x, z)$ and $T(x, z)$ does not change during execution \implies $T(0, z)$ in [Step](#page-82-0) $\frac{1}{5}$ is nonzero and of finite, bounded degree \implies [Step](#page-82-0) // 5 // returns a finite set.
- \triangleright Clearly, the recursion depth is limited to k in [Step](#page-84-0) $/8$ //
	- \implies BIROOT terminates.
- \blacktriangleright The *z*-degree of $Q_i(x, z)$ and $T(x, z)$ does not change during execution $\implies T(0, z)$ in [Step](#page-82-0) $\pi/5$ is nonzero and of finite, bounded degree \implies [Step](#page-82-0) // 5 // returns a finite set.
- \triangleright Clearly, the recursion depth is limited to k in [Step](#page-84-0) $/8$ // \implies BIROOT terminates.
- ▶ Roth (2005) shows that if the z-degree of $Q(x, z)$ is ℓ then the total number of recursive calls made to BIROOT is at most $\ell(k-1)$ \implies BIROOT runs in polynomial time if the root finder of [Step](#page-82-0) $/15/10$ does.
- \blacktriangleright The *z*-degree of $Q_i(x, z)$ and $T(x, z)$ does not change during execution \implies $T(0, z)$ in [Step](#page-82-0) $\frac{1}{5}$ is nonzero and of finite, bounded degree \implies [Step](#page-82-0) // 5 // returns a finite set.
- \blacktriangleright Clearly, the recursion depth is limited to k in [Step](#page-84-0) $\frac{1}{8}$ \implies BIROOT terminates.
- ▶ Roth (2005) shows that if the z-degree of $Q(x, z)$ is ℓ then the total number of recursive calls made to BIROOT is at most $\ell(k-1)$ \implies BIROOT runs in polynomial time if the root finder of [Step](#page-82-0) $/15/10$ does.

Detailed complexity analysis can be found in Roth (2005), and Roth & Ruckenstein (2000). Assuming complexity $O(\ell^2\log^2\ell\log|F|)$ for root-finding in $F[z]$, the total complexity of BIROOT is $O((\ell \log^2 \ell)k(n + \ell \log |F|)).$