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Channel Coding

-
u

Channel
Encoder

-
c

(noisy)
Channel

-
y

Channel
Decoder

-
ĉ, û

Discrete probabilistic channel: (F,Φ,Prob)
F : finite input alphabet, Φ: finite output alphabet
Prob: conditional probability distribution

Prob{y received | x transmitted } x ∈ Fm, y ∈ Φm, m ≥ 1

M Fn Φn

u: message word ∈ M, set of M possible messages
c ∈ Fn: codeword, E : u

1−1−→ c encoding
C = {E(u) | u ∈ M} code
y ∈ Φn: received word
ĉ, û: decoded codeword, message word, y −→ ĉ (−→ û) decoding
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Code Parameters

-
u

Channel
Encoder

-
c Channel -

y
Channel
Decoder

-
ĉ, û

C = E(M) ⊆ Fn, |C| = M

n: code length

k = log|F | M = log|F | |C|: code dimension

R = k
n : code rate ≤ 1

r = n− k: code redundancy

We call C an (n,M) (block) code over F
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The Hamming Metric

Hamming distance

For single-letters x, y ∈ F : d(x, y) =

{
0, x = y,
1, x ̸= y.

For vectors x,y ∈ Fn: d(x,y) =
∑n−1

j=0 d(xj , yj)

number of locations where the vectors differ

The Hamming distance defines a metric :

d(x,y) ≥ 0, with equality if and only if x = y

Symmetry d(x,y) = d(y,x)

Triangle inequality: d(x,y) ≤ d(x, z) + d(z,y)

Hamming weight wt(e) = d(e,0) number of nonzero entries

When F is an abelian group, d(x,y) = wt(x− y)
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Minimum Distance

Let C be an (n,M) code over F , M > 1

d = min
c1,c2∈C : c1 ̸=c2

d(c1, c2)

is called the minimum distance of C
We say that C is an (n,M, d) code.
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Decoding

C : (n,M, d) over F , used on channel S = (F,Φ,Prob)

A decoder for C on S is a function

D : Φn −→ C.

Decoding error probability of D is

Perr = max
c∈C

Perr(c) ,

where

Perr(c) =
∑

y :D(y) ̸=c

Prob{y received | c transmitted } .

goal: find encoders (codes) and decoders that make Perr small
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Maximum Likelihood and Maximum a Posteriori Decoding

C : (n,M, d), channel S : (F,Φ,Prob).

Maximum likelihood decoder (MLD):

DMLD(y) = argmax
c∈C

Prob{ y received | c transmitted }, ∀y ∈ Φn

With a fixed tie resolution policy, DMLD is well-defined for C and S.

Maximum a posteriori (MAP) decoder:

DMAP(y) = argmax
c∈C

Prob{ c transmitted | y received }, ∀y ∈ Φn

But,

Prob{ c transmitted | y received }

= Prob{y received | c transmitted } · Prob{ c transmitted }
Prob{y received }

=⇒ MLD and MAP are the same when c is uniformly distributed
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MLD on the BSC

C : (n,M, d), channel BSC(p)

Prob{y received| c transmitted }

=

n∏
j=1

Prob{ yj received | cj transmitted }

= pd(y,c)(1− p)n−d(y,c) = (1− p)n ·
(

p

1− p

)d(y,c)

,

where d(y, c) is the Hamming distance. Since p/(1− p) < 1 for p < 1/2,
for all y ∈ Fn

2 we have

DMLD(y) = argmin
c∈C

d(y, c)

DMLD = nearest-codeword decoder

True also for QSC(p) whenever p < 1− 1/q
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Error Correction

e = [0 . . . 0, ei1 , 0 . . . 0, ei2 , 0 . . . 0, eit , 0 . . . 0] i+x
- -

y = x+ e

6e

i1, i2, . . . , it : error locations ei1 , ei2 , . . . , eit : error values (̸= 0)

Full error correction: the task of recovering all {ij} and {eij} given y

Theorem

Let C be an (n,M, d) code over F . There is a decoder D : Fn → C that
recovers correctly every pattern of up to ⌊(d−1)/2⌋ errors for every
channel S = (F, F,Prob).
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Linear Codes

Assume F is a finite field

C : (n,M, d) over F is called a linear code if C is a linear sub-space
of Fn over F

c1, c2 ∈ C, a1, a2 ∈ F ⇒ a1c1 + a2c2 ∈ C
A linear code C has M = qk codewords, where k = logq M is the
dimension of C as a linear space over F
r = n− k is the redundancy of C, R = k/n its rate

We use the notation [n, k, d] to denote the parameters of a linear
code

A generator matrix for a linear code C is a k × n matrix G whose
rows form a basis of C.
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Minimum Weight

For an [n, k, d] code C,

c1, c2 ∈ C =⇒ c1 − c2 ∈ C , and d(c1, c2) = wt(c1 − c2) .

Therefore,

d = min
c1,c2∈C : c1 ̸=c2

d(c1, c2) = min
c1,c2∈C : c1 ̸=c2

wt(c1−c2) = min
c∈C\{0}

wt(c) .

⇒ minimum distance is the same as minimum weight for linear
codes

Recall also that 0 ∈ C and d(c,0) = wt(c)
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Encoding Linear Codes

Since rank(G) = k, the map E : Fk → C defined by

E : u 7→ uG

is 1-1, and can serve as an encoding mechanism for C.
Applying elementary row operations and possibly reordering
coordinates, we can bring G to the form

G =
(
Ik A

)
systematic generator matrix,

where Ik is a k × k identity matrix, and A is a k × (n− k) matrix.

u 7→ uG = (u | uA ) systematic encoding.

In a systematic encoding, the information symbols from u are
transmitted ‘as is,’ and n− k check symbols (or redundancy
symbols, or parity symbols) are appended.
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Parity Check Matrix

Let C : [n, k, d]. A parity-check matrix (PCM) of C is an r × n
matrix H such that for all c ∈ Fn,

c ∈ C ⇐⇒ HcT = 0 .

For a generator matrix G of C, we have

HGT = 0 ⇒ GHT = 0, and dimker(G) = n−rank(G) = n−k = r

If G = ( Ik | A ), then H = (−AT | In−k ) is a (systematic)
parity-check matrix.
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Cosets and Syndromes

Let y ∈ Fn. The syndrome of y (with respect to a PCM H of C) is
defined by

s = HyT ∈ Fn−k.

The set
y + C = {y + c : c ∈ C}

is a coset of C (as an additive subgroup) in Fn.

If y1 ∈ y + C, then

y1 − y ∈ C =⇒ H(y1 − y)T = 0 =⇒ HyT
1 = HyT

=⇒ The syndrome is invariant for all y1 ∈ y + C.
Let F = Fq. Given a PCM H, there is a 1-1 correspondence
between the qn−k cosets of C in Fn and the qn−k possible syndrome
values (H is full-rank =⇒ all values are attained).
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Syndrome Decoding of Linear Codes

c ∈ C is sent and y = c+ e is received on an additive channel

y and e are in the same coset of C
Nearest-neighbor decoding of y calls for finding the closest
codeword c to y =⇒ find a vector e of lowest weight in y+C: a
coset leader.

coset leaders need not be unique (when are they?)

Decoding algorithm: upon receiving y

compute the syndrome s = HyT

find a coset leader e in the coset corresponding to s
decode y into ĉ = y − e

If n− k is (very) small, a table containing one leader per coset can
be pre-computed. The table is indexed by s.

In general, however, syndrome decoding appears exponential in
n− k. In fact, it has been shown to be NP-hard.
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The Singleton Bound

The Singleton bound.

Theorem (Singleton bound)

For any (n,M, d) code over an alphabet of size q,

d ≤ n− (logq M) + 1 .

Singleton bound for linear codes

Theorem (Singleton bound for linear codes)

For any linear [n, k, d] code over GF (q),

d ≤ n− k + 1 .

C : (n,M, d) (or, if linear, C : [n, k, d]) is called maximum distance
separable (MDS) if it meets the Singleton bound, namely
d = n− (logq M) + 1 (d = n− k + 1).
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The Sphere-Packing Bound

The sphere of center c and radius t in Fn
q is the set of vectors at

Hamming distance t or less from c. Its volume (cardinality) is

Vq(n, t) =

t∑
i=0

(
n

i

)
(q − 1)i .

Theorem (The sphere-packing (SP) bound)

For any (n,M, d) code over Fq,

M · Vq(n, ⌊(d−1)/2⌋) ≤ qn .

Proof. Spheres of radius t = ⌊(d− 1)/2⌋ centered at codewords must be

disjoint. □

For a linear [n, k, d] code, the bound becomes Vq(n, ⌊(d−1)/2⌋) ≤ qn−k .
For q = 2, ⌊(d−1)/2⌋∑

i=0

(
n

i

)
≤ 2n−k
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The Gilbert-Varshamov bound

The Singleton and SP bounds set necessary conditions on the parameters
of a code. The following is a sufficient condition:

Theorem (The Gilbert-Varshamov (GV) bound)

There exists an [n, k, d] code over the field Fq whenever
Vq(n−1, d−2) < qn−k.

Theorem

Let
ρ =

qk − 1

q − 1
· Vq(n, d−1)

qn
.

Then, a random [n, k] code has minimum distance d with Prob ≥ 1− ρ.

Lots of codes are near the GV bound. But it’s very hard to find them!
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Asymptotic Bounds

Definition: relative distance δ = d/n

We are interested in the behavior of δ and R = (logq M)/n as
n → ∞.

Singleton bound: d ≤ n− ⌈logq M⌉+ 1 =⇒ R ≤ 1− δ + o(1)

For the SP and GV bounds, we need estimates for Vq(n, t)

Definition: symmetric q-ary entropy function Hq : [0, 1] → [0, 1]

Hq(x) = −x logq x− (1− x) logq(1− x) + x logq(q−1) ,

Hq(0) = 0, Hq(1) = logq(q − 1), strictly ∩-convex,
max = 1 at x = 1− 1/q
coincides with H(x) when q = 2
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Asymptotic Bounds (II)

Lemma. For 0 ≤ t/n ≤ 1− (1/q),

Vq(n, t) =
t∑

i=0

(
n

i

)
(q − 1)i ≤ qnHq(t/n) .

Lemma. For integers 0 ≤ t ≤ n,

Vq(n, t) ≥

(
n

t

)
(q − 1)t ≥ 1√

8t(1− (t/n))
· qnHq(t/n) .

Theorem (Asymptotic SP bound)

For every (n, qnR, δn) code over Fq,
R ≤ 1− Hq(δ/2) + o(1) .

Theorem (Asymptotic GV bound)

Let n, nR, δn be positive integers such that δ ∈ (0, 1−(1/q)] and

R ≤ 1− Hq(δ) .

Then, there exists a linear [n, nR,≥δn] code over Fq.
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Plot of Asymptotic Bounds
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Plot of Asymptotic Bounds
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So far, we have only seen codes on these lines!
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What we lose for decoding only up to (d-1)/2

Hamming (sphere packing) bound

R ≤ 1−H(δ/2) + o(1)

Assume binary symmetric channel of parameter p.
Channel capacity: C = 1−H(p)
⇒ with R arbitrarily close to 1−H(p), can correct typical

patterns of weight np with probability 1
⇒⇒ “equivalent minimum distance” ≈ 2np
⇒ δ ≈ 2p
⇒ can achieve virtually zero-error communication with

R ≈ 1−H(δ/2)
Hamming bound curve
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Generalized Reed-Solomon Codes

Let α1, α2, . . . , αn, n < q, be distinct nonzero elements of Fq, and
let v1, v2, . . . , vn be nonzero elements of Fq (not necessarily
distinct). A generalized Reed-Solomon (GRS) code is a linear
[n, k, d] code CGRS with PCM

HGRS =


1 1 . . . 1
α1 α2 . . . αn

α2
1 α2

2 . . . α2
n

...
...

...
...

αn−k−1
1 αn−k−1

2 . . . αn−k−1
n




v1
v2 0

0
. . .

vn

 .

αj : code locators (distinct), vj : column multipliers ( ̸= 0)

Theorem

CGRS is an MDS code, namely, d = n− k + 1.

Theorem

The dual of a GRS code is a GRS code.
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GRS Encoding as Polynomial Evaluation

For u = (u0 u1 . . . uk−1 ), let
u(x) = u0 + u1x+ u2x

2 + · · ·+ uk−1x
k−1. Then,

c =uGGRS = u ·


1 1 . . . 1
α1 α2 . . . αn

α2
1 α2

2 . . . α2
n

...
...

...
...

αk−1
1 αk−1

2 . . . αk−1
n




v′1
v′2 0

0
. . .

v′n


= [ v′1u(α1) v′2u(α2) . . . v′nu(αn) ]

Minimum distance now follows from the fact that a polynomial of
degree ≤ k − 1 cannot have more than k − 1 roots in
Fq =⇒ wt(c) ≥ n− k + 1.
Decoding as noisy interpolation: reconstruct u(x) from (k + 2t)
noisy evaluations u(α1) + e1, u(α2) + e2, . . . , u(αk+2t) + ek+2t,
possible if at most t evaluations are corrupted.
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Conventional Reed-Solomon Codes

Conventional Reed-Solomon (RS) code: GRS code with n|(q−1),
α ∈ F∗ with O(α) = n,

αj = αj−1 , 1 ≤ j ≤ n,

vj = αb(j−1) , 1 ≤ j ≤ n .

Canonical PCM of a RS code is given by

HRS =


1 αb . . . α(n−1)b

1 αb+1 . . . α(n−1)(b+1)

...
...

...
...

1 αb+d−2 . . . α(n−1)(b+d−2)

 (# rows = d−1 = n−k)

c ∈ CRS ⇐⇒ HRSc
T = 0 ⇐⇒ c(αℓ) = 0, ℓ = b, b+1, . . . , b+d−2.

αb, αb+1, . . . , αb+d−2: roots of CRS

g(x) = (x− αb)(x− αb+1) · · · (x− αb+d−2) : generator polynomial
of CRS
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Systematic Encoding of RS Codes

For u(x) ∈ Fq[x]k, let ru(x) be the unique polynomial in Fq[x]n−k

such that
ru(x) ≡ xn−ku(x) mod g(x)

Clearly, xn−ku(x)− ru(x) ∈ CRS

The mapping ERS : u(x) 7→ xn−ku(x)− ru(x) is a linear,
systematic encoding for CRS

[ uk−1 uk−2 . . . u0 0 0 . . . 0 ]

−[ 0 0 . . . 0 rn−k−1 rn−k−2 . . . r0 ]

[ cn−1 cn−2 . . . cn−k cn−k−1 cn−k−2 . . . c0 ]
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Systematic Encoding Circuit

Rℓ,0 ����
+ Rℓ,1 ����

+ · · · ����
+ Rℓ,s

(s=r−1)
����
+

����
g0 ����

g1 ����
g2 · · · ����

gr−1 ����
−1

- - - - - - - -

? ? ? ?

? ? ?
6

6

· · · qA @@I�

qB

q0 0 . . . 0u0u1 . . . uk−1 →

-qB

��z

6
qA

r = n− k

-qc0c1 . . . cn−1 →

Switches:

at A for k cycles

at B for r=n−k
cycles

Register contents:

Rℓ(x) =

r−1∑
i=0

Rℓ,ix
i, 0 ≤ ℓ < k

with initial condition

R0(x) = 0
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Decoding Generalized Reed-Solomon Codes

We consider CGRS over Fq with PCM

HGRS =


1 1 . . . 1
α1 α2 . . . αn

α2
1 α2

2 . . . α2
n

...
...

...
...

αd−2
1 αd−2

2 . . . αd−2
n




v1
v2 0

0
. . .

vn


with α1, α2, . . . , αn ∈ F∗

q distinct, and v1, v2, . . . , vn ∈ F∗
q

Codeword c transmitted, word y received, with error vector

e = (e1 e2 . . . en) = y − c

J = {κ : eκ ̸= 0} set of error locations

We describe an algorithm that correctly decodes y to c, under the
assumption |J | ≤ 1

2 (d−1).
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Syndrome Computation

First step of the decoding algorithm

S =


S0

S1

...
Sd−2

 = HGRSy
T = HGRSe

T

Sℓ =

n∑
j=1

yjvjα
ℓ
j =

n∑
j=1

ejvjα
ℓ
j =

∑
j∈J

ejvjα
ℓ
j , ℓ = 0, 1, . . . , d−2

Example. For RS codes, we have αj = αj−1 and vj = αb(j−1), so

Sℓ =
n∑

j=1

yjα
(j−1)(b+ℓ) = y(αb+ℓ) , ℓ = 0, 1, . . . , d−2 .

Syndrome polynomial:

S(x) =

d−2∑
ℓ=0

Sℓx
ℓ =

d−2∑
ℓ=0

xℓ
∑
j∈J

ejvjα
ℓ
j =

∑
j∈J

ejvj

d−2∑
ℓ=0

(αjx)
ℓ .
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A Congruence for the Syndrome Polynomial

S(x) =
∑
j∈J

ejvj

d−2∑
ℓ=0

(αjx)
ℓ .

We have
d−2∑
ℓ=0

(αjx)
ℓ ≡ 1

1− αjx
( mod xd−1)

=⇒ S(x) ≡
∑
j∈J

ejvj
1− αjx

(mod xd−1)
(∑

ϕ □ = 0
)
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More Auxiliary Polynomials

Error locator polynomial (ELP)

Λ(x) =
∏
j∈J

(1− αjx)

∏
ϕ

□
∆
= 1


Error evaluator polynomial (EEP)

Γ(x) =
∑
j∈J

ejvj
∏

m∈J\{j}

(1− αmx)

Λ(α−1
κ ) = 0 ⇐⇒ κ ∈ J roots of EEP point to error locations

Γ(α−1
κ ) = eκvκ

∏
m∈J\{κ}(1−αmα−1

κ ) ̸= 0

=⇒ gcd(Λ(x),Γ(x)) = 1

The degrees of ELP and EEP satisfy

deg Λ = |J | and deg Γ < |J |

Of course, we don’t know Λ(x), Γ(x): our goal is to find them
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Key Equation of GRS Decoding

Since |J | ≤ 1
2 (d− 1), we have

(1) deg Λ ≤ 1
2 (d− 1) and (2) deg Γ < 1

2 (d− 1)

The ELP and the EEP are related by

Γ(x) =
∑
j∈J

ejvj
∏

m∈J\{j}

(1− αmx) =
∑
j∈J

ejvj
Λ(x)

1−αjx
= Λ(x)

∑
j∈J

ejvj
1−αjx

=⇒ (3) Λ(x)S(x) ≡ Γ(x) (mod xd−1)

(1)+(2)+(3): key equation of GRS decoding

(3) is a set of d− 1 linear equations in the coefficients of Λ and Γ

⌊ 1
2
(d−1)⌋ equations depend only on Λ (corresponding to xi, i ≥ 1

2
(d−1))

we can solve for Λ, find its root set J , then solve linear equations for ej

straightforward solution leads to O(d3) algorithm — we’ll present an
O(d2) one
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Solving the Key Equation

Apply the Euclidean algorithm with
a(x) = xd−1 and b(x) = S(x), to produce
Λ(x) = c · th(x) and Γ(x) = c · rh(x)
[the key equation guarantees conditions (C1)–(C3)].
How do we find h —the stopping index?

Theorem

The solution to the key equation is unique up to a scalar constant, and it
is obtained with the Euclidean algorithm by stopping at the unique index
h such that

deg rh < 1
2 (d−1) ≤ deg rh−1
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Finding the Error Values

Formal derivatives in finite fields:
[∑s

i=0 aix
i
]′
=

∑s
i=1 iaix

i−1

(a(x)b(x))
′
= a′(x)b(x) + a(x)b′(x) (not surprising)

For the ELP, we have

Λ(x) =
∏
j∈J

(1− αjx) =⇒ Λ′(x) =
∑
j∈J

(−αj)
∏

m∈J\{j}

(1− αmx) ,

and, for κ ∈ J ,

Λ′(α−1
κ ) = −ακ

∏
m∈J\{κ}

(1− αmα−1
κ ) ,

Γ(α−1
κ ) = eκvκ

∏
m∈J\{κ}

(1− αmα−1
κ )

Therefore, for all error locations κ ∈ J , we obtain

eκ = −ακ

vκ
· Γ(α−1

κ )

Λ′(α−1
κ )

Forney’s algorithm for error
values
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Summary of GRS Decoding

Input: received word (y1 y2 . . . yn) ∈ Fn
q .

Output: error vector (e1 e2 . . . en) ∈ Fn
q .

1 Syndrome computation: Compute the polynomial S(x) =
∑d−2

ℓ=0 Sℓx
ℓ by

Sℓ =
n∑

j=1

yjvjα
ℓ
j , ℓ = 0, 1, . . . , d−2 .

2 Solving the key equation: Apply Euclid’s algorithm to a(x)← xd−1 and
b(x)← S(x) to produce Λ(x)← th(x) and Γ(x)← rh(x), where h is the
smallest index i for which deg ri <

1
2
(d−1).

3 Forney’s algorithm: Compute the error locations and values by

ej =


−αj

vj
·
Γ(α−1

j )

Λ′(α−1
j )

if Λ(α−1
j ) = 0

0 otherwise

, j = 1, 2, . . . , n .

Complexity: 1. O(dn) 2. O
(
(|J |+1) d

)
3. O

(
(|J |+1)n

)
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