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a b s t r a c t

There is an increasing interest in the design of classifiers for imbalanced problems due to their relevance 
in many fields, suc h as fraud detection and medical diagnosis. In this work we present a new classifier
developed specially for imbalanced problems, where maximum F-measure instead of maximum accuracy 
guide the classifier design. Theoretical basis, algorithm description and real experiments are presented.
The algorithm proposed shows suitability and a very good performance in imbalance scenarios and high 
overlappin g between classes.

� 2013 Elsevier B.V. All rights reserved.

1. Introductio n

In past years a lot of effort has been done to give better solu- 
tions to the class imbalance problems (see Sun et al., 2009; García
et al., 2007; Guo et al., 2008 and references therein). A two-class 
data set is said to be imbalanced when the instances of a class 
(the majority one) heavily outnumber the instances of the other 
(the minority ) class. This problem is particularly important in
those applications where it is costly to misclassify samples from 
the minority class, for example in informat ion retrieval (Manning
et al., 2008 ) and nontechni cal losses in power utilities (Di Martino 
et al., 2012; Muniz et al., 2009; Nagi and Mohamad, 2010 ).

In a Bayesian decision framework formulat ion, looking for the 
optimal decision rule implies to minimize the overall risk, taking 
into account the different misclassification cost (Duda et al.,
2001). In an equal misclassification cost problem we can find the 
optimal solution, with maximum accuracy, selecting the class that 
has the maximum a posteriori probability. Finding a decision rule 
that looks for minimum error rate or maximum accuracy in an
imbalanced domain gives solutions strongly biased to favor the 
majority class (the less important in most applicati ons), getting 
poor performanc e.

In almost all the approach es that deal with an imbalanced prob- 
lem, the idea is to adapt the classifiers that have good accuracy in
balanced domains. Many solutions have been proposed to deal 

with this problem (García et al., 2007; Guo et al., 2008 ): changing 
class distributions (Chawla et al., 2002; Chawla et al., 2003; Kolez 
et al., 2003 ), incorporating costs 4 in decision making (Batista et al.,
2004; Barandela et al., 2003 ), and using alternative performance 
metrics instead of accuracy (García et al., 2012 ) in the learning pro- 
cess with standard algorithms. In López et al. (2012) a comparat ive 
analysis of the two former methodolo gies is done, showing that both 
have similar performance and that they could be improved by hybrid 
procedures that combine the best of both methodol ogies.

In this work we propose a different approach to this problem,
designing a classifier based on an optimal decision rule that max- 
imizes the F-measure (van Rijsbergen, 1979 ) instead of the accu- 
racy. In contrast with common approaches, the proposed 
algorithm does not need to change original distributions or arbi- 
trarily assign misclassification costs in the algorithm to find an
appropriate decision rule.

In Section 2 a theoretical analysis is performed. In Section 3 the
proposed classifier is presente d. In Section 4 the experimental re- 
sults are shown and in the last section we share conclusio ns and 
future work.

2. Theory 

2.1. Class imbalance problem 

Identifying rare events is a challenging issue with great impact 
regarding many problems in pattern recognition and data mining.
The main difficulty in finding discrimin ative rules is that we have 
to deal with small data sets, with skewed data distribut ions and 
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overlapping classes. In this context a range of classifiers that work 
successfully for others applications (decision trees, neural net- 
works, support vector machines, etc.) get a poor performanc e. For 
example, in a decision tree the pruning criterion is usually the clas- 
sification error, this can remove branches related with the minority 
class. In back-propagat ion neural networks, the expected gradient 
vector length is proportional to the class size, and so the gradient 
vector is dominated by the prevalen t class and consequentl y the 
weights are determined by this class. SVMs are thought to be more 
robust to the class imbalance problem since they use only a few 
support vectors to calculate region boundaries. However , in a
two class problem, the boundari es are determined by the prevalen t
class as the algorithm tries to find the largest margin and the min- 
imum error (Sun et al., 2009 ). A different approach is taken in one- 
class learning, for example one class SVM, where the model is cre- 
ated based on the samples of only one of the classes. In Raskutti
and Kowalczyk (2004) the optimality of one-class SVMs over 
two-class SVM classifiers is demonst rated for some important 
imbalance problems .

Evaluation measure s have a crucial role in classifier design.
Most of the previously seen classifiers use accuracy (or minimum 
error) measure, getting results that could be meaningless if the rare 
events (minority class) are the relevant samples. For example in a
problem where the rare samples represent 1% of the training data 
set, using accuracy as an objective measure allows for a 99% accu- 
racy with a decision rule that always chooses the majority class.

Assumin g there are two classes, one called the negative class
x�, representing the majority class, usually associated to the nor- 
mal scenario, and the other called the positive class xþ represent-
ing the minority class (with very few training samples but high 
identification importance). We define X ¼ fxþ;x�g as the set of
possible classes, being TP (true positive) the number of x 2 xþ cor-
rectly classified (in other words, TP is the number of samples that 
belong to the positive class classified as positive), TN (true nega- 
tive) the number of x 2 x� correctly classified, FP (false positive)
and FN (false negative) the number of x 2 x� and x 2 xþ misclas-
sified respectively . Let us also recall some related well know 
definitions:

Accuracy : A ¼ TP þ TN
TP þ TN þ FP þ FN

; ð1Þ

Recall : R ¼ TP
TP þ FN

; ð2Þ

Precision : P ¼ TP
TP þ FP

; ð3Þ

F�measure : Fm ¼
ð1þ b2ÞRP

b2P þR
: ð4Þ

Precision and Recall are two important measures to evaluate the 
performanc e of a given classifier in an unbalance scenario. The Re- 
call measures the True Positive Rate, while the Precision measures 
the Positive Predictiv e Value. The F-measur e combines them with 
a positive param eter b. With b ¼ 1; Fm is the harmonic mean be- 
tween Recall and Precision, meanwhil e with b� 1 or b� 1, the 
F-measur e approac hes the Recall or the Precision respective ly. A
high value of Fm ensures that both Recall and Precision are reason- 
ably high, which is a desirable property since indicate s reasonably 
values of both true positive and false positive rates.T he best b value
for a specific application depends on which is the adequat e relation 
between Recall and Precision for each particula r problem (Mannin g
et al., 2008 ).

In this paper we propose to use the F-measur e instead of the 
Accuracy to guide the classifier design.

2.1.1. F-measure optimum threshold determina tion 
Eq. (4) can be easily transformed as

1
Fm
¼ b2P þR
ð1þ b2ÞRP

¼
b2 1
R þ 1

P

1þ b2 ¼ 1þ b2 FN þ FP

ð1þ b2ÞTP
:

Therefore, the problem of maximizing the F-meas ure is equivalent 
to minimizin g the following equation 

e ¼ b2FN þ FP
TP

: ð5Þ

Defining the region Rþ as the portion of the feature space where 
samples are labeled as positive and R� ¼ RC

þ where samples are la- 
beled as negative (or normal). Given this, Eq. (5) can be written as

e ¼
b2 R

R�
pðxþjxÞpðxÞdxþ

R
Rþ

pðx�jxÞpðxÞdxR
Rþ

pðxþjxÞpðxÞdx
: ð6Þ

Considerin g the special case of a one dimens ional feature descript or
x 2 R and that both regions can be separated by a single threshold k,
the regions Rþ and R� can be written as Rþ ¼ k;þ1½ Þ and
R� ¼ �1; kð Þ, and Eq. (6) becomes

eðkÞ ¼
b2 R k

�1 pðxþjxÞpðxÞdxþ
Rþ1

k pðx�jxÞpðxÞdxRþ1
k pðxþjxÞpðxÞdx

: ð7Þ

Being k� the minimize r of Eq. (7), it should verify 

pðk�jx�Þ
Z þ1

k�
pðxjxþÞdxþ pðk�jxþÞ

Z k�

�1
pðxjx�Þdx

� pðk�jxþÞ 1þ b2 pðxþÞ
pðx�Þ

� �

¼ 0: ð8Þ

This is a necessary but not sufficient conditio n for the existence of
an optimal threshold in the F-measure sense. Other points might 
satisfy this condition , for example a minimum or an inflexion point.
In these cases a consiste nt strategy for label assignat ion should be
taken. This is further explain ed in Section 3 where we introduce 
the classification algorithm based in the F-meas ure approach .

Eq. (8) involves two kind of terms, one kind evaluates the prob- 
ability in selected points and the other considers the integrals of
the probabilitie s. Therefore, in order to find the optimal threshold,
the decision rule takes into account local and global properties of

Fig. 1. F-measure and Accuracy obtained for different values of k. The marked 
points are the optimal thresholds for each case.
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the data. Besides this condition was deduced assuming one thresh- 
old between positive and negative classes, all the points that verify 
it are candidates of local optima and should be considered in the 
design of a classifier, as is presented in Section 3.

2.1.2. One dimensional example 
We first evaluate this result with a simplified example though 

illustrative, with two one dimensional Gaussian distribution with 
same variance but different mean value. The negative class is cen- 
tered in x ¼ 1 while the positive class is centered in x ¼ 3, with 
50,000 and 1000 samples drawn from each distribution respec- 
tively. For a given threshold k defining the R� and Rþ regions,
we evaluate the Accuracy and F-measure obtained. These values 
are plotted in Fig. 1 for k 2 ½1;6�. The best performanc e (in the 
F-measure sense) is obtained for k ¼ k� given by Eq. (8), while 
the best Accuracy is obtained by the traditional threshold ob- 
tained by minimizing the overall error (Duda et al., 2001 ) (see
Figs. 2 and 3).

3. Proposed classifier

Based on the previous developmen t we proposed a general 
algorithm that, under the hypothes is assumed in the previous sec- 
tion, follows the optimal F-measure classification. Despite that, the 
proposed algorithm runs in more general problems (multidimen-
sional spaces and allowing multi-moda l distribution s) and empiri- 
cally shows to be robust and with very reasonable performanc e.

3.1. Description of the classifier training algorithm 

The main steps for the classifier training are:

1. Estimate the probability density functions for each class.
2. For each dimensio n, taking the marginal distribution , find the 

set of points (region’s thresholds) verifying the optimality condi- 
tion (Eq. 8).

3. Assign a label (positive or negative) for each region of the space 
obtained in the previous step.

Fig. 2. Confusion matrix for the value of k that maximizes accuracy.

Fig. 3. Confusion matrix for the value of k that verifies (8).

Fig. 4. Data used for experimental validation. Left: samples of the positive class. Right: samples of the negative class. Note that samples of the negative and positive classes 
are plot separately for a better visualization of each distribution, besides that, classes are highly overlapped.
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Fig. 5. F-measure obtained with LFC (solid black line), one class SVM (dotted green 
line) and cost sensitive SVM (dashed red line). (For interpretation of the references 
to color in this figure legend, the reader is referred to the web version of this 
article.)
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3.1.1. Probability estimation 
In this work, the probability density functions are estimated by

convolving the training instances of each class with a Gaussian ker- 
nel. Any other density estimation algorithm could be used for the 
task without changes to the subsequent steps of the classifier
training algorithm.

3.1.2. Find a suitable partition of the space 
A rectangular partition of the space is found by considering 

independen tly probability distributions in each dimension. For 
each of these marginal distribution s, the thresholds that verifies
Eq. (8) are used as partition boundaries in that dimension. Follow- 
ing this procedure in all the dimensions , one at a time, a set of hy- 
per-rectang les are defined. The idea is similar to the procedure 
followed when constructing a tree, where the n-dimension al space 
is sequential ly divided one dimension at a time. The resulting fron- 
tiers are piecewise linear, like a tree does. If the feature are corre- 
lated we can make a feature extractio n previous step to get a more 
adequate space.

3.1.3. Assign a label for each region 
As we mention in Section 2, the optimality condition is nec- 

essary but not sufficient, also minima and inflexion points will 
verify Eq. (8). The existence of a minimum instead of a maxi- 
mum implies that we must label the space in the opposite 
way, as it is easy to see that if labeling Rþ ¼ k;þ1½ Þ and

R� ¼ �1; kð � provides a minimum F-measure, the same k with
R� ¼ k;þ1½ Þ and Rþ ¼ �1; kð � provides a maximum F-measur e.
Finally if the value of k solving Eq. (8) occurs in an inflexion
point we must assign the same label to both sides of the 
threshold.

Taking the previous comments into account, the last step is to
assign labels for each given region in the partition. In this first ver- 
sion of the algorithm we implement a simple way to assign the 
partition labels. First, we calculate the ratio of positive samples 
in the training set (r0), then for each region Ri we calculate this ra- 
tio (rRi

). Then if rRi
> r0 we assign to that hyper-rectangles the po- 

sitive label, and the negative label otherwise.

3.2. Considerations on the resulting classifier

In Section 2 the optimality condition was presente d in order to
find a single threshold for a one dimensional problem with two re- 
gions, assuming that just one partition would be performed. It is
easy to see that in these condition s the proposed algorithm would 
result in an optimal classifier regarding the F-measure. In more 
general conditions, for example when multidimen sional features 
are considered or when there are several thresholds per dimension 
(which is the case when multimod al distribut ions are considered),
the algorithm will result in a classifier that not need to be optimal 
in the same sense. However, in a more general case, as will be
shown in the experimental section, the proposed algorithm 

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FLC
CSVM
OSVM

(a) Recall

0 0.5 1 1.5 2
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
LFC
CSVM
OSVM

(b) Precision

0 0.5 1 1.5 2
0.92

0.93

0.94

0.95

0.96

0.97

0.98
LFC
CSVM
OSVM

(c) Accuracy

0 0.5 1 1.5 2
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

LFC
CSVM
OSVM

(d) AUC
Fig. 6. Other performance measurements.
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determines a set of thresholds that still obtain a good performanc e
in the classification.

At this point we need to stress our consideration that several 
techniques are proposed in the literature to get more adequate fea- 
ture space (PCA, ICA, Kernel PCA, among others), however, all these 
methods can be considered as pre-processing techniques that use 
the base classifiers as black boxes. The main point in this paper 
is to show that the algorithm is suitable for imbalance problems 
and to compare base classifiers’ performance by themselves.

4. Experimen tal results and performance analysis 

4.1. Data description 

For the experime ntal validation, we arbitrary used 3 different 
datasets. Dataset 1 consist on 3D samples with 10,000 samples of
negative instances and 300 of positive instances . Fig. 4 plots sam- 
ples of the positive (left plot) and negative (right plot) samples. In
both plots the same axes were used, as we can see both classes 
present multi-moda l distribut ions and they are highly overlapped 
and unbalanced.

Dataset 2 (Haberman, 1976 ) and Dataset 3 (Skin segmentation 
data Bhatt and Dhall, 2010 ) are public available datasets from 
the UCI Machine Learning Repository. Both datasets represent real 
imbalanced problems. Base 2 presents also high overlapping be- 
tween negative and positive classes.

Database (Haberman, 1976 ) (Dataset 2) was used in Zhang and 
Street (2002) where cost sensitive approaches were used to deal 
with unbalance and overlapping between classes.

Skin dataset (Dataset 3) (Bhatt and Dhall, 2010 ) is collected by
randomly sampling B, G, R values from face images of various age 
groups (young, middle, and old), race groups (white, black, and 
asian), and genders obtained from FERET database and PAL data- 
base. Total learning sample size is 245,057; out of which 50,859 
is the skin samples and 194,198 is non-skin samples.

4.2. Results 

For performance analysis, we compare the proposed algorithm,
from now on called LFC (acronym of linear F-measur e classifica-
tion), with one class SVM because is the most similar algorithm 
(in the sense that is a classifier specifically designed for imbalanced 
problems) and cost sensitive SVM (where different weight or cost 
are assign to different classes in order to compensate the high 
unbalance present between classes). We use 5-fold cross validation 
when training the LFC, O-SVM and CS-SVM, for tuning all the 
parameters (involved in O-SVM and CS-SVM training) we look for 
those who maximize the F-measure.

As first performanc e evaluation, we compare algorithms (LFC O-
SVM and CS-SVM) using Database 1 and different definitions of the 
F-measure (different values of b), to see how the performanc e is af- 
fected in different scenarios. Figs. 5 and 6 show the mean value for 
the performanc e achieved after running each algorithm 10 times 
and also the bar lines in each point show the variance of the results 
over the 10 runs.

Fig. 5 plots the F-measure for different values of b. LFC shows 
the best performance (in the F-measure sense) for all the values 
of b tested. Another interesting feature of LFC is how it is capable 
to find different solutions for the problem, depending on the b va-
lue. In each case it gives either better Recall or Precision accordin g
to the weight of each one in the F-measure definition, as we can see 
in Fig. 6 (a) and (b). For completenes s we include in Fig. 6(c) and (d)
the Accuracy and the area under the ROC curve for each test 
realized.

To conclude this section we present an additional experime nts 
with two UCI Machine Learning Repository datasets (previously
describe and labeled as Dataset 2 and 3). Both datasets are highly 
imbalanc ed, but differ in the amount of overlappi ng between clas- 
ses. These should be considered in the interpretati on of the results,
as follows.

Fig. 7 presents the F-measure for the LFC, OSVM and CSVM clas- 
sifiers using databases 1–3 for b ¼ 1. In all the cases LFC has a good 
performanc e. When the overlapping between classes is not impor- 
tant, algorithms that minimize error instead of F-measure can give 
also good solutions (when classes are separable maximize the 
Accuracy implies maximiz e F-measure), in that cases CS-SVM 
slightly outperformed LFC. Nevertheless, LFC still obtains a better 
performanc e than its similar class algorithm, OSVM. In the Haber- 
man datasets, where the overlapping is more important and tradi- 
tional (minimal error approaches tend to fail) CS-SVM performanc e
degrades, while LFC and OSVM present better results.

From the experime ntal results we can conclude that LFC has 
good performance in imbalance scenarios with high overlapping 
between classes.

5. Conclusi ons 

A new algorithm for classification in imbalanced problems was 
proposed . A theoretical analysis was presented for determine an
optimal decision rule under some simple hypothes is, showing that 
the proposed algorithm gives the best possible decision rule in
those conditions. Based on this result, a more general algorithm 
was designed, and experime ntally show that it performs ade- 
quately although it need not be optimal. A comparison with one 
class and cost sensitive SVM was done, showing that LFC is a suit- 
able algorithm for imbalance scenarios with overlapped 
distribut ions.

6. Future work 

This work presents several lines of future work but are out of
the scope of this article. In particular we are intereste d in the study 
of the impact of using Kernel PCA or other method in order to mod- 
ify the original space, and then apply the algorithm in the new 
(more suitable) space. Also, we will study how the generalization 
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Fig. 7. LFC (first black columns), OSVM (second green columns) and CSVM (third
red columns) F-measure comparison for 3 different database. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version 
of this article.)
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could be performed to obtain the optimal hyperplane (in the F-
measure sense) in a multidimen sional case. We also want to ana- 
lyze how the performanc e of the algorithm changes if it is com- 
bined with other techniques used for the improvement of
traditional classifiers in imbalance scenarios, such as smoote, boost- 
ing or adaboost. Finally, there is room to improve the way labels 
are assigned for each partition, for example, using a Genetic Algo- 
rithm or another optimizati on method to find the optimal labels.
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