Optimización con restricciones

Optimización sobre un conjunto convexo

$$\min_{x \in X} f(x)$$

 $f: \mathbb{R}^n \to \mathbb{R}$ es una función continua y diferenciable de n variables

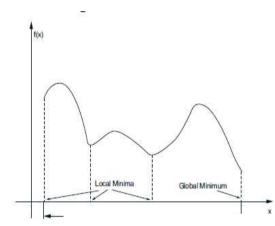
 $X \in \Re^n$ es un subconjunto de \Re^n no vacío, convexo y cerrado.

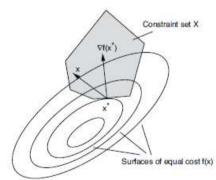
Si además f es convexa un mínimo local es también global

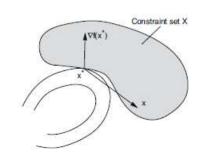
Condición de optimalidad

a) Si x* es un mínimo local de f sobre X, entonces $\nabla (f(x^*))'(x-x^*) \ge 0 \ \forall x \in X$

b) Si f es convexa sobre X esta condición es también suficiente para minimizar f sobre X.







Ejemplos

1. Optimización sobre un octante positivo

$$X = \{ x \mid x \ge 0 \}$$

2. Optimización sobre un simplex

 $\min f(x)$

$$X = \left\{ x \mid x \ge 0, \sum_{i=1}^{n} x_i = r \right\}$$

r > 0 un escalar dado.

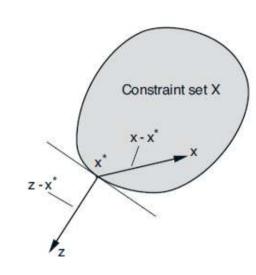
Proyección sobre un convexo

Sea $z \in \Re^n$ y sea un conjunto convexo cerrado X

Problema:

minimizar
$$f(x) = ||z - x||^2$$

sujeto a $x \in X$



Teorema

Este problema tiene una solución única $[z]^+$ (proyección de z).

Si X es un subespacio, $z - x^* \perp X$

La función $f: \Re^n \to X$ definida por $f(x) = [x]^+$ es un mapeo continuo y no expansivo es decir, $||[x]^+ - [y]^+|| \le ||y - x|| \quad \forall x, y \in \Re^n$

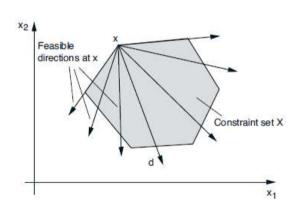
Métodos de optimización: Métodos sobre direcciones factibles

- Una dirección factible en un punto $x \in X$ es un vector d no nulo tal que $x + \alpha d$ es un punto factible para todo α positivo suficientemente pequeño.
- Un método de dirección factible

$$\vec{x}_{k+1} = \vec{x}_k - \alpha_k d_k$$

donde d_k es una dirección factible

$$\nabla f(x)'d_k < 0, \quad \alpha_k > 0 \quad \forall \quad x_{k+1} \in X$$



Se puede probar convergencia similar al método del gradiente

Método de direcciones factibles

Definición alternativa

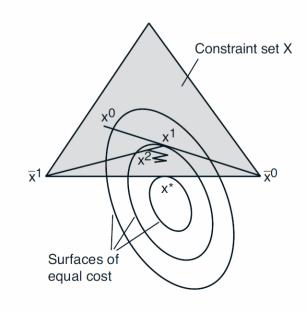
$$x^{k+1} = x^k + \alpha^k (\overline{x}^k - x^k)$$

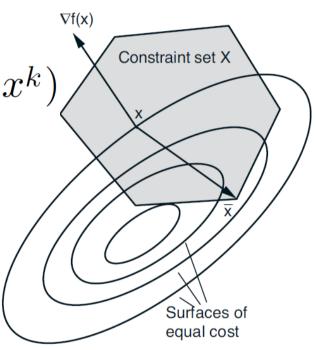
$$\overline{x}^k \in X, \qquad \nabla f(x^k)'(\overline{x}^k - x^k) < 0$$

Método del gradiente condicional

$$x^{k+1} = x^k + \alpha^k (\overline{x}^k - x^k)$$
 Donde,
$$\overline{x}^k = \arg\min_{x \in X} \nabla f(x^k)'(x - x^k)$$

Ejemplo: optimización sobre un simplex.





Método de proyección del gradiente

Estos métodos determinan la dirección factible de la siguiente forma:

$$x_{k+1} = \left[x_k - s_k \nabla f(x_k)\right]^+$$

■ Donde []+ es la proyección sobre X, $\alpha_k \in (0,1]$ y el paso s_k es un escalar positivo.

