Review of Basic Coding Theory

Gadiel Seroussi

October 12, 2022

Channel Coding

Discrete probabilistic channel: (F, Φ, Prob)

- F: finite input alphabet, Φ : finite output alphabet
- Prob: conditional probability distribution
$\operatorname{Prob}\{\mathbf{y}$ received $\mid \mathbf{x}$ transmitted $\} \mathbf{x} \in F^{m}, \mathbf{y} \in \Phi^{m}, m \geq 1$
- u: message word $\in \mathcal{M}$, set of M possible messages
- $\mathbf{c} \in F^{n}:$ codeword, $\mathcal{E}: \mathbf{u} \xrightarrow{1-1} \mathbf{c}$ encoding
- $\mathcal{C}=\{\mathcal{E}(\mathbf{u}) \mid \mathbf{u} \in \mathcal{M}\}$ code
- $\mathbf{y} \in \Phi^{n}$: received word
- $\hat{\mathbf{c}}, \hat{\mathbf{u}}$: decoded codeword, message word, $\mathbf{y} \longrightarrow \hat{\mathbf{c}}(\longrightarrow \hat{\mathbf{u}})$ decoding

Code Parameters

$\mathcal{C}=\mathcal{E}(\mathcal{M}) \subseteq F^{n}, \quad|\mathcal{C}|=M$

- n : code length
- $k=\log _{|F|} M=\log _{|F|}|\mathcal{C}|$: code dimension
- $R=\frac{k}{n}$: code rate ≤ 1
- $r=n-k$: code redundancy
- We call \mathcal{C} an (n, M) (block) code over F

The Hamming Metric

- Hamming distance

For single-letters $x, y \in F: \mathrm{d}(x, y)= \begin{cases}0, & x=y, \\ 1, & x \neq y .\end{cases}$
For vectors $\mathbf{x}, \mathbf{y} \in F^{n}: \mathrm{d}(\mathbf{x}, \mathbf{y})=\sum_{j=0}^{n-1} \mathrm{~d}\left(x_{j}, y_{j}\right)$
number of locations where the vectors differ

- The Hamming distance defines a metric:
- $d(x, y) \geq 0$, with equality if and only if $x=y$
- Symmetry $\mathrm{d}(\mathbf{x}, \mathbf{y})=\mathrm{d}(\mathbf{y}, \mathbf{x})$
- Triangle inequality: $\mathrm{d}(\mathrm{x}, \mathrm{y}) \leq \mathrm{d}(\mathrm{x}, \mathbf{z})+\mathrm{d}(\mathbf{z}, \mathbf{y})$
- Hamming weight $\mathrm{wt}(\mathbf{e})=\mathrm{d}(\mathbf{e}, \mathbf{0})$ number of nonzero entries
- When F is an abelian group, $\mathrm{d}(\mathbf{x}, \mathbf{y})=\mathrm{wt}(\mathbf{x}-\mathbf{y})$

Minimum Distance

- Let \mathcal{C} be an (n, M) code over $F, M>1$

$$
d=\min _{\mathbf{c}_{1}, \mathbf{c}_{2} \in \mathcal{C}: \mathbf{c}_{1} \neq \mathbf{c}_{2}} \mathrm{~d}\left(\mathbf{c}_{1}, \mathbf{c}_{2}\right)
$$

is called the minimum distance of \mathcal{C}

- We say that \mathcal{C} is an (n, M, d) code.

Decoding

- $\mathcal{C}:(n, M, d)$ over F, used on channel $S=(F, \Phi$, Prob $)$
- A decoder for \mathcal{C} on S is a function

$$
\mathcal{D}: \Phi^{n} \longrightarrow \mathcal{C}
$$

- Decoding error probability of \mathcal{D} is

$$
P_{\text {err }}=\max _{\mathbf{c} \in \mathcal{C}} P_{\text {err }}(\mathbf{c}),
$$

where

$$
P_{\text {err }}(\mathbf{c})=\sum_{\mathbf{y}: \mathcal{D}(\mathbf{y}) \neq \mathbf{c}} \operatorname{Prob}\{\mathbf{y} \text { received } \mid \mathbf{c} \text { transmitted }\} .
$$

goal: find encoders (codes) and decoders that make $P_{\text {err }}$ small

Maximum Likelihood and Maximum a Posteriori Decoding

- $\mathcal{C}:(n, M, d)$, channel $S:(F, \Phi$, Prob $)$.
- Maximum likelihood decoder (MLD):

$$
\mathcal{D}_{\mathrm{MLD}}(\mathbf{y})=\arg \max _{\mathbf{c} \in \mathcal{C}} \operatorname{Prob}\{\mathbf{y} \text { received } \mid \mathbf{c} \text { transmitted }\}, \forall \mathbf{y} \in \Phi^{n}
$$

With a fixed tie resolution policy, $\mathcal{D}_{\mathrm{MLD}}$ is well-defined for \mathcal{C} and S.

- Maximum a posteriori (MAP) decoder:

$$
\mathcal{D}_{\mathrm{MAP}}(\mathbf{y})=\underset{\mathbf{c} \in \mathcal{C}}{\arg \max \operatorname{Prob}\{\mathbf{c} \text { transmitted } \mid \mathbf{y} \text { received }\}, \quad \forall \mathbf{y} \in \Phi^{n}, ~\left({ }^{n}\right)}
$$

But,

$$
\begin{aligned}
& \operatorname{Prob}\{\mathbf{c} \text { transmitted } \mid \mathbf{y} \text { received }\} \\
& \quad=\operatorname{Prob}\{\mathbf{y} \text { received } \mid \mathbf{c} \text { transmitted }\} \cdot \frac{\operatorname{Prob}\{\mathbf{c} \text { transmitted }\}}{\operatorname{Prob}\{\mathbf{y} \text { received }\}}
\end{aligned}
$$

\Longrightarrow MLD and MAP are the same when \mathbf{c} is uniformly distributed

MLD on the BSC

- $\mathcal{C}:(n, M, d)$, channel $\operatorname{BSC}(p)$

$$
\begin{aligned}
& \operatorname{Prob}\{\mathbf{y} \text { received } \mid \mathbf{c} \text { transmitted }\} \\
& =\prod_{j=1}^{n} \operatorname{Prob}\left\{y_{j} \text { received } \mid c_{j} \text { transmitted }\right\} \\
& =p^{\mathrm{d}(\mathbf{y}, \mathbf{c})}(1-p)^{n-\mathrm{d}(\mathbf{y}, \mathbf{c})}=(1-p)^{n} \cdot\left(\frac{p}{1-p}\right)^{\mathrm{d}(\mathbf{y}, \mathbf{c})}
\end{aligned}
$$

where $\mathrm{d}(\mathbf{y}, \mathbf{c})$ is the Hamming distance. Since $p /(1-p)<1$ for $p<1 / 2$, for all $\mathbf{y} \in F_{2}^{n}$ we have

$$
\begin{gathered}
\mathcal{D}_{\mathrm{MLD}}(\mathbf{y})=\underset{\mathbf{c} \in \mathcal{C}}{\arg \min } \mathrm{d}(\mathbf{y}, \mathbf{c}) \\
\mathcal{D}_{\mathrm{MLD}}=\text { nearest-codeword decoder }
\end{gathered}
$$

- True also for $\operatorname{QSC}(p)$ whenever $p<1-1 / q$

Error Correction

$$
\mathbf{e}=\left[0 \ldots 0, e_{i_{1}}, 0 \ldots 0, e_{i_{2}}, 0 \ldots 0, e_{i_{t}}, 0 \ldots 0\right] \xrightarrow{\mathbf{x}} \underbrace{}_{\mathbf{e}} \mathbf{y}=\mathbf{x}+\mathbf{e}
$$

$$
i_{1}, i_{2}, \ldots, i_{t}: \quad \text { error locations } \quad e_{i_{1}}, e_{i_{2}}, \ldots, e_{i_{t}}: \quad \text { error values }(\neq 0)
$$

Full error correction: the task of recovering all $\left\{i_{j}\right\}$ and $\left\{e_{i_{j}}\right\}$ given \mathbf{y}

Theorem

Let \mathcal{C} be an (n, M, d) code over F. There is a decoder $\mathcal{D}: F^{n} \rightarrow \mathcal{C}$ that recovers correctly every pattern of up to $\lfloor(d-1) / 2\rfloor$ errors for every channel $S=(F, F$, Prob $)$.

Linear Codes

- Assume \mathbb{F} is a finite field
- $\mathcal{C}:(n, M, d)$ over \mathbb{F} is called a linear code if \mathcal{C} is a linear sub-space of \mathbb{F}^{n} over \mathbb{F}
- $\mathbf{c}_{1}, \mathbf{c}_{2} \in \mathcal{C}, a_{1}, a_{2} \in \mathbb{F} \Rightarrow a_{1} \mathbf{c}_{1}+a_{2} \mathbf{c}_{2} \in \mathcal{C}$
- A linear code \mathcal{C} has $M=q^{k}$ codewords, where $k=\log _{q} M$ is the dimension of \mathcal{C} as a linear space over \mathbb{F}
- $r=n-k$ is the redundancy of $\mathcal{C}, R=k / n$ its rate
- We use the notation $[n, k, d]$ to denote the parameters of a linear code
- A generator matrix for a linear code \mathcal{C} is a $k \times n$ matrix G whose rows form a basis of \mathcal{C}.

Minimum Weight

- For an $[n, k, d]$ code \mathcal{C},

$$
\mathbf{c}_{1}, \mathbf{c}_{2} \in \mathcal{C} \Longrightarrow \mathbf{c}_{1}-\mathbf{c}_{2} \in \mathcal{C}, \text { and } \mathrm{d}\left(\mathbf{c}_{1}, \mathbf{c}_{2}\right)=\mathrm{wt}\left(\mathbf{c}_{1}-\mathbf{c}_{2}\right)
$$

Therefore,

$$
d=\min _{\mathbf{c}_{1}, \mathbf{c}_{2} \in \mathcal{C}: \mathbf{c}_{1} \neq \mathbf{c}_{2}} \mathrm{~d}\left(\mathbf{c}_{1}, \mathbf{c}_{2}\right)=\min _{\mathbf{c}_{1}, \mathbf{c}_{2} \in \mathcal{C}: \mathbf{c}_{1} \neq \mathbf{c}_{2}} \mathrm{wt}\left(\mathbf{c}_{1}-\mathbf{c}_{2}\right)=\min _{\mathbf{c} \in \mathcal{C} \backslash\{\mathbf{0}\}} \mathrm{wt}(\mathbf{c}) .
$$

\Rightarrow minimum distance is the same as minimum weight for linear codes

- Recall also that $\mathbf{0} \in \mathcal{C}$ and $\mathrm{d}(\mathbf{c}, \mathbf{0})=\mathrm{wt}(\mathbf{c})$

Encoding Linear Codes

- Since $\operatorname{rank}(G)=k$, the map $\mathcal{E}: \mathbb{F}^{k} \rightarrow \mathcal{C}$ defined by

$$
\mathcal{E}: \mathbf{u} \mapsto \mathbf{u} G
$$

is $1-1$, and can serve as an encoding mechanism for \mathcal{C}.

- Applying elementary row operations and possibly reordering coordinates, we can bring G to the form

$$
G=\left(I_{k} \mid A\right) \quad \text { systematic generator matrix, }
$$

where I_{k} is a $k \times k$ identity matrix, and A is a $k \times(n-k)$ matrix.

$$
\mathbf{u} \mapsto \mathbf{u} G=(\mathbf{u} \mid \mathbf{u} A) \quad \text { systematic encoding. }
$$

- In a systematic encoding, the information symbols from \mathbf{u} are transmitted 'as is,' and $n-k$ check symbols (or redundancy symbols, or parity symbols) are appended.

Parity Check Matrix

- Let $\mathcal{C}:[n, k, d]$. A parity-check matrix (PCM) of \mathcal{C} is an $r \times n$ matrix H such that for all $\mathbf{c} \in \mathbb{F}^{n}$,

$$
\mathbf{c} \in \mathcal{C} \quad \Longleftrightarrow \quad H \mathbf{c}^{T}=\mathbf{0}
$$

- For a generator matrix G of \mathcal{C}, we have

$$
H G^{T}=0 \Rightarrow G H^{T}=0, \text { and } \operatorname{dim} \operatorname{ker}(G)=n-\operatorname{rank}(G)=n-k=r
$$

- If $G=\left(I_{k} \mid A\right)$, then $H=\left(-A^{T} \mid I_{n-k}\right)$ is a (systematic) parity-check matrix.

Cosets and Syndromes

- Let $\mathbf{y} \in \mathbb{F}^{n}$. The syndrome of \mathbf{y} (with respect to a $\operatorname{PCM} H$ of \mathcal{C}) is defined by

$$
\mathbf{s}=H \mathbf{y}^{T} \in \mathbb{F}^{n-k}
$$

The set

$$
\mathbf{y}+\mathcal{C}=\{\mathbf{y}+\mathbf{c}: \mathbf{c} \in \mathcal{C}\}
$$

is a coset of \mathcal{C} (as an additive subgroup) in \mathbb{F}^{n}.

- If $\mathbf{y}_{1} \in \mathbf{y}+\mathcal{C}$, then

$$
\mathbf{y}_{1}-\mathbf{y} \in \mathcal{C} \Longrightarrow H\left(\mathbf{y}_{1}-\mathbf{y}\right)^{T}=\mathbf{0} \quad \Longrightarrow H \mathbf{y}_{1}^{T}=H \mathbf{y}^{T}
$$

\Longrightarrow The syndrome is invariant for all $\mathbf{y}_{1} \in \mathbf{y}+\mathcal{C}$.

- Let $F=F_{q}$. Given a PCM H, there is a 1-1 correspondence between the q^{n-k} cosets of \mathcal{C} in \mathbb{F}^{n} and the q^{n-k} possible syndrome values (H is full-rank \Longrightarrow all values are attained).

Syndrome Decoding of Linear Codes

- $\mathbf{c} \in \mathcal{C}$ is sent and $\mathbf{y}=\mathbf{c}+\mathbf{e}$ is received on an additive channel
- y and \mathbf{e} are in the same coset of \mathcal{C}
- Nearest-neighbor decoding of y calls for finding the closest codeword \mathbf{c} to $\mathbf{y} \Longrightarrow$ find a vector \mathbf{e} of lowest weight in $\mathbf{y}+\mathcal{C}$: a coset leader.
- coset leaders need not be unique (when are they?)
- Decoding algorithm: upon receiving y
- compute the syndrome $\mathbf{s}=H \mathbf{y}^{T}$
- find a coset leader \mathbf{e} in the coset corresponding to s
- decode \mathbf{y} into $\hat{\mathbf{c}}=\mathbf{y}-\mathbf{e}$
- If $n-k$ is (very) small, a table containing one leader per coset can be pre-computed. The table is indexed by s.
- In general, however, syndrome decoding appears exponential in $n-k$. In fact, it has been shown to be NP-hard.

The Singleton Bound

- The Singleton bound.

Theorem (Singleton bound)

For any (n, M, d) code over an alphabet of size q,

$$
d \leq n-\left(\log _{q} M\right)+1 .
$$

- Singleton bound for linear codes

Theorem (Singleton bound for linear codes)

For any linear $[n, k, d]$ code over $G F(q)$,

$$
d \leq n-k+1
$$

- $\mathcal{C}:(n, M, d)$ (or, if linear, $\mathcal{C}:[n, k, d])$ is called maximum distance separable (MDS) if it meets the Singleton bound, namely $d=n-\left(\log _{q} M\right)+1 \quad(d=n-k+1)$.

The Sphere-Packing Bound

The sphere of center \mathbf{c} and radius t in \mathbb{F}_{q}^{n} is the set of vectors at Hamming distance t or less from c. Its volume (cardinality) is

$$
V_{q}(n, t)=\sum_{i=0}^{t}\binom{n}{i}(q-1)^{i} .
$$

Theorem (The sphere-packing (SP) bound)

For any (n, M, d) code over \mathbb{F}_{q},

$$
M \cdot V_{q}(n,\lfloor(d-1) / 2\rfloor) \leq q^{n} .
$$

Proof. Spheres of radius $t=\lfloor(d-1) / 2\rfloor$ centered at codewords must be disjoint. \square

For a linear $[n, k, d]$ code, the bound becomes $V_{q}(n,\lfloor(d-1) / 2\rfloor) \leq q^{n-k}$. For $q=2$,

$$
\sum_{i=0}^{\lfloor(d-1) / 2\rfloor}\binom{n}{i} \leq 2^{n-k}
$$

The Gilbert-Varshamov bound

The Singleton and SP bounds set necessary conditions on the parameters of a code. The following is a sufficient condition:

Theorem (The Gilbert-Varshamov (GV) bound)

There exists an $[n, k, d]$ code over the field \mathbb{F}_{q} whenever

$$
V_{q}(n-1, d-2)<q^{n-k} .
$$

Theorem

Let

$$
\rho=\frac{q^{k}-1}{q-1} \cdot \frac{V_{q}(n, d-1)}{q^{n}} .
$$

Then, a random $[n, k]$ code has minimum distance d with $\operatorname{Prob} \geq 1-\rho$.
Lots of codes are near the GV bound. But it's very hard to find them!

Asymptotic Bounds

- Definition: relative distance $\delta=d / n$
- We are interested in the behavior of δ and $R=\left(\log _{q} M\right) / n$ as $n \rightarrow \infty$.
- Singleton bound: $d \leq n-\left\lceil\log _{q} M\right\rceil+1 \Longrightarrow R \leq 1-\delta+o(1)$
- For the SP and GV bounds, we need estimates for $V_{q}(n, t)$
- Definition: symmetric q-ary entropy function $\mathrm{H}_{q}:[0,1] \rightarrow[0,1]$

$$
\mathrm{H}_{q}(x)=-x \log _{q} x-(1-x) \log _{q}(1-x)+x \log _{q}(q-1),
$$

- $\mathrm{H}_{q}(0)=0, \mathrm{H}_{q}(1)=\log _{q}(q-1)$, strictly \cap-convex,

$$
\max =1 \text { at } x=1-1 / q
$$

- coincides with $\mathrm{H}(x)$ when $q=2$

Asymptotic Bounds (II)

Lemma. For $0 \leq t / n \leq 1-(1 / q)$,

$$
V_{q}(n, t)=\sum_{i=0}^{t}\binom{n}{i}(q-1)^{i} \leq q^{n H_{q}(t / n)} .
$$

Lemma. For integers $0 \leq t \leq n$,

$$
V_{q}(n, t) \geq\binom{ n}{t}(q-1)^{t} \geq \frac{1}{\sqrt{8 t(1-(t / n))}} \cdot q^{n \mathrm{H}_{q}(t / n)} .
$$

Theorem (Asymptotic SP bound)

For every $\left(n, q^{n R}, \delta n\right)$ code over \mathbb{F}_{q},

$$
R \leq 1-\mathrm{H}_{q}(\delta / 2)+o(1) .
$$

Theorem (Asymptotic GV bound)

Let $n, n R, \delta n$ be positive integers such that $\delta \in(0,1-(1 / q)]$ and

$$
R \leq 1-\mathrm{H}_{q}(\delta) .
$$

Then, there exists a linear $[n, n R, \geq \delta n]$ code over $F q$.

Plot of Asymptotic Bounds

Plot of Asymptotic Bounds

$$
R=k / n
$$

Can we find codes covering this region?

Plot of Asymptotic Bounds

Plot of Asymptotic Bounds

$$
R=k / n
$$

So far, we have only seen codes on these lines!

What we lose for decoding only up to $(\mathrm{d}-1) / 2$

- Hamming (sphere packing) bound

$$
R \leq 1-H(\delta / 2)+o(1)
$$

- Assume binary symmetric channel of parameter p.

Channel capacity: $\quad C=1-H(p)$
\Rightarrow with R arbitrarily close to $1-H(p)$, can correct typical patterns of weight $n p$ with probability 1
\Rightarrow "equivalent minimum distance" $\approx 2 n p$
$\Rightarrow \delta \approx 2 p$
\Rightarrow can achieve virtually zero-error communication with $R \approx 1-H(\delta / 2)$

Hamming bound curve

Generalized Reed-Solomon Codes

- Let $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}, n<q$, be distinct nonzero elements of \mathbb{F}_{q}, and let $v_{1}, v_{2}, \ldots, v_{n}$ be nonzero elements of \mathbb{F}_{q} (not necessarily distinct). A generalized Reed-Solomon (GRS) code is a linear [$n, k, d]$ code $\mathcal{C}_{\text {GRS }}$ with PCM

$$
H_{\mathrm{GRS}}=\left(\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
\alpha_{1} & \alpha_{2} & \ldots & \alpha_{n} \\
\alpha_{1}^{2} & \alpha_{2}^{2} & \ldots & \alpha_{n}^{2} \\
\vdots & \vdots & \vdots & \vdots \\
\alpha_{1}^{n-k-1} & \alpha_{2}^{n-k-1} & \ldots & \alpha_{n}^{n-k-1}
\end{array}\right)\left(\begin{array}{cccc}
v_{1} & & & \\
& v_{2} & & 0 \\
0 & & \ddots & \\
& & & v_{n}
\end{array}\right)
$$

α_{j} : code locators (distinct), v_{j} : column multipliers $(\neq 0)$

Generalized Reed-Solomon Codes

- Let $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}, n<q$, be distinct nonzero elements of \mathbb{F}_{q}, and let $v_{1}, v_{2}, \ldots, v_{n}$ be nonzero elements of \mathbb{F}_{q} (not necessarily distinct). A generalized Reed-Solomon (GRS) code is a linear $[n, k, d]$ code $\mathcal{C}_{\mathrm{GRS}}$ with PCM
$H_{\mathrm{GRS}}=\left(\begin{array}{cccc}1 & 1 & \ldots & 1 \\ \alpha_{1} & \alpha_{2} & \ldots & \alpha_{n} \\ \alpha_{1}^{2} & \alpha_{2}^{2} & \ldots & \alpha_{n}^{2} \\ \vdots & \vdots & \vdots & \vdots \\ \alpha_{1}^{n-k-1} & \alpha_{2}^{n-k-1} & \ldots & \alpha_{n}^{n-k-1}\end{array}\right)\left(\begin{array}{cccc}v_{1} & & & \\ & v_{2} & & 0 \\ 0 & & \ddots & \\ & & & v_{n}\end{array}\right)$
α_{j} : code locators (distinct), v_{j} : column multipliers $(\neq 0)$

Theorem

$\mathcal{C}_{\text {GRS }}$ is an MDS code, namely, $d=n-k+1$.

Theorem

The dual of a GRS code is a GRS code.

GRS Encoding as Polynomial Evaluation

- For $\mathbf{u}=\left(u_{0} u_{1} \ldots u_{k-1}\right)$, let

$$
u(x)=u_{0}+u_{1} x+u_{2} x^{2}+\cdots+u_{k-1} x^{k-1} . \text { Then, }
$$

$$
\begin{aligned}
\mathbf{c} & =\mathbf{u} G_{\mathrm{GRS}}=\mathbf{u} \cdot\left(\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
\alpha_{1} & \alpha_{2} & \ldots & \alpha_{n} \\
\alpha_{1}^{2} & \alpha_{2}^{2} & \ldots & \alpha_{n}^{2} \\
\vdots & \vdots & \vdots & \vdots \\
\alpha_{1}^{k-1} & \alpha_{2}^{k-1} & \ldots & \alpha_{n}^{k-1}
\end{array}\right)\left(\begin{array}{cccc}
v_{1}^{\prime} & & & \\
& v_{2}^{\prime} & & 0 \\
0 & & \ddots & \\
& & & v_{n}^{\prime}
\end{array}\right) \\
& =\left[\begin{array}{lll}
v_{1}^{\prime} u\left(\alpha_{1}\right) & v_{2}^{\prime} u\left(\alpha_{2}\right) & \ldots \\
& v_{n}^{\prime} u\left(\alpha_{n}\right)
\end{array}\right]
\end{aligned}
$$

- Minimum distance now follows from the fact that a polynomial of degree $\leq k-1$ cannot have more than $k-1$ roots in $\mathbb{F}_{q} \Longrightarrow \mathrm{wt}(\mathbf{c}) \geq n-k+1$.
- Decoding as noisy interpolation: reconstruct $u(x)$ from $(k+2 t)$ noisy evaluations $u\left(\alpha_{1}\right)+e_{1}, u\left(\alpha_{2}\right)+e_{2}, \ldots, u\left(\alpha_{k+2 t}\right)+e_{k+2 t}$, possible if at most t evaluations are corrupted.

Conventional Reed-Solomon Codes

- Conventional Reed-Solomon (RS) code: GRS code with $n \mid(q-1)$, $\alpha \in \mathbb{F}^{*}$ with $\mathcal{O}(\alpha)=n$,

$$
\begin{aligned}
\alpha_{j} & =\alpha^{j-1}, \quad 1 \leq j \leq n \\
v_{j} & =\alpha^{b(j-1)}, \quad 1 \leq j \leq n
\end{aligned}
$$

- Canonical PCM of a RS code is given by

$$
H_{\mathrm{RS}}=\left(\begin{array}{cccc}
1 & \alpha^{b} & \ldots & \alpha^{(n-1) b} \\
1 & \alpha^{b+1} & \ldots & \alpha^{(n-1)(b+1)} \\
\vdots & \vdots & \vdots & \vdots \\
1 & \alpha^{b+d-2} & \ldots & \alpha^{(n-1)(b+d-2)}
\end{array}\right) \quad(\# \text { rows }=d-1=n-k)
$$

- $\mathbf{c} \in \mathcal{C}_{\mathrm{RS}} \Longleftrightarrow H_{\mathrm{RS}} \mathbf{c}^{T}=\mathbf{0} \Longleftrightarrow c\left(\alpha^{\ell}\right)=0, \ell=b, b+1, \ldots, b+d-2$.
- $\alpha^{b}, \alpha^{b+1}, \ldots, \alpha^{b+d-2}$: roots of $\mathcal{C}_{\mathrm{RS}}$
- $g(x)=\left(x-\alpha^{b}\right)\left(x-\alpha^{b+1}\right) \cdots\left(x-\alpha^{b+d-2}\right)$: generator polynomial of $\mathcal{C}_{\text {RS }}$

Systematic Encoding of RS Codes

- For $u(x) \in \mathbb{F}_{q}[x]_{k}$, let $r_{u}(x)$ be the unique polynomial in $\mathbb{F}_{q}[x]_{n-k}$ such that

$$
r_{u}(x) \equiv x^{n-k} u(x) \quad \bmod g(x)
$$

- Clearly, $x^{n-k} u(x)-r_{u}(x) \in \mathcal{C}_{\mathrm{RS}}$
- The mapping $\mathcal{E}_{\mathrm{RS}}: u(x) \mapsto x^{n-k} u(x)-r_{u}(x)$ is a linear, systematic encoding for $\mathcal{C}_{\text {RS }}$

$$
\begin{gathered}
{\left[\begin{array}{ccccccccc}
u_{k-1} & u_{k-2} & \ldots & u_{0} & 0 & 0 & \ldots & 0 &] \\
-\left[\begin{array}{cccc}
& 0 & 0 & \ldots
\end{array} 0^{2}\right. & r_{n-k-1} & r_{n-k-2} & \ldots & r_{0} &] \\
\hline\left[\begin{array}{ccccc}
& c_{n-1} & c_{n-2} & \ldots & c_{n-k}
\end{array} c_{n-k-1}\right. & c_{n-k-2} & \ldots & c_{0} &]
\end{array}\right.}
\end{gathered}
$$

Systematic Encoding Circuit

Switches:

- at A for k cycles
- at B for $r=n-k$ cycles

Register contents:

$$
R_{\ell}(x)=\sum_{i=0}^{r-1} R_{\ell, i} x^{i}, \quad 0 \leq \ell<k
$$

with initial condition

$$
R_{0}(x)=0
$$

Decoding Generalized Reed-Solomon Codes

- We consider $\mathcal{C}_{\text {GRS }}$ over \mathbb{F}_{q} with PCM

$$
H_{\mathrm{GRS}}=\left(\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
\alpha_{1} & \alpha_{2} & \ldots & \alpha_{n} \\
\alpha_{1}^{2} & \alpha_{2}^{2} & \ldots & \alpha_{n}^{2} \\
\vdots & \vdots & \vdots & \vdots \\
\alpha_{1}^{d-2} & \alpha_{2}^{d-2} & \ldots & \alpha_{n}^{d-2}
\end{array}\right)\left(\begin{array}{cccc}
v_{1} & & & \\
& v_{2} & & 0 \\
0 & & \ddots & \\
& & & v_{n}
\end{array}\right)
$$

with $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n} \in \mathbb{F}_{q}^{*}$ distinct, and $v_{1}, v_{2}, \ldots, v_{n} \in \mathbb{F}_{q}^{*}$

- Codeword \mathbf{c} transmitted, word \mathbf{y} received, with error vector

$$
\mathbf{e}=\left(e_{1} e_{2} \ldots e_{n}\right)=\mathbf{y}-\mathbf{c}
$$

- $J=\left\{\kappa: e_{\kappa} \neq 0\right\}$ set of error locations
- We describe an algorithm that correctly decodes \mathbf{y} to \mathbf{c}, under the assumption $|J| \leq \frac{1}{2}(d-1)$.

Syndrome Computation

- First step of the decoding algorithm

$$
\begin{gathered}
\mathbf{S}=\left(\begin{array}{c}
S_{0} \\
S_{1} \\
\vdots \\
S_{d-2}
\end{array}\right)=H_{\mathrm{GRS}} \mathbf{y}^{T}=H_{\mathrm{GRS}} \mathbf{e}^{T} \\
S_{\ell}=\sum_{j=1}^{n} y_{j} v_{j} \alpha_{j}^{\ell}=\sum_{j=1}^{n} e_{j} v_{j} \alpha_{j}^{\ell}=\sum_{j \in J} e_{j} v_{j} \alpha_{j}^{\ell}, \quad \ell=0,1, \ldots, d-2
\end{gathered}
$$

Example. For RS codes, we have $\alpha_{j}=\alpha^{j-1}$ and $v_{j}=\alpha^{b(j-1)}$, so

$$
S_{\ell}=\sum_{j=1}^{n} y_{j} \alpha^{(j-1)(b+\ell)}=y\left(\alpha^{b+\ell}\right), \quad \ell=0,1, \ldots, d-2 .
$$

- Syndrome polynomial:

$$
S(x)=\sum_{\ell=0}^{d-2} S_{\ell} x^{\ell}=\sum_{\ell=0}^{d-2} x^{\ell} \sum_{j \in J} e_{j} v_{j} \alpha_{j}^{\ell}=\sum_{j \in J} e_{j} v_{j} \sum_{\ell=0}^{d-2}\left(\alpha_{j} x\right)^{\ell} .
$$

A Congruence for the Syndrome Polynomial

$$
S(x)=\sum_{j \in J} e_{j} v_{j} \sum_{\ell=0}^{d-2}\left(\alpha_{j} x\right)^{\ell}
$$

- We have

$$
\begin{gathered}
\sum_{\ell=0}^{d-2}\left(\alpha_{j} x\right)^{\ell} \equiv \frac{1}{1-\alpha_{j} x}\left(\bmod x^{d-1}\right) \\
\Longrightarrow \quad S(x) \equiv \sum_{j \in J} \frac{e_{j} v_{j}}{1-\alpha_{j} x} \quad\left(\bmod x^{d-1}\right) \quad\left(\sum_{\phi} \square=0\right)
\end{gathered}
$$

More Auxiliary Polynomials

- Error locator polynomial (ELP)

$$
\Lambda(x)=\prod_{j \in J}\left(1-\alpha_{j} x\right) \quad\left(\prod_{\phi} \square \triangleq_{1}\right)
$$

- Error evaluator polynomial (EEP)

$$
\Gamma(x)=\sum_{j \in J} e_{j} v_{j} \prod_{m \in J \backslash\{j\}}\left(1-\alpha_{m} x\right)
$$

- $\Lambda\left(\alpha_{\kappa}^{-1}\right)=0 \quad \Longleftrightarrow \quad \kappa \in J \quad$ roots of EEP point to error locations
- $\Gamma\left(\alpha_{\kappa}^{-1}\right)=e_{\kappa} v_{\kappa} \prod_{m \in J \backslash\{\kappa\}}\left(1-\alpha_{m} \alpha_{\kappa}^{-1}\right) \neq 0$

$$
\Longrightarrow \quad \operatorname{gcd}(\Lambda(x), \Gamma(x))=1
$$

- The degrees of ELP and EEP satisfy

$$
\operatorname{deg} \Lambda=|J| \quad \text { and } \quad \operatorname{deg} \Gamma<|J|
$$

Of course, we don't know $\Lambda(x), \Gamma(x)$: our goal is to find them

Key Equation of GRS Decoding

Since $|J| \leq \frac{1}{2}(d-1)$, we have
(1) $\operatorname{deg} \Lambda \leq \frac{1}{2}(d-1)$
and
(2) $\operatorname{deg} \Gamma<\frac{1}{2}(d-1)$

The ELP and the EEP are related by

$$
\begin{gathered}
\Gamma(x)=\sum_{j \in J} e_{j} v_{j} \prod_{m \in J \backslash\{j\}}\left(1-\alpha_{m} x\right)=\sum_{j \in J} e_{j} v_{j} \frac{\Lambda(x)}{1-\alpha_{j} x}=\Lambda(x) \sum_{j \in J} \frac{e_{j} v_{j}}{1-\alpha_{j} x} \\
\Longrightarrow(3) \quad \Lambda(x) S(x) \equiv \Gamma(x)\left(\bmod x^{d-1}\right) \\
(1)+(2)+(3): \text { key equation of } G R S \text { decoding }
\end{gathered}
$$

- (3) is a set of $d-1$ linear equations in the coefficients of Λ and Γ
- $\left\lfloor\frac{1}{2}(d-1)\right\rfloor$ equations depend only on Λ (corresponding to $x^{i}, i \geq \frac{1}{2}(d-1)$)
- we can solve for Λ, find its root set J, then solve linear equations for e_{j}
- straightforward solution leads to $O\left(d^{3}\right)$ algorithm - we'll present an $O\left(d^{2}\right)$ one

Solving the Key Equation

- Apply the Euclidean algorithm with
$a(x)=x^{d-1}$ and $b(x)=S(x)$, to produce
$\Lambda(x)=c \cdot t_{h}(x)$ and $\Gamma(x)=c \cdot r_{h}(x)$
[the key equation guarantees conditions (C1)-(C3)]. How do we find h-the stopping index?

Theorem

The solution to the key equation is unique up to a scalar constant, and it is obtained with the Euclidean algorithm by stopping at the unique index h such that

$$
\operatorname{deg} r_{h}<\frac{1}{2}(d-1) \leq \operatorname{deg} r_{h-1}
$$

Finding the Error Values

- Formal derivatives in finite fields: $\quad\left[\sum_{i=0}^{s} a_{i} x^{i}\right]^{\prime}=\sum_{i=1}^{s} i a_{i} x^{i-1}$ $(a(x) b(x))^{\prime}=a^{\prime}(x) b(x)+a(x) b^{\prime}(x) \quad$ (not surprising)
- For the ELP, we have

$$
\Lambda(x)=\prod_{j \in J}\left(1-\alpha_{j} x\right) \quad \Longrightarrow \quad \Lambda^{\prime}(x)=\sum_{j \in J}\left(-\alpha_{j}\right) \prod_{m \in J \backslash\{j\}}\left(1-\alpha_{m} x\right)
$$

and, for $\kappa \in J$,

$$
\begin{aligned}
& \Lambda^{\prime}\left(\alpha_{\kappa}^{-1}\right)=-\alpha_{\kappa} \prod_{m \in J \backslash\{\kappa\}}\left(1-\alpha_{m} \alpha_{\kappa}^{-1}\right), \\
& \Gamma\left(\alpha_{\kappa}^{-1}\right)=e_{\kappa} v_{\kappa} \prod_{m \in J \backslash\{\kappa\}}\left(1-\alpha_{m} \alpha_{\kappa}^{-1}\right)
\end{aligned}
$$

- Therefore, for all error locations $\kappa \in J$, we obtain

$$
e_{\kappa}=-\frac{\alpha_{\kappa}}{v_{\kappa}} \cdot \frac{\Gamma\left(\alpha_{\kappa}^{-1}\right)}{\Lambda^{\prime}\left(\alpha_{\kappa}^{-1}\right)} \quad \begin{aligned}
& \text { Forney's algorithm } \\
& \text { values }
\end{aligned}
$$

Summary of GRS Decoding

Input: received word $\left(\begin{array}{ll}y_{1} & y_{2}\end{array} \ldots y_{n}\right) \in \mathbb{F}_{q}^{n}$.
Output: error vector $\left(e_{1} e_{2} \ldots e_{n}\right) \in \mathbb{F}_{q}^{n}$.
(1) Syndrome computation: Compute the polynomial $S(x)=\sum_{\ell=0}^{d-2} S_{\ell} x^{\ell}$ by

$$
S_{\ell}=\sum_{j=1}^{n} y_{j} v_{j} \alpha_{j}^{\ell}, \quad \ell=0,1, \ldots, d-2
$$

(2) Solving the key equation: Apply Euclid's algorithm to $a(x) \leftarrow x^{d-1}$ and $b(x) \leftarrow S(x)$ to produce $\Lambda(x) \leftarrow t_{h}(x)$ and $\Gamma(x) \leftarrow r_{h}(x)$, where h is the smallest index i for which $\operatorname{deg} r_{i}<\frac{1}{2}(d-1)$.
(3) Forney's algorithm: Compute the error locations and values by

$$
e_{j}=\left\{\begin{array}{cl}
-\frac{\alpha_{j}}{v_{j}} \cdot \frac{\Gamma\left(\alpha_{j}^{-1}\right)}{\Lambda^{\prime}\left(\alpha_{j}^{-1}\right)} & \text { if } \Lambda\left(\alpha_{j}^{-1}\right)=0 \\
0 & \text { otherwise }
\end{array} \quad, \quad j=1,2, \ldots, n\right.
$$

$$
\text { Complexity: 1. } O(d n) \quad \text { 2. } O((|J|+1) d) \quad \text { 3. } O((|J|+1) n)
$$

Back to main

