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Geometrical Optics (1)

Geometrical optics (GO) refers to the simple ray tracing techniques that have been used
for centuries at optical frequencies.  The basic postulates of GO are:

1. Wavefronts are locally plane and waves are TEM

2. The wave direction is specified by the normal to the equiphase planes (“rays”)

3. Rays travel in straight lines in a homogeneous medium

4. Polarization is constant along a ray in an isotropic medium

5. Power in a flux tube (“bundle of rays”) is conserved
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6. Reflection and refraction obey
Snell’s law
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7. The reflected field is linearly related to the incident field at the reflection point by a
reflection coefficient
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Geometrical Optics (2)

We have already used GO for the simple case of a plane wave reflected from an infinite flat
boundary between two dielectrics
For example, for perpendicular
polarization:
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where s′  is the distance from the source
to the reflection point and s the distance
from the reflection point to the
observation point. This has the general
form of postulate 7.

The curvature of the reflected wavefront
determines how the power spreads as a
function of distance and direction.  It
depends on the curvature of both the
incident wavefront, iR , and reflecting
surface, sR .
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Geometrical Optics (3)

A doubly curved surface (or wavefront) is defined by two principal radii of curvature in two
orthogonal planes: ss RR 21 ,  for a surface or ii RR 21 ,  for the incident wavefront.  The reflected

wavefront curvature ( rr RR 21 , ) can be computed by first finding the focal lengths in the
principal planes.  When the principal planes of the incident wavefront and surface can be
aligned, then
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Geometrical Optics (4)

For an arbitrary angle of incidence and polarization, the field is decomposed into parallel and
perpendicular components.  The reflected field can be cast in matrix form as:
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where:
=cφ  phase change when the path traverses a

caustic (a point at which the cross section of
the flux tube is zero)

=Γpq  reflection coefficient for p polarized
reflected wave, q polarized incident wave

Disadvantages of GO:
1. does not predict the field in shadows
2. cannot handle flat or singly curved surfaces
( ∞=ss RR 21 or  )

Parabola

Focus

Example of a caustic: the focus of a
parabola.  All reflected rays pass through
the focus.  The cross section of a tube of
reflected rays is zero
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Geometrical Optics (5)

Example: A plane wave is normally incident on a conducting doubly curved surface.

Normal incidence 1cos0 =→= ii θθ o  and 1sinsin90 2121 ==→== θθθθ o
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If the surface is a sphere of radius a, then aRR ss == 21  and 2/21 aff == .  For a plane

wave ∞== ii RR 21  so that
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Geometrical Theory of Diffraction (1)

The geometrical theory of diffraction (GTD) was devised to eliminate many of the
problems associated with GO.  The strongest diffracted fields arise from edges, but ones of
lesser strength originate from point discontinuities (tips and corners).  The total field at an
observation point P is decomposed into GO and diffracted components
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The behavior of the diffracted field is based on the following postulates of GTD:

1. Wavefronts are locally plane and waves are TEM.
2. Diffracted rays emerge radially from an edge.
3. Rays travel in straight lines in a homogeneous medium
4. Polarization is constant along a ray in an isotropic medium
5. The diffracted field strength is inversely proportional to the cross sectional area of the

flux tube
6. The diffracted field is linearly related to the incident field at the diffraction point by a

diffraction coefficient
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Geometrical Theory of Diffraction (2)

Define a local edge fixed coordinate
system: the z axis is along the edge; the x
axis lies on the face and points inward.

The internal wedge angle is π)2( n− ,
where n is not necessarily an integer.  A
knife edge is the case of 2=n .

Primed quantities are associated with the
source point; unprimed quantities with the
observation point.  Variable unit vectors
are tangent in the direction of increase
(like spherical unit vectors)

Diffracted rays lie on a cone of half angle
ββ ′= (the Keller cone)
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The matrix form of the diffracted field is
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Geometrical Theory of Diffraction (3)

The diffraction coefficients, sD  and hD 1, are determined by an appropriate “canonical”
problem (i.e., a fundamental related problem whose solution is known).

The scattered field from an infinite wedge was solved by Sommerfeld. The infinitely long
edge can represent a finite length edge if the diffraction point is not near the end.

The diffraction coefficient can be “backed out” of Sommerfeld’s exact solution because we
know the GO field and the form of the GTD field from the postulates
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The basic expressions for the diffraction coefficients of a knife edge are simple (they contain
only trig functions), however they have singularities at the shadow and reflection boundaries.

More complicated expressions have been derived that are well behaved everywhere.  The
most common is the uniform theory of diffraction (UTD).  (See Stutzman and Thiele.)

                                                
1 This notation is borrowed from optics: s = soft or parallel polarization; h = hard or perpendicular polarization
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Geometrical Theory of Diffraction (4)

Example: scattering from a wedge for three observation points

Side view of wedge

1P

2P

3P

Source

Direct, reflected and
diffracted field present

Direct and diffracted fields 
are present (no point on the 
wedge satisfies Snell’s law)

Only diffracted field present
(direct path is in the shadow)

R Q

GO and GTD rays can “mix” (reflected rays can subsequently be diffracted, etc.) to
obtain: reflected – reflected (multiple reflection)

reflected – diffracted and diffracted – reflected
diffracted – diffracted (multiple diffraction)

An accurate (converged) solution must include all significant contributions.
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Wave Matrices For Layered Media (1)

For multilayered (stratified) media, a matrix formulation can be used to determine the net
transmitted and reflected fields.  The figure below shows incident and reflected waves at the
boundary between two media.  The positive z traveling waves are denoted c and the negative
z traveling waves b.  We allow for waves incident from both sides simultaneously.
Thus,
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This is called the wave transmission matrix.  It
relates the forward and backward propagating
waves on the two sides of the boundary.
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Wave Matrices For Layered Media (2)

As defined, c and b are the waves incident on the boundary, z = 0.  At some other location,

1zz =  the forward traveling wave becomes 1
1

zjec β−  and the backward wave becomes
1

1
zjeb β .  For a plane wave incident from free space onto N  layers of different material
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where, for normal incidence n n ntβΦ =  is the
electrical length of layer n.  If the last layer
extends to ∞→z  then 01 =+Nb  and we can
use 0=ΦN .

The overall transmission coefficient of the
layers (i.e., the transmission into layer N when

01 =+Nb ) is 1111 /1/ AccN =+ .  The overall
reflection coefficient is 112111 // AAcb = .



12

Naval Postgraduate School              Department of Electrical & Computer Engineering         Monterey, California

Wave Matrices For Layered Media (3)

If the incidence angle in region 1 is not normal, then nΦ  must be determined by taking
into account the refraction in all of the previous n −1 layers.  The transmission angle for
layer n becomes the incidence angle for layer n +1 and they are related by Snell’s law:
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Indoor and Urban  Propagation Modeling (1)

• An important application for which the use of GO and GTD are well suited, is the
modeling of propagation for wireless systems in buildings and urban environments.

• Applications include
1. wireless local area networks (WLANs)
2. mobile communications systems
3. cellular phones
4. command, control, and data links for UAVs flying in cities
5. high power microwaves (both attack and protect)
6. GPS performance in urban environments

• These systems generally operate at frequencies above 900 MHz (some European
wireless systems operate at frequencies as low as 400 MHz).  High frequency methods
are applicable in this range.

• Computational electromagnetics (CEM) codes are used to predict the propagation of
electromagnetic (EM) waves indoors and in urban environments.
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Indoor and Urban  Propagation Modeling (2)

• Scattering properties of common building materials are determined by their permittivity,
permeability, and conductivity

• Sources of loss (attenuation) inside of
walls:
1. absorption (energy dissipated inside

of material)
2. cancellation by reflection

• Propagation and interaction with
materials is decomposed into
1. transmission
2. reflection
3. diffraction from discontinuities

• Usually we do not know exactly what
is inside of a wall (plumbing, wiring,
duct work, insulation, etc.)

  

TRANSMITTED

RECEIVER #1 

TRANSMIT

RECEIVER #2

DIFFRACTED

DIRECT

WALL t
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Propagation Loss Through Walls

freq (GHz)
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Measured Data

e2=10,lt=.0125
ef=15,ltf=0

Loss through a 10 inch concrete wall
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Measured Data
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ef=15,ltf=0

Loss through a 1.75 inch wood doors

Measurement of propagation through building walls
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Propagation Loss Through Windows

Closed blinds Window tinting film

Insertion loss about 10 dB   Insertion loss about 20 dB
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WLAN Antennas (Omnidirectional)

• Ceiling mount

• Desktop mount diversity antennas

• Spatial radiation distribution of a vertical
dipole antenna
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WLAN Directional Antennas

Microstrip patch antenna      Radome cover removed
(typically mounted on a wall)

Radiation pattern (power measured as                 Typical antenna pattern
a function of angle at constant radius)    (top view)

ANTENNA MAXIMUM

SPATIAL DISTRIBUTION
OF RADIATION
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Urbana Wireless Toolset

• Components
1. XCell: geometry builder and visualizer; antenna placement; observation point

definition
2. Cifer: utilities, translators, geometry manipulation
3. Urbana: electromagnetic solvers

• Features:

1. Interfaces with computer aided design (CAD) software
2. Reflections by geometrical optics (GO) or “shooting and bouncing rays” (SBR)
3. Diffraction by geometrical theory of diffraction (GTD) or physical theory of

diffraction (PTD)
4. Surface and edge curvature can be modeled
5. Complex materials (dielectrics, conductors, magnetic material)

• The SGI version is not “user friendly”
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Simple Three Wall Example

• Dipole behind walls (edges shown white)
• 1 watt transmit power; plastic walls are 25m by 50m; 8 wavelength dipole antenna

10 dBm

- 80 dBm

Dipole Pattern

• Propagation features can be identified:

> dipole radiation rings (red)
> multipath from ground and wall surfaces (red speckle)
> propagation through gaps
> “shadows” behind walls (shadow boundaries from wall edges
> diffraction from wall edges (blue arcs)
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Two Story Building

Two story building: 40 feet on a side.  Observation plane is 150 feet on a side.

Building with large windows

Building with small windows

Partial cut away
showing ground
floor

Observation plane
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Wall Materials

Metal composite walls    Wood walls

• Propagation through windows dominates for metal buildings
• Many transmissions and reflections diffuse the signal for the wood building
• Receive antenna is 5 feet above ground
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Window Materials

    Standard glass windows   Tinted windows

• There is a direct line of sight above the window sill from inside the building
• Receive antenna is 5 feet above ground
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Antenna Location

Access point on 1st floor Access point on 2nd floor

• Detection is reduced by moving the access point to second floor
• Results in reduced signal levels inside on first floor
• Receive antenna is 5 feet above ground
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Field Along a Line Path Through a Wall

• Metal composite walls, standard glass

• 10 to 20 dB drop through the wall
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Urban Propagation (1)

Urban propagation is a unique and relatively new area of study.  It is important in the
design of cellular and mobile communication systems.  A complete theoretical treatment of
propagation in an urban environment is practically intractable.  Many combinations of
propagation mechanisms are possible, each with different paths.  The details of the
environment change from city to city and from block to block within a city.  Statistical
models are very effective in predicting propagation in this situation.

In an urban or suburban environment there is rarely a direct path between the transmitting
and receiving antennas.  However there usually are multiple reflection and diffraction
paths between a transmitter and receiver.

MOBILE
ANTENNA

BASE
STATION

ANTENNA

• Reflections from objects close to the
mobile antenna will cause multiple signals
to add and cancel as the mobile unit
moves.  Almost complete cancellation can
occur resulting in “deep fades.”  These
small-scale (on the order of tens of
wavelengths) variations in the signal are
predicted by Rayleigh statistics.



27

Naval Postgraduate School              Department of Electrical & Computer Engineering        Monterey, California

Urban Propagation (2)

• On a larger scale (hundreds to thousands of wavelengths) the signal behavior, when
measured in dB, has been found to be normally distributed (hence referred to a
lognormal distribution).  The genesis of the lognormal variation is the multiplicative
nature of shadowing and diffraction of signals along rooftops and undulating terrain.

• The Hata model is used most often for predicting path loss in various types of urban
conditions.  It is a set of empirically derived formulas that include correction factors for
antenna heights and terrain.

Path loss is the 2/1 r spreading loss in signal between two isotropic antennas.  From the
Friis equation, with 1/4 2 === λπ ert AGG
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Note that path loss is not a true loss of energy as in the case of attenuation.  Path loss as
defined here will occur even if the medium between the antennas is lossless.  It arises
because the transmitted signal propagates as a spherical wave and hence power is flowing
in directions other than towards the receiver.
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Urban Propagation (3)

Hata model parameters2: =d  transmit/receive distance ( 201 ≤≤ d  km)
=f  frequency in MHz ( 1500100 ≤≤ f  MHz)
=bh  base antenna height ( 20030 ≤≤ bh  m)
=mh  mobile antenna height ( 101 ≤≤ mh  m)

The median path loss is

[ ] )()log()log(55.69.44)log(82.13)log(16.2655.69med mbb hadhhfL +−+−+=

In a medium city:  [ ] 8.0)log(56.1)log(1.17.0)( −+−= fhfha mm

In a large city:  




≥−
≤−=

 MHz400),75.11(log2.397.4
 MHz200),54.1(log29.81.1)( 2

2

fh
fhha

m

m
m

Correction factors:  




−+−
−−=

areas open,94.40)log(33.18)(log78.4
areas suburban,4.5)28/(log2

2

2

cor
ff

fL

The total path loss is:  cormed LLLs −=

                                                
2 Note: Modified formulas have been derived to extend the range of all parameters.
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Urban Propagation Models

• Examples of urban propagation models and field distributions

From SAIC’s Urbana Wireless Toolkit 

Surburban model with 
buildings and roads Transmitter antenna in

urban location

Signal strength distribution
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Measured Data

Two different antenna heights

Three different 
frequencies

Measured data in 
an urban 

environment f = 3.35 GHz

 f = 8.45 GHz

 f = 15.75 GHz

 h = 2.7 m  h = 1.6 m

From Masui, “Microwave Path Loss
Modeling in Urban LOS Environ-
ments,” IEEE Journ. on Selected Areas 
in Comms., Vol  20, No.  6, Aug. 2002.


