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List Decoding of Linear Codes

Given

• an [n, k, d] linear code C over a field F ,

• a channel S = (F, F, P ) (assuming for simplicity channel output
alphabet = input alphabet),

• a positive integer ℓ.

Definition

A list-ℓ decoder is a mapping D : Fn → 2C (subsets of C), where
|D(y)| ≤ ℓ for every y ∈ Fn.

Given a received word y, the decoder returns a list of at most ℓ
codewords.

We declare success if the list includes the transmitted codeword.
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List Decoding of Linear Codes (ii)

Definition

An integer τ is a decoding radius of a list-ℓ decoder
D if

d(y, c) ≤ τ =⇒ c ∈ D(y) ∀y ∈ Fn, c ∈ C.

τ

c1
c2

c3 c4

y

D captures all codewords at distance τ or less from any received word y.

• If the number of errors that actually occurred is τ or less, then the
returned list is guaranteed to contain the transmitted codeword.

• A nearest-codeword decoder for an [n, k, d] linear code C is a list-1
decoder with decoding radius ⌊(d− 1)/2⌋.

But, what good is a list of words if what we want is the unique codeword
that was sent?
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List Decoding of Linear Codes (iii)

How do we pick the right codeword from D(y)?

• Maximizing likelihood: P (y received | c transmitted ).
Reduces maximum likelihood decoding for errors of weight up to τ
to a search among ℓ codewords, with ties resolved according to some
(deterministic or randomized) policy.

• Using side information on codewords, such as a priori probabilities
(maybe derived from the context).

• The list may contain a single codeword even when τ > ⌊(d− 1)/2⌋!
(We’ll get back to this later.)
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Bivariate polynomials

▶ F [x, z] = set of all bivariate polynomials in x, z over a field F :

F [x, z] =
{
f(x, z) =

m∑
i,j=0

fi,jx
izj : m ∈ Z≥0, fi,j ∈ F

}
.

▶ We will also use the equivalent representation

F [x][z] =
{
f(x, z) =

m∑
j=0

fj(x)z
j : m ∈ Z≥0, fj ∈ F [x]

}
.

▶ F [x, y] is a ring. Addition and multiplication are well defined, additive
inverses exist, multiplicative ones do not in general (except for scalars).

▶ F [x][z] is a ring of univariate polynomials with coefficients in F [x], which
is a ring of univariate polynomials with coefficients in F .
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Bivariate polynomials: degree

Definition

The (µ, ν)-degree of f(x, z) ∈ F [x, z], µ, ν ≥ 0:

degµ,ν f(x, z) = max
i,j : fi,j ̸=0

{iµ+ jν} .

• deg1,1 f(x, z) is the ordinary degree of f(x, z) in F [x, z].

• deg0,1 f(x, z) is the ordinary degree of f(x, z) when regarded as an
element of F [x][z] (degree in z).

• By convention, degµ,ν(0) = −∞.
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Bivariate polynomials (ii)

Definition

Let f(x, z), g(x, z) ∈ F[x, z], f(x, z) ̸= 0. We say that f(x, z) divides
(or is a factor of) g(x, z) if g(x, z) = f(x, z)h(x, z) for some h ∈ F [x, z].

• F [x, z] is not a Euclidean ring. However, F [x][z] is, and F [x, z] is a unique
factorization domain.

Definitions

• A (z-)linear factor of Q(x, z) is a factor of the form z − f(x),
f(x) ∈ F [x].

• f(x) is a z-root of Q(x, z) if Q(x, f(x)) = 0 (identically).

Lemma

f(x) is a z-root of Q(x, z) if and only if z − f(x) is a factor of Q(x, z).

• Proof not totally trivial since F [x] is not a field—work over the field of
rational functions F (x).
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GRS decoding through bivariate polynomials

▶ CGRS: [n, k, d ] GRS code over a field F . For simplicity, we assume a
generator matrix of the form

GGRS =


1 1 . . . 1
α1 α2 . . . αn

α2
1 α2

2 . . . α2
n

...
...

...
...

αk−1
1 αk−1

2 . . . αk−1
n



▶ Associate u = (u0, u1, . . . , uk−1) ∈ F k with u(x) =
∑k−1

i=0 uix
i ∈ Fk[x].

CGRS =
{
uGGRS =

(
u(α1), u(α2), . . . , u(αn)

)
: u(x) ∈ Fk[x]

}
▶ Assume c = (c1, c2, . . . , cn) was sent, and y = (y1, y2, . . . , yn) was

received, with d(y, c) ≤ 1
2 (d− 1). Since n ≥ k, reconstructing

c = (u(α1), u(α2), . . . , u(αn) ) is the same as reconstructing u(x).
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GRS decoding through bivariate polynomials (ii)

▶ Construct Q(x, z) ∈ F [x, z] satisfying degree constraints

deg0,1 Q(x, z) ≤ 1 and deg1,k−1 Q(x, z) < n− 1
2 (d− 1)

and interpolation constraints

Q(αj , yj) = 0, j = 1, 2, . . . , n (∗)

▶ The degree constraints mean that Q(x, z) must be of the form

Q(x, z) = Q0(x) + zQ1(x), k−1+deg(Q1) < n− 1
2 (d−1)

deg(Q0) < n− 1
2 (d− 1) and degQ1(x) <

1
2 (d+ 1)

▶ This still allows Q(x, z) to have

⌈n− 1
2 (d− 1)⌉+ ⌈ 1

2 (d+ 1)⌉ ≥ n+ 1

significant (unknown) coefficients. On the other hand (∗) is a set of n
homogeneous linear equations in these unknowns =⇒ there is at least
one nonzero solution Q(x, z) satisfying the constraints.
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GRS decoding through bivariate polynomials (ii)

Let n0 = deg(Q0), n1 = deg(Q1). Then

Q(αj , yj) =

n0∑
s=0

Qs,0α
s
j +

n1∑
t=0

Qt,1α
t
jyj .

The equations (∗) can be written as


1 α1 α2

1 · · · αn0
1 y1 α1y1 α2

1y1 · · · αn1
1 y1

1 α2 α2
2 · · · αn0

2 y2 α2y2 α2
2y2 · · · αn1

2 y2
...

...
. . .

...
...

...
...

...
. . .

...
1 αn α2

n · · · αn0
n yn αnyn α2

nyn · · · αn1
n yn





Q0,0

Q1,0

Q2,0

...
Qn0,0

Q0,1

Q1,1

Q2,1

...
Qn1,1



= 0 .

n0 + n1 + 2 ≥ n+ 1� -

n

6

?

� -
Q0 � -

Q1

There is at least one nonzero solution Q(x, z) satisfying the constraints.
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GRS decoding through bivariate polynomials (iii)

There is at least one nonzero solution Q(x, z) satisfying the constraints.

▶ Consider such a solution, and define

φ(x) = Q(x, u(x)) = Q0(x) + u(x)Q1(x) (∗∗)

▶ Denote the set of error locations J = { j : yj ̸= cj}. For j ̸∈ J we have

φ(αj) = Q(αj , u(αj)) = Q(αj , cj) = Q(αj , yj)
(∗)
= 0

=⇒ φ(x) has at least n− |J | distinct roots in F . But

degφ(x) ≤ max{degQ0(x),deg u(x)+degQ1(x)} < n− 1
2 (d−1) ≤ n−|J |

=⇒ φ(x) must be identically zero =⇒ we can solve for u(x) in (∗∗):

u(x) = −Q0(x)

Q1(x)

This recovers the transmitted codeword c.
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GRS decoding through bivariate polynomials (iv)

▶ Since φ ≡ 0, we also have, for j ∈ J

0 = φ(αj) = Q(αj , cj) = Q0(αj) + cjQ1(αj) and

0
(∗)
= Q(α, yj) = Q0(αj) + yjQ1(αj)

=⇒ (yj − cj)︸ ︷︷ ︸
̸=0

Q1(αj) = 0

▶ Therefore, Q1(αj) = 0 for all j ∈ J
=⇒ Q1(x) is divisible by V (x) =

∏
j∈J(x− αj) = x|J|Λ(x−1) where

Λ is the error locator polynomial we defined for standard GRS decoding.

▶ In fact, Q(x, z) = V (x)(z − u(x)) is a solution to the degree and
interpolation constraints and we have V (x) = Q1(x). This solution
Q(x, z) has the smallest possible (1, k−1)-degree and is unique up to
scalar multiples.
• The GRS decoding scheme just described is closely related to the
Welch-Berlekamp GRS decoding algorithm.

20 / 51



List-ℓ decoding for ℓ > 1: Sudan’s algorithm

▶ Consider an [n, k, d ] GRS code CGRS, and define

R′ =
k − 1

n
.

It will be convenient to use R′ rather than R to represent code rate.

▶ CGRS is MDS, so n = k+d−1, or R′ = 1−δ, where δ = d/n.

▶ Madhu Sudan (1997) introduced a list-ℓ decoder for GRS codes, with
decoding radius ∆,

∆ =
⌈
nΘℓ,1(R

′)
⌉
− 1 ,

where

Θℓ,1(R
′) =

ℓ

ℓ+ 1
− ℓ

2
R′

(The second sub-index 1 of Θℓ,1 will be justified later.)
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Sudan’s algorithm (ii)

Θℓ,1(R
′) =

ℓ

ℓ+ 1
− ℓ

2
R′

Example

ℓ = 1: Θ1,1(R
′) = (1−R′)/2 = δ/2

corresponding to ∆ = ⌊(d− 1)/2⌋, as
expected.

Example

ℓ = 2: Θ2,1(R
′) = 2

3
−R′,

corresponding to

∆ =
⌈
2
3
n
⌉
− k =

⌊
2
3
(n+1)

⌋
− k .

-

6

HH
HHH

HHHH

ℓ=2

ℓ=1

@
@
@

@
@
@

Θℓ,1

R′

1
2

2
3

1
3

2
3 1

When R′ > 1
3
there is no point in

selecting ℓ=2 over ℓ=1.

In general, choose ℓ such that

Θℓ,1(R
′) ≥ Θℓ−1,1(R

′)

⇔ R′ ≤ 2/(ℓ2 + ℓ).
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Sudan’s algorithm (ii-cont.)

Example: GRS code with parameters [18, 2, 17], R′ = 1/18.

ℓ Θℓ,1(R
′) ∆

1 17/36 8

2 11/18 10

3 2/3 11

4 31/45 12

87654321

0.65

0.6

0.55

0.5

Θℓ,1

ℓ
8

11

7654321

9

8

12

10

∆

ℓ
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Sudan’s algorithm (iii)

Lemma (Interpolation lemma)

Let ℓ, τ ∈ Z>0 be such that τ < nΘℓ,1(R
′). For every vector

(y1, y2, . . . , yn) ∈ Fn there exists a nonzero bivariate polynomial
Q(x, z) ∈ F [x, z] that satisfies the constraints

deg0,1 Q(x, z) ≤ ℓ and deg1,k−1 Q(x, z) < n− τ , (∗) (degree)

Q(αj , yj) = 0 , j = 1, 2, . . . , n . (∗∗) (interp.)
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Proof of Sudan’s interpolation lemma

deg0,1 Q(x, z) ≤ ℓ and deg1,k−1 Q(x, z) < n− τ (∗) (degree)

Recall Θℓ,1(R
′) = ℓ

ℓ+1
− ℓ

2
R ′ and τ < Θℓ,1(R

′).

Proof.

Q(x, z) is of degree at most ℓ in z, i.e.:

Q(x, z) =

ℓ∑
t=0

Qt(x)z
t .

Let nt = degQt. Then, by the second degree constraint, we must have
t(k− 1) + nt < n− τ . Therefore, the number of significant coefficients allowed
by (∗) is:

ℓ∑
t=0

(
(n−τ)− t(k−1)

)
= (ℓ+1)(n−τ)−

(ℓ+1
2

)
(k−1) = (ℓ+1)(n−τ)−

(ℓ+1
2

)
nR′

= (ℓ+1)
(
n− τ − 1

2
ℓnR′)
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t(k− 1) + nt < n− τ . Therefore, the number of significant coefficients allowed
by (∗) is:

ℓ∑
t=0

(
(n−τ)− t(k−1)

)
= (ℓ+1)(n−τ)−

(ℓ+1
2

)
(k−1) = (ℓ+1)(n−τ)−

(ℓ+1
2

)
nR′

= (ℓ+1)
(
n− τ − 1

2
ℓnR′) = (ℓ+1)

(
n−

n

ℓ+1
− τ − 1

2
ℓnR′)+ n��

�� m
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Proof of Sudan’s interpolation lemma
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= (ℓ+1)(n−τ)−

(ℓ+1
2

)
(k−1) = (ℓ+1)(n−τ)−

(ℓ+1
2

)
nR′

= (ℓ+1)
(
n− τ − 1

2
ℓnR′) = (ℓ+1)

(
n−

n

ℓ+1
− τ − 1

2
ℓnR′)+ n

= (ℓ+1)
(

ℓ
ℓ+1

n− 1
2
ℓnR′ − τ

)
+ n = (ℓ+1)

(
nΘℓ,1(R

′)− τ
)
+ n > n.

Hence, there must be at least one nontrivial solution to (∗∗).
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Sudan’s algorithm (iv)

Lemma (Factorization lemma)

Let Q(x, z) ∈ F [x, z]\{0} satisfy (∗)–(∗∗) for some τ and y. Suppose
there exists u(x) ∈ Fk[x] such that c = (u(αi))

n
i=1 satisfies d(y, c) ≤ τ .

Then (z − u(x)) |Q(x, z).

Proof.

Let J = { j : yj ̸= u(αj) } and define φ(x) = Q(x, u(x)). We have

degφ(x) ≤ deg1,k−1 Q(x, z)
(∗)
< n− τ

d(y,c)≤τ

≤ n− |J |.

On the other hand, for all location indices j ̸∈ J ,

φ(αj) = Q(αj , u(αj))
(∗∗)
= Q(αj , yj) = 0 .

As before, we conclude that φ(x) ≡ 0, and, thus, u(x) is a z-root of Q(x, z).
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A list-ℓ decoder for CGRS

A list-ℓ decoder for CGRS derives immediately from the interpolation and
factorization lemmas above.

Input: received word y = (y1, y2, . . . , yn), ℓ = list size.
(Assume decoding radius τ = ⌈nΘℓ,1(R

′)⌉ − 1.)
Output: list of up to ℓ codewords c ∈ CGRS.

1 Interpolation step: find a nonzero Q(x, z) ∈ F [x, z] satisfying

deg0,1 Q(x, z) ≤ ℓ , deg1,k−1 Q(x, z) ≤ n
(
1−Θℓ,1(R

′)
)
,

and Q(αj , yj) = 0, j = 1, 2, . . . , n.

2 Factorization step: Compute the set U of all polynomials
u(x) ∈ FnR′+1[x] such that (z − u(x)) |Q(x, z).

3 Output all the codewords c = (u(α1), u(α2), . . . , u(αn))
corresponding to u(x) ∈ U such that d(y, c) < nΘℓ,1(R

′).
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Reverse engineering

• deg0,1 Q(x, z) ≤ ℓ and deg1,k−1 Q(x, z) < n− τ

Degree constraints, through interpolation/factorization lemmas,
ensure we can catch up to ℓ codewords at distance τ or less from
received word.

• Count free coefficients allowed by degree constraints.

Q(x, z) =

ℓ∑
i=0

Qi(x)z
i, degQi < n− τ − (k − 1)i

Ncoeffs =

ℓ∑
i=0

(n− τ − (k − 1)i )

= (ℓ+ 1)(n− τ)− (k − 1)
ℓ(ℓ+ 1)

2
> n (we want)

⇐⇒ τ

n
<

ℓ

ℓ+ 1
− ℓ

2
R′︸ ︷︷ ︸

Θℓ,1(R′)
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Analysis of the computation

List-ℓ decoding can be done in polynomial time.

1 Interpolation step: find a nonzero Q(x, z) ∈ F [x, z] satisfying

deg0,1 Q(x, z) ≤ ℓ , deg1,k−1 Q(x, z) ≤ n
(
1−Θℓ,1(R

′)
)
,

and Q(αj , yj) = 0, j = 1, 2, . . . , n.

Gaussian elimination: O(n3) operations in F .

2 Factorization step: Compute the set U of all polynomials
u(x) ∈ FnR′+1[x] such that (z − u(x)) |Q(x, z).

Nontrivial, because the roots sought are in F (x). Efficient solutions exist
[Gao-Shokrollahi 1999, Roth-Ruckenstein 2000].

3 Output all the codewords c = (u(α1), u(α2), . . . , u(αn)) corresponding to
u(x) ∈ U such that d(y, c) < nΘℓ,1(R

′).

Getting c from u(x) takes O(nk) operations.
Doing it for all codewords in the list takes O(ℓnk) operations.
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Sudan’s algorithm: small example

List-2 decoder for GRS [7, 2, 6] over F = GF(7) (ℓ=2, R′=1/7, ⌊ d−1
2
⌋=2)

• Code locators αj = j, j = 0, 1, . . . , 6.

GGRS =

(
1 1 1 1 1 1 1
0 1 2 3 4 5 6

)
.

• Decoding radius:

τ =
⌈
nΘℓ,1

⌉
− 1 =

⌈
n
(

ℓ
ℓ+1
− ℓ

2
R′
)⌉
− 1 =

⌈
7
(
2
3
− 1

7

)⌉
− 1 = 3 .

• Degree constraints on Q: deg0,1 Q ≤ 2, deg1,1 Q < n− τ = 4.

Q(x, z) = (q00 + q10x+ q20x
2 + q30x

3)

+ (q01 + q11x+ q21x
2)z + (q02 + q12x)z

2 9 variables

• Sent word: [0000000] Received: [1110000]

• Interpolation constraints: Q(αj , yj) = 0, 1 ≤ j ≤ 7.

[1, αj , α
2
j , α

3
j , yj , αjyj , α

2
jyj , y

2
j , αjy

2
j ] ·

[q00, q10, q20, q30, q01, q11, q21, q02, q12]
′ = 0
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Sudan’s algorithm: small example

[1, αj , α
2
j , α

3
j , yj , αjyj , α

2
jyj , y

2
j , αjy

2
j ] · q′ = 0

q = [q00, q10, q20, q30, q01, q11, q21, q02, q12]



1 0 0 0 1 0 0 1 0
1 1 1 1 1 1 1 1 1
1 2 4 1 1 2 4 1 2
1 3 2 6 0 0 0 0 0
1 4 2 1 0 0 0 0 0
1 5 4 6 0 0 0 0 0
1 6 1 6 0 0 0 0 0


· q′ =



0
0
0
0
0
0
0


7

6

?

9� -

• Solutions: r[0, 0, 0, 0, 6, 0, 0, 1, 0] + s[0, 0, 0, 0, 0, 6, 0, 0, 1], r, s ∈ F .

• Set r = 1, s = 0: q = [0, 0, 0, 0, 6, 0, 0, 1, 0]

• Q(x, z) = 6z + z2 = z2 − z = z(z − 1), roots u(x) = 0, u(x) = 1.

• u(x) = 1 corresponds to codeword [1, 1, 1, 1, 1, 1, 1], at distance 4 > τ
from y: discarded.

• Codeword list: { [0, 0, 0, 0, 0, 0, 0] }
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Sudan’s algorithm: small example

[1, αj , α
2
j , α

3
j , yj , αjyj , α

2
jyj , y

2
j , αjy

2
j ] · q′ = 0

q = [q00, q10, q20, q30, q01, q11, q21, q02, q12]



1 0 0 0 1 0 0 1 0
1 1 1 1 1 1 1 1 1
1 2 4 1 1 2 4 1 2
1 3 2 6 0 0 0 0 0
1 4 2 1 0 0 0 0 0
1 5 4 6 0 0 0 0 0
1 6 1 6 0 0 0 0 0


· q′ =



0
0
0
0
0
0
0


• Solutions: r[0, 0, 0, 0, 6, 0, 0, 1, 0] + s[0, 0, 0, 0, 0, 6, 0, 0, 1], r, s ∈ F .

Q(x, z) = 6rz+6sxz+ rz2 + sxz2 = (r+ sx)(z2− z) = (r+ sx)z(z− 1),

roots u(x) = 0, u(x) = 1.

• Codeword list: { [0, 0, 0, 0, 0, 0, 0] }
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Sudan’s algorithm: bigger example

List-4 decoder for GRS [18, 2, 17] over F = GF(19) (ℓ=4, R′= 1
18
, ⌊ d−1

2
⌋=8)

• Code locators αj = j, j = 1, 2, . . . , 18.

GGRS =

(
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

)
.

• Decoding radius:

τ =
⌈
nΘℓ,1

⌉
− 1 =

⌈
n
(

ℓ
ℓ+1
− ℓ

2
R′
)⌉
− 1 =

⌈
18
(
4
5
− 1

9

)⌉
− 1 = 12 .

• Degree constraints on Q: deg0,1 Q ≤ 4, deg1,1 Q < n− τ = 6.

Q(x, z) =
4∑

i=0

(
5−i∑
j=0

fi,jx
j

)
zi 20 indeterminates .

• Assume the transmitted codeword c corresponds to u(x) = 18 + 14x, i.e.,

c = ( 13, 8, 3, 17, 12, 7, 2, 16, 11, 6, 1, 15, 10, 5, 0, 14, 9, 4 ) ,

and the received word is

y = ( 5, 5, 1, 10, 10, 7, 2, 18, 6, 6, 1, 15, 13, 5, 14, 3, 1, 0 ) .

The gory details
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The Guruswami-Sudan algorithm

▶ The decoding radius of Sudan’s algorithm can be increased by
considering also the derivatives of Q(x, z)

▶ The quantity Θℓ,1(R
′) will be generalized to

Θℓ,r(R
′) =

1

(ℓ+1)r

((
ℓ+1
2

)
(1−R′)−

(
ℓ+1−r

2

))
or, equivalently,

Θℓ,r(R
′) = 1− r+1

2(ℓ+1)
− ℓ

2r
R′ , r ≤ ℓ .

▶ As before, R′ 7→ Θℓ,r(R
′) represents a line in the real plane. When

r = 1, the expression reduces to the previous definition of Θℓ,1(R
′).

▶ The additional parameter r will be optimized to obtain the largest
possible decoding radius.
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Hasse derivatives

▶ We saw finite field derivatives in the computation of error values in GRS

decoding, e.g.: ej = −αj

vj
· Γ(α−1

j )

Λ′(α−1
j )

• Finite field derivatives have some familiar properties, e.g., β is a
multiple root of f(x) iff f(β) = f ′(β) = 0.

• But, in characteristic p, f (p)(x) ≡ 0 for all f . E.g., f ′′(x) ≡ 0 in
characteristic 2. Not good for characterizing root multiplicity.

Definition (Hasse derivative)

Let a(x) =
∑n

i=0 aix
i be a polynomial in F [x]. The ℓth Hasse derivative

of a(x), denoted a[ℓ](x), is defined as

a[ℓ](x) =

n∑
i=ℓ

(
i
ℓ

)
aix

i−ℓ . (
i
ℓ

)
≜ 0 when i < ℓ

Example: f(x) = x4 + x3 + 1 ∈ GF(2)[x].

f [1](x) =
(
4
1

)
x3 +

(
3
1

)
x2 = x2 = f (1)(x) , f [2](x) =

(
4
2

)
x2 +

(
3
2

)
x = x ,

f [3](x) =
(
4
3

)
x+

(
3
3

)
= 1 , f [4](x) = 1

f [5](x) = 0

35 / 51



Hasse derivatives

▶ We saw finite field derivatives in the computation of error values in GRS

decoding, e.g.: ej = −αj

vj
· Γ(α−1

j )

Λ′(α−1
j )

• Finite field derivatives have some familiar properties, e.g., β is a
multiple root of f(x) iff f(β) = f ′(β) = 0.

• But, in characteristic p, f (p)(x) ≡ 0 for all f . E.g., f ′′(x) ≡ 0 in
characteristic 2. Not good for characterizing root multiplicity.

Definition (Hasse derivative)

Let a(x) =
∑n

i=0 aix
i be a polynomial in F [x]. The ℓth Hasse derivative

of a(x), denoted a[ℓ](x), is defined as

a[ℓ](x) =

n∑
i=ℓ

(
i
ℓ

)
aix

i−ℓ . (
i
ℓ

)
≜ 0 when i < ℓ

Example: f(x) = x4 + x3 + 1 ∈ GF(2)[x].

f [1](x) =
(
4
1

)
x3 +

(
3
1

)
x2 = x2 = f (1)(x) , f [2](x) =

(
4
2

)
x2 +

(
3
2

)
x = x ,

f [3](x) =
(
4
3

)
x+

(
3
3

)
= 1 , f [4](x) = 1

f [5](x) = 0

35 / 51



Hasse derivatives

▶ We saw finite field derivatives in the computation of error values in GRS

decoding, e.g.: ej = −αj

vj
· Γ(α−1

j )

Λ′(α−1
j )

• Finite field derivatives have some familiar properties, e.g., β is a
multiple root of f(x) iff f(β) = f ′(β) = 0.

• But, in characteristic p, f (p)(x) ≡ 0 for all f . E.g., f ′′(x) ≡ 0 in
characteristic 2. Not good for characterizing root multiplicity.

Definition (Hasse derivative)

Let a(x) =
∑n

i=0 aix
i be a polynomial in F [x]. The ℓth Hasse derivative

of a(x), denoted a[ℓ](x), is defined as

a[ℓ](x) =

n∑
i=ℓ

(
i
ℓ

)
aix

i−ℓ . (
i
ℓ

)
≜ 0 when i < ℓ

Example: f(x) = x4 + x3 + 1 ∈ GF(2)[x].

f [1](x) =
(
4
1

)
x3 +

(
3
1

)
x2 = x2 = f (1)(x) , f [2](x) =

(
4
2

)
x2 +

(
3
2

)
x = x ,

f [3](x) =
(
4
3

)
x+

(
3
3

)
= 1 , f [4](x) = 1

f [5](x) = 0
35 / 51



Hasse derivatives (ii)

▶ Properties
• a[1](x) = a(1)(x) .

• (a(x)+b(x))
[ℓ]

= a[ℓ](x)+b[ℓ](x), (c·a(x))[ℓ] = c·a[ℓ](x) linear.
• (a(x)b(x))

[ℓ]
=

∑ℓ
m=0 a

[m](x)b[ℓ−m](x) .

Proposition

Let β be a root of f(x) ∈ F [x] in some extension of F . The multiplicity
of β as a root of f is exactly m iff

f [ℓ](x)
∣∣∣
x=β

= 0, ℓ = 0, 1, ...,m−1, and f [m](x)
∣∣∣
x=β

̸= 0 .

• Example:
f(x) = x4 + 1 = (x+ 1)4 ∈ GF (2)[x] vanishes at x = 1
f [1](x) = 0 vanishes at x = 1
f [2](x) = 0 vanishes at x = 1
f [3](x) = 0 vanishes at x = 1
f [4](x) = 1 does not vanish at x = 1
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Hasse derivatives for bivariate polynomials

Definition (Hasse derivative for bivariate polynomials)

The (s, t)th Hasse derivative of a(x, z) ∈ F [x, z] is defined as

a[s,t](x, z) =
∑
i,j

(
i
s

)(
j
t

)
ai,jx

i−szj−t .

(
h
m

)
≜ 0 when h < m
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Guruswami-Sudan algorithm: auxiliary lemma

▶ Define T(r) = { (s, t) : s, t ∈ Z≥0, s+ t < r } notice: |T(r)| =
(
r+1
2

)
.

Lemma (auxiliary)

Given u(x) ∈ F [x] and a(x, z) ∈ F [x, z], let β and γ be elements of F such
that u(β) = γ and

a[s,t](x, z)|(x,z)=(β,γ) = 0 for all (s, t) ∈ T(r) .

Then (x− β)r | a(x, u(x)).

Proof.

Define b(v, w) = a(v+β,w+γ) ≜
∑

s,t bs,tv
swt. We have

a(v+β,w+γ) =
∑
i,j

aij(v+β)i(w+γ)j =
∑
ij

aij

i∑
s=0

j∑
t=0

(
i
s

)(
j
t

)
βi−sγj−tvswt

Equating coefficients, we get

bs,t =
∑
i,j

(
i
s

)(
j
t

)
ai,jβ

i−sγj−t = a[s,t](x, z)|x=β,z=γ

and, so, bs,t = 0 for every (s, t) ∈ T(r). Hence,

a(x, u(x)) = b(x− β, u(x)− γ) =
∑

s,t : s+t≥r

bs,t(x− β)s(u(x)− γ)t .

The result follows by observing that (x− β) | (u(x)− γ).
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Guruswami-Sudan interpolation lemma

Lemma (Guruswami-Sudan interpolation lemma)

Let ℓ, r, n, k = nR′ + 1, and τ be positive integers such that r ≤ ℓ,
k ≤ n, and τ < nΘℓ,r(R

′). For every vector y ∈ Fn there exists a
nonzero Q(x, z) ∈ F [x, z] satisfying

deg0,1 Q(x, z) ≤ ℓ , deg1,k−1 Q(x, z) < r(n− τ) , (⋆)

and

Q[s,t](x, z)|(x,z)=(αj ,yj) = 0 , j = 1, 2, . . . , n , (s, t)∈T(r) . (⋆⋆)
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Guruswami-Sudan interpolation lemma (proof)

deg0,1 Q(x, z) ≤ ℓ , deg1,k−1 Q(x, z) < r(n− τ) , (⋆)

Θℓ,r(R
′) =

1

(ℓ+1)r

((
ℓ+1
2

)
(1−R′)−

(
ℓ+1−r

2

))

Proof.

Similar to the proof for Sudan’s algorithm. The number of free coefficients
allowed by the degree constraints is∑ℓ

t=0

(
r(n− τ)− t(k − 1)

)
= (ℓ+ 1)r(n− τ)−

(
ℓ+1
2

)
(k − 1)

= (ℓ+ 1)r(n− τ)−
(
ℓ+1
2

)
nR′

=
(
ℓ+1
2

)
n(1−R′) +

(
(ℓ+1)r −

(
ℓ+1
2

))
n− (ℓ+1)rτ
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2
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n(1−R′)−

((
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2

)
−
(
r+1
2
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n− (ℓ+1)rτ

= (ℓ+1)r
(
nΘℓ,r(R

′)− τ
)
+
(
r+1
2

)
n >

(
r+1
2

)
n = |T(r)|n .

Thus, the interpolation constraints have at least one nontrivial solution.
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Guruswami-Sudan factorization lemma

Lemma (Guruswami-Sudan factorization lemma)

Let a nonzero Q(x, z) ∈ F [x, z] satisfy the degree and interpolation
constraints of the previous lemma for r, τ ∈ Z>0, and a word y ∈ Fn.
Suppose there exists u(x) ∈ Fk[x] such that the respective codeword,
c =

(
u(αi)

)n
i=1

satisfies d(y, c) ≤ τ . Then (z − u(x)) |Q(x, z).

Proof.

Let J be the set of indexes j for which u(αj) = yj . By (⋆⋆) and the auxiliary
lemma we obtain

(x− αj)
r |Q(x, u(x)) , j ∈ J

⇒
(∏
j∈J

(x− αj)
r
)
|Q(x, u(x)) . (⋆⋆⋆)

On the other hand, by (⋆)

degQ(x, u(x)) ≤ deg1,k−1 Q(x, z) < r(n− τ) ≤ r|J | .

Combining this with (⋆⋆⋆) we conclude that Q(x, u(x)) is identically zero.
The result now follows from the lemma on z-roots.
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The Guruswami-Sudan (GS) decoder

Input: received word y = (y1, y2, . . . , yn), ℓ = list size.
(Assume decoding radius τ = ⌈nΘℓ,r(R

′)⌉ − 1.)
Output: list of up to ℓ codewords c ∈ CGRS.

1 Interpolation step: find a nonzero Q(x, z) ∈ F [x, z] satisfying

deg0,1 Q(x, z) ≤ ℓ , deg1,k−1 Q(x, z) ≤ n
(
1−Θℓ,r(R

′)
)
,

and Q[s,t](x, z)|(x,z)=(αj ,yj) = 0 , j = 1, 2, . . . , n , (s, t)∈T(r)

2 Factorization step: Compute the set U of all polynomials
u(x) ∈ FnR′+1[x] such that z − u(x)|Q(x, z).

3 Output all the codewords c = (u(α1), u(α2), . . . , u(αn))
corresponding to u(x) ∈ U such that d(y, c) < nΘℓ,r(R

′).

The algorithm is parametrized in r ≤ ℓ. What is the best value?
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The Guruswami-Sudan algorithm: example

List-4 decoder for GRS [18, 4, 15] over F = GF(19)

1 2 3 4
0.42
0.44
0.46
0.48
0.50
0.52
Θℓ,r(R

′)

r

• Parameters: R′ = (k − 1)/n = 1/6, ℓ = 4. The function

Θℓ,r(R
′) = 1− r+1

2(ℓ+1)
− ℓ

2r
R′ , r ≤ ℓ

is maximized at r = 2, yielding Θ = 8/15 and a decoding radius

τ = ⌈nΘ(ℓ, r)⌉ − 1 = 9

(compare with (d− 1)/2 = 7).

• Degree constraints on Q: deg0,1 Q ≤ 4, deg1,3 Q < r(n− τ) = 18.

Q(x, z) =
4∑

j=0

(
17−3∗j∑

i=0

fi,jx
i

)
zj 60 indeterminates .

• Assume the transmitted codeword c corresponds to
u(x) = 18 + 14x+ 3x2 + x3, i.e.,

c = ( 17, 9, 0, 15, 3, 8, 17, 17, 14, 14, 4, 9, 16, 12, 3, 14, 13, 6 ) .

error vector

e = (15, 9, 0, 0, 9, 17, 0, 8, 4, 0, 0, 0, 0, 4, 0, 7, 0, 12) (weight 9)

The gory details
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Optimizing the decoding radius

▶ We can optimize over r to obtain the best possible decoding radius for
the GS decoder. Define

Θℓ(R
′) = max

1≤r≤ℓ
Θℓ,r(R

′) .

▶ Define Υℓ,r = r(r−1)
ℓ(ℓ+1) . It can be shown that

Θℓ,r(R
′) ≥ Θℓ,r−1(R

′) ⇐⇒ R′ ≥ Υℓ,r .

=⇒ Optimal r is the unique integer satisfying
Υℓ,r ≤ R′ < Υℓ,r+1 (best r is a function of R′ and ℓ).

▶ We have:

Θℓ(R
′) =


Θℓ,1(R

′) Υℓ,1 ≤ R′ < Υℓ,2

Θℓ,2(R
′) Υℓ,2 ≤ R′ < Υℓ,3

...
...

Θℓ,ℓ(R
′) Υℓ,ℓ ≤ R′ < Υℓ,ℓ+1

(Υℓ,1 ≜ 0 , Υℓ,ℓ+1 ≜ 1)

Asymptotics

The value of Θℓ(R
′) is always

non-decreasing with ℓ, and it can
be shown that

Θ∞(R′) ≜ lim
ℓ→∞

Θℓ(R
′) = 1−

√
R′ .
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Best values of r for ℓ = 4

r

 

= 1

r

 

= 2

r = 3

r

 

= 4

Best values of r

 

for `

 

= 4

4, 1 4, 2 4, 3 4, 4 4, 5
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Comparison with list-1 decoder and asymptotic behavior

ℓ = 1 (1−R′)/2

ℓ = 4

ℓ = ∞ 1−
√
R′
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The average number of incorrect codewords in the list

It turns out that in most cases the list produced by the GS decoder
contains just one codeword (the closest codeword to the received word).

▶ McEliece (2003) shows that under a q-ary symmetric channel (q = |F |),
the average number of “bad” codewords in the list produced by a GS
decoder of radius τ is very close to

L̄(τ) = q−(n−k)
τ∑

s=0

(
n
s

)
(q − 1)s .

average number of codewords
in a random sphere of radius τ

▶ Ruckenstein (Ph.D. Thesis, 2001) gave the explicit estimate

L̄bad ≤ q−εn whenever
√

k/n− k/n− 1/ log2 q ≥ ε .

Example

Consider a [256, 179] GRS code. We have R = k/n ≈ 0.7, and thus

L̄bad ≈ 256−(
√

0.7−0.7−0.125)·256 ≈ 6.5× 10−8,

with τ ≈ 41 (conventional list-1 decoder corrects 38 errors).
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Finding z-roots of bi-variate polynomials

▶ The goal: given Q(x, z) ∈ F [x, z], and an integer k > 0, find all factors
of Q(x, z) of the form z − u(x), with u(x) ∈ F [x] and deg u(x) < k.

▶ The observation: if

(z − u0 − u1x− · · · − uk−1x
k−1)

∣∣∣ Q(x, z) and x ̸ | Q(x, z)

then (z − u0) | Q(0, z) =⇒ u0 is a root of Q(0, z) ∈ F [z].

• Find u0 using a root-finding algorithm for univariate polynomials.
For example, Chien search is O(|F |), which is O(n) when n ≈ |F |
(e.g., primitive RS codes). More sophisticated methods exist.

▶ Let z′ = zx+ u0. Then,

z′−u(x) = zx−u1x−u2x
2−· · ·−uk−1x

k−1 = x(z−u1−u2x−· · ·−uk−1x
k−2)

and we get that

(z − u1 − u2x− · · · − uk−1x
k−2)

∣∣∣ x−1Q(x, xz + u0) .

We proceed recursively, recovering u0, u1, . . . , uk−1.
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Algoritm BiRoot (Roth-Ruckenstein 2000)

BiRoot (Q(x, z) ∈ F [x, y], k ∈ N, λ ∈ N )

// Input λ is the recursion depth.
// Global variables: set U ⊆ Fk[x] , polynomial g(x) =

∑k−1
s=0 gsx

s ∈ Fk[x].

// On output, U contains all z-linear factors of Q(x, z).

// Call procedure initially with Q(x, z) ̸= 0, k > 0, and λ = 0.

if (λ == 0) // 1 //

U ← ∅; // 2 //

m← largest integer such that xm |Q(x, z); // 3 //

T (x, z)← x−mQ(x, z); // 4 //

Z ← set of all distinct (z-)roots of T (0, z) in F ; // 5 //

for each γ ∈ Z do { // 6 //

gλ ← γ; // 7 //

if (λ < k−1 ) // 8 //

BiRoot(T (x, xz + γ), k, λ+1); // 9 //

else // 10 //

if (Q(x, gk−1) == 0 ) // 11 //

U ← U ∪ {g(x)}; // 12 //

} // 13 //
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// Call procedure initially with Q(x, z) ̸= 0, k > 0, and λ = 0.

if (λ == 0) // 1 //

U ← ∅; // 2 //

m← largest integer such that xm |Q(x, z); // 3 //

T (x, z)← x−mQ(x, z); // 4 //

Z ← set of all distinct (z-)roots of T (0, z) in F ; // 5 //

for each γ ∈ Z do { // 6 //

gλ ← γ; // 7 //

if (λ < k−1 ) // 8 //

BiRoot(T (x, xz + γ), k, λ+1); // 9 //

else // 10 //

if (Q(x, gk−1) == 0 ) // 11 //

U ← U ∪ {g(x)}; // 12 //

} // 13 //
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Algorithm BiRoot: correctness

Proposition

Let Q(x, z) be a nonzero bivariate polynomial in F [x, z] and let U be the
set that is computed by the call BiRoot(Q, k, 0). Then, every element
of U is a z-root of Q(x, z), and every z-root of Q(x, z) is contained in U .

Proof: Roth & Ruckenstein (2000), Roth (2005).
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Algorithm BiRoot: complexity

▶ The z-degree of Qi(x, z) and T (x, z) does not change during execution
=⇒ T (0, z) in Step //5// is nonzero and of finite, bounded degree
=⇒ Step //5// returns a finite set.

▶ Clearly, the recursion depth is limited to k in Step //8//

=⇒ BiRoot terminates.

▶ Roth (2005) shows that if the z-degree of Q(x, z) is ℓ then the total
number of recursive calls made to BiRoot is at most ℓ(k − 1)
=⇒ BiRoot runs in polynomial time if the root finder of Step //5//

does.

Detailed complexity analysis can be found in Roth (2005), and Roth &
Ruckenstein (2000). Assuming complexity O(ℓ2 log2 ℓ log |F |) for
root-finding in F [z], the total complexity of BiRoot is
O((ℓ log2 ℓ)k(n+ ℓ log |F |)).
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