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a b s t r a c t

In this paper we propose a machine learning approach to classify melanocytic lesions as malignant or
benign, using dermoscopic images. The lesion features used in the classification framework are inspired
on border, texture, color and structures used in popular dermoscopy algorithms performed by clinicians
by visual inspection. The main weakness of dermoscopy algorithms is the selection of a set of weights and
thresholds, that appear not to be robust or independent of population. The use of machine learning tech-
niques allows to overcome this issue. The proposed method is designed and tested on an image database
composed of 655 images of melanocytic lesions: 544 benign lesions and 111 malignant melanoma. After
an image pre-processing stage that includes hair removal filtering, each image is automatically seg-
mented using well known image segmentation algorithms. Then, each lesion is characterized by a feature
vector that contains shape, color and texture information, as well as local and global parameters. The
detection of particular dermoscopic patterns associated with melanoma is also addressed, and its inclu-
sion in the classification framework is discussed. The learning and classification stage is performed using
AdaBoost with C4.5 decision trees. For the automatically segmented database, classification delivered a
specificity of 77% for a sensitivity of 90%. The same classification procedure applied to images manually
segmented by an experienced dermatologist yielded a specificity of 85% for a sensitivity of 90%.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

The medical term melanoma refers to a malignant tumor devel-
oped from melanocytic cells. Melanoma generally appears de novo,
and less frequently as the evolution of acquired benign melanocy-
tic nevi. The strong metastatic power of this tumor leads to signif-
icantly high mortality rates. In the last decades, mainly due to sun
exposure, the incidence of melanoma has dramatically increased,
particularly in young white population. For instance, in North
America it is now the fifth most common cancer among males
and the sixth most common cancer among females; Australia,
where melanoma is the fourth most common registered cancer,
has the highest incidence in the world (see Soyer et al., 2007, chap.
4, and references therein). Early diagnosis and removal of thin mel-
anoma, when the chance of metastasis is low, is the most effective
strategy. If diagnosed and treated early, the mean life expectancy
of individuals suffering from melanoma can be increased by at
least 25 years.

The features that differentiate a common nevi from a melanoma
tend to develop as tumor grows. Consequently, the diagnosis of
thin melanoma is very difficult for the naked eye. This has led to
ll rights reserved.
the development of a technique called dermoscopy, which became
widely used by dermatologist since the nineties. Dermoscopy is a
noninvasive in vivo technique that assists the clinician in mela-
noma detection in its early stage. Images are acquired using epilu-
minescence light microscopy, that magnifies lesions and enables
examination down to the dermo-epidermal junction. This permits
visualization of new morphologic features and in most cases facil-
itates early diagnosis. However, evaluation of the many morpho-
logic characteristics is often extremely complex and subjective
(Rubegni et al., 2002).

In order to make the diagnosis of melanoma based on dermos-
copy more objective, three widely used algorithms to analyze mel-
anocytic lesions were proposed in the dermatology literature. All
these algorithms consist of identifying a set of features – which
are roughly the same for all of them – and classifying the lesion
as malignant or benign depending on their absence or presence.
While the Menzies method (Menzies et al., 1996) bases its decision
on qualitative criteria, the ABCD rule (Stolz et al., 1994; Nachbar
et al., 1994) and the 7-point checklist (Argenziano et al., 1998)
compute a score. Notice, however, that complete objectivity is
impossible to achieve, because of the difficulty in visually charac-
terizing the lesions’ features and deciding its presence or absence.

Stolz’s ABCD rule specifies a list of visual features associated with
malignant melanocytic lesions (asymmetry, border irregularity,
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color irregularity and presence of dermoscopic structures). Non
integer coefficients, established based on clinical experience, are
associated with each of these features, and the Total Dermoscopic
Score (TDS) is computed as the sum of these values. Two thresholds
also established by clinical experience are used to classify the lesion
as malignant, clinically doubtful (CDL) or benign.

Argenziano’s 7-points checklist consists in analyzing the pres-
ence of what dermatologist claim to be the seven most important
structures that characterize melanoma. These structures consist of
color or geometric patterns, that are considered either major or
minor criteria. Major criteria structures are weighted by two, while
minor criteria structures are weighted by one.

The computerized analysis of dermoscopic images can be an ex-
tremely useful tool to measure and detect sets of features from
which dermatologists make their diagnosis. It can also be helpful
for primary screening campaigns, increasing the possibility of early
diagnosis of melanoma. Currently there is no commercial software
for massive use in the clinical practice; this evidences that com-
puter aided diagnosis is still an unsolved problem. Our ultimate
goal is to develop software for the recognition of early-stage mel-
anoma, using dermatoscopic images. This would enable unsuper-
vised classification of melanocytic lesions, assigning a confidence
index for each classification. The result of such classification proce-
dure will separate the ‘‘screened’’ lesions in two groups. The first
group corresponds to lesions that were classified with high enough
confidence level, while the second one corresponds to those lesions
for which the confidence level is low and consequently, requires
subsequent inspection by an experienced dermatologist. In this
sense, the classification technique is actually a semi-automated
method.

In this work we present a computer aided diagnosis method,
that results from applying machine learning techniques to attri-
butes inspired on the features used in dermoscopic algorithms.
One advantage of the computer over the clinician is that features
like those based on asymmetry, border or color irregularity can
be quantified with higher precision. Also, instead of deciding on
the presence or absence of a given structure, it is possible to quan-
tify its degree of presence, which may turn out to be useful infor-
mation. The other big advantage of computer aided diagnosis is the
ability to infer thresholds and decision boundaries in a more rigor-
ous way using machine learning techniques. On the other hand, the
design of computer vision algorithms that perform well in detect-
ing dermoscopic structures, or patterns like those involved in the 7
points checklist, is an extremely difficult task. The reason for this
will become evident further, once we have described the aspect
of these patterns.

A shorter version of this work was presented in (Capdehourat et
al., 2009). In the present paper we show new experiments obtained
on a larger database of dermoscopic images. We discuss perfor-
mance evaluation issues and we choose a different strategy, that
we consider to be more accurate than the one adopted in that pre-
vious work. We present ongoing work on detection of dermoscopic
structures and we propose new guidelines to expand the computer
aided diagnosis system reported in (Capdehourat et al., 2009), that
include detection of dermoscopic structures. The paper is orga-
Table 1
ABCD rule. Points in the third column are multiplied by its corresponding weight factor. Th
benign (TDS < 4.75), CDL (4.75 6 TDS 6 5.45), malignant (TDS > 5.45).

Feature Description

Asymmetry One point per asymmetry w.r.t. each axis
Border Eight segments, one point for abrupt pigment cutoff
Color One point per color: white, red, black light brown, dark br
Dermoscopic structures One point per structure: pigment network, structureless ar
Total score range
nized as follows. In Section 2 we present a brief description of
dermoscopic algorithms, that suggest the kind of features that have
to be extracted from dermoscopic images, and show the limitations
of these algorithms. In Section 3 we discuss previous work on com-
puter aided diagnosis of melanoma. Our approach to melanocytic
lesions classification is described in Section 4. In Section 5 we pres-
ent the procedure used to build up a labeled database of dermo-
scopic images, and we describe its composition. Performance
evaluation and results are presented in Section 6. In Section 7 we
discuss detection of the dermoscopic structures described in Sec-
tion 4. Conclusions and future work focused on combining detec-
tion of dermoscopic patterns with the classification framework
are discussed in Section 8.

2. Description and evaluation of dermoscopy algorithms

2.1. The ABCD rule and the 7 point checklist

The ABCD rule of dermoscopy (Stolz et al., 1994) is based on a
scoring system for melanocytic neoplasms that differentiates them
into benign, CDL and malignant categories. This is accomplished by
computing a TDS according to Table 1. The lesion is considered to
be benign if its TDS is lower than 4.75, and malignant if its TDS is
larger than 5.45. TDS in between these values correspond to CDL.
Features are defined as follows:

� Asymmetry: The lesion is bisected by its two principal axes.
Symmetry takes into account the contour, colors, and structures
within the lesion.
� Border: The lesion is divided into octants, by its principal axes

and two supplementary axes. Next, one counts the number of
segments that have an abrupt border cutoff.
� Color: One point per each color listed in Table 1.
� Dermoscopic structures: One point per each structure listed in

Table 1. Typical examples of these structures can be seen among
the patterns marked in Fig. 1.

The 7 points checklist (Argenziano et al., 1998) is another var-
iation on the theme of pattern analysis, with fewer criteria to iden-
tify and analyze, and a point system. The dermoscopic patterns are
divided into major and minor criteria. Major criteria receive 2
points each and minor criteria receive 1 point (see Table 2). The le-
sion is considered to be malignant if its total score is larger or equal
than 3; otherwise, the lesion is classified as benign. The structures
are defined next. Typical examples are shown in Fig. 1.

� Atypical pigment network: Black, brown, or gray thickened and
irregular line segments anywhere in a lesion.
� Blue-whitish veil: Irregular, confluent, gray-blue to whitish-blue

diffuse pigmentation that can be associated with pigment net-
work alterations, dots/globules, or streaks.
� Atypical vascular pattern: Linear- irregular and/or dotted red

vessels not seen in regression areas.
� Irregular Streaks: Pseudopods or radial streaming irregularly

arranged at the periphery of lesion.
e TDS is computed as the sum of the sub-scores of each feature. Lesion classification:

Points Weight factor Sub-score range

0–2 1.3 0–2.6
0–8 0.1 0–0.8

own, blue-gray 1–6 0.5 0.5–3
ea, dots, globules, branched streaks 1–5 0.5 0.5–2.5

1.0–8.9



Fig. 1. Dermoscopic structures. Typical examples of the patterns used in dermoscopic algorithms.

Table 2
7 Points checklist. The total score is computed by weighting each structure by its
corresponding score, and summing them up. Lesion classification: benign (total
score < 3), malignant (total score P 3).

Major criteria Score Minor criteria Score

Atypical pigment network 2 Irregular streaks 1
Blue-whitish veil 2 Irregular pigmentation 1
Atypical vascular pattern 2 Irregular dots/globules 1

Regression structures 1
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� Irregular pigmentation: Black, brown or gray featureless areas
with irregular shape and/or distribution.
� Irregular dots/globules: Black, brown, or gray round to oval, var-

iously sized structures irregularly distributed in the lesion.
� Regression structures: white scarlike areas and/or blue pepper-

like areas (gray–blue areas, multiple blue–gray dots).

2.2. Performance comparison and implications for computer aided
diagnosis

In the ABCD rule, (Stolz et al., 1994) proposed values for the
coefficients involved in the TDS and the decision thresholds. While
these values are universally used, the optimal ones may be actually
quite different; it has been shown that other values may yield bet-
ter performance, depending on the population under examination
and the clinical training. Indeed, many authors claim that the uni-
versally used thresholds may lead to high rates of false diagnoses.
An experiment conducted by Lorentzen et al. (1999), Lorentzen
et al. (2000) revealed that the use of the ABCD rule did not improve
diagnostic accuracy of malignant melanoma with respect to quali-
tative analysis of lesion patterns, for a set of four experienced users
of dermoscopy and five less experienced users. Moreover, they
present quantitative arguments that support the claim that the
points and weights are not correctly balanced.

Concerning the 7 point checklist, (Johr, 2002) claims that this
algorithm outperforms the ABCD rule when used by non expert
medical doctors. Dolianitis et al. (2005) conduct performance com-
parison of Menzies method, the ABCD rule and the 7 point check-
list, for non expert medical doctors. These authors conclude that
Menzies method, which is a qualitative analysis, outperforms the
others, and that the 7 point checklist has higher sensitivity but
lower specificity than the ABCD rule. Indeed, it is reasonable to
think that the diagnosis process conducted by expert dermatolo-
gists – as in many medical diagnosis problems – involves several
aspects like many years of clinical experience, epidemiology of
the disease in different populations, and many more that can be
understood as its ‘‘medical intuition’’. Consequently, such a com-
plex decision process cannot be reduced to a simple set of rules.
In sum, a thorough review of the medical literature reveals the
lack of consensus in the performance of dermoscopy algorithms. In
any case, it seems clear that the points, weights and scores, as well
as the thresholds involved in dermoscopy algorithms are not ro-
bust neither independent of the context. Solving this issue is the
main motivation of this work. Our approach is then focused in tak-
ing advantage on the clinical experience to define the features that
have to be measured on dermoscopic images, and to leave the
determination of optimal weights and decision boundaries to state
of the art machine learning techniques.
3. Review of computerized analysis of dermoscopic images

The first related work in the medical literature of computer
aided image analysis in skin lesion diagnosis seems to date back
to 1987 (Cascinelli et al., 1987). Its contribution was limited
since by that time computer vision and machine learning were
both emerging fields; note that, for instance, the first widely
used edge detector had recently been proposed by Canny in
1986. One of the first significant contributions from the image
processing community was reported by Ganster et al. (2001). In
this work, the authors propose a classical machine learning ap-
proach for dermatoscopic image classification. The first stage is
automatic color-based lesion segmentation. Then, over a hundred
features that try to reflect parameters used in medical diagnosis
are extracted from the image (shape and color, and gradient dis-
tribution in the neighborhood of the lesion boundary). Feature
selection was obtained using sequential forward and sequential
backward floating selection. Classification experiments, per-
formed with a 24-NN classifier, delivered a sensitivity of 77%
with a specificity of 84%.

To our knowledge, up to now the best results in automated mel-
anocytic lesion classification were obtained by Celebi et al. (2007).
See this reference for a complete summary of the results obtained
by key studies from 2001 onwards, along with their database sizes.
At this point a precision should be made regarding performance re-
sults. First, there is no freely available database, and consequently
each work report results on its own database. Second, in general
the class corresponding to malignant lesions has far fewer in-
stances than the benign lesion class; in the particular case of Celebi
et al. (2007), reported results were obtained using a synthetic over-
sampling of the minority class, which, as will be discussed later,
tends to overestimate performance.

As in (Ganster et al., 2001), the approach proposed by Celebi
et al. (2007) is a classic machine learning methodology. After an
Otsu-based image segmentation, a set of global features are com-
puted (area, aspect ratio, asymmetry and compactness). Local color
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and texture features are computed after dividing the lesion in three
regions: inner region, inner border (an inner band delimited by the
lesion boundary) and outer border (an outer band delimited by the
lesion boundary). Feature selection is performed using ReliefF
(Robnik-Šikonja and Kononenko, 2003) and CFS algorithms (Hall,
2000). Finally, the feature vectors are classified into malignant or
benign using SVM with model selection (Schlkopf and Smola,
2001). Performance evaluation gave a specificity of 92.34% and a
sensitivity of 93.33%.

The computer aided diagnosis based on detection of dermo-
scopic structures has been explored to a much lesser extent,
and by a very few research groups. This is certainly due to the
fact that the detection of these structures is a difficult problem
in image analysis. In a series of papers by a group of University
of Salerno (Betta et al., 2006; Di-Leo et al., 2009; Di-Leo et al.,
2010), the authors describe methods to detect atypical network,
blue-whitish veil, irregular streaks, irregular pigmentation and
regression areas, with specificities ranging from 82% and 93%,
and sensitivities ranging from 80% to 90%. They do not address
detection of atypical vascular patterns neither of dots/globules.
Features are computed based on lesion color segmentation (by
combining PCA analysis and histogram partitioning with manual
pick selection), and texture extraction based on mathematical
morphology and Fourier Transform. Detection of each structure
is achieved using logistic model trees. The combination of these
classifiers to provide a complete lesion classification framework
is not addressed. This is a clear limitation, since this combination
may yield better performance than using the one or two score
per pattern suggested by the 7 point checklist algorithm.

In the following sections we describe our proposed approach,
which is mainly based on color, asymmetry and border properties,
and give guidelines for combining this approach with dermoscopic
structure detection, in a more complete framework.
4. Dermoscopic images classification: Proposed approach

We follow a typical machine learning methodology. In the
first stage, we tackle image processing and image analysis prob-
lems, such as image filtering, restoration and automatic segmen-
tation to isolate the lesion’s area. The second stage consists of
extracting features from the image for further lesion classifica-
tion into malignant or benign. Features are inspired by the same
elements that dermatologists use for lesion diagnosis. Once le-
sions’ features have been extracted, labeled lesions are used to
train a meta-classifier obtained using boosting based on decision
trees. Classification errors and ROC curves are obtained by means
of cross validation. In this section we give details of each of these
stages.
4.1. Preprocessing and hair removal

Lesion segmentation in the presence of hair is usually doomed
to failure. Thus, previous application of a hair removal filter is
unavoidable. Ideally, it would be desirable to eliminate hair pre-
vious to image acquisition, but this interferes with the clinical
practice. In our case, we remove hair using an automatic hair re-
moval algorithm. This algorithm consists of hair detection and
image inpainting. For this purpose, we used a well known hair
removal algorithm (Lee et al., 1997). This algorithm identifies
the image segments that approximate the structure of the hair,
and then the regions that contain these segments are interpo-
lated using the information of the surrounding pixels. As for
the inpainting, sophisticated state of the art techniques were also
explored (Criminisi et al., 2004), with similar results. A typical
result is shown in Fig. 2.
4.2. Segmentation

Segmentation of melanocytic lesions can be an extremely hard
problem. Besides the presence of hair, many lesions present diffuse
borders, difficult to determine even for dermatologists (see Fig. 3).
Several methods of image segmentation were explored, based on
edge detection and on region information. In general it is appropri-
ate to combine different features (texture, edges, color) for better
results. Methods combining these sources of information were also
studied. Among the variational methods, we considered a modified
version of Otsu (1979) that uses color norm, Mumford-Shah
(Koepfler et al., 1994), Geodesic Active Contours (Caselles et al.,
1997) and Geodesic Active Regions (Paragios and Deriche, 2002).
We also explored several methods based on the topographic
map, using both boundary and color/texture region information
(Cao et al., 2005; Cardelino et al., 2006).

Overall, none of the methods outperformed the others. We
decided to use the color-based Otsu method as it is simpler and
significantly faster. Of course, there are pathological cases in which
it fails, and sometimes one of the other methods provides satisfac-
tory results. This suggests that a software for clinical use should
propose the choice of a few candidate segmentations to the user
in case they differ.

4.3. Feature extraction

Once the lesion boundary has been detected, we extract a total
number of 57 features to represent the relevant lesion information
for melanoma classification. This set of measurements can be di-
vided into global and local features. The subset of global features
consist of 9 shape and border features: aspect ratio, symmetry
(with respect to principal and secondary axis), circularity, compac-
ity, normalized perimeter, anisotropy, border abruptness and bor-
der roughness. The subset of local features represent color and
texture information. Following (Celebi et al., 2007), previous to
the extraction of local features, each lesion is decomposed into
three sub-regions: interior of the lesion and the inner and outer
border (Fig. 4). For each of these regions, the color features consist
of mean and variance per channel in RGB and HSV spaces, totaliz-
ing 36 color descriptors. The remaining 12 texture features, 4 for
each sub-region, are based on weighted averages of the gray level
co-ocurrence matrix which measures information of contrast, cor-
relation, heterogeneity and energy for each sub-region. Note that
information concerning the presence or absence of several geo-
metric patterns that are relevant to the 7 points checklist is not in-
cluded as attributes in this list of features. We are currently
investigating these detection problems, since we are confident
that the capability of detecting this structures will boost our
method performance. This issue will be addressed in more detail
in Section 7.

4.4. Classification

The goal of this stage is to classify the feature vectors in two
classes: malignant and benign. A classification technique that
proved very successful in our experiments consists in performing
decision trees combination via adaptive boosting. Boosting exploits
the inherent instability of learning algorithms by combining multi-
ple models, in a way that models complement one another. This is
achieved by assigning weights to the training data, and modifying
them after each classifier by increasing the weight of misclassified
samples, and decreasing these of correctly classified ones. Hence,
after each iteration, a new classifier is forced to focus on classifying
the hard samples correctly. The algorithm finishes after a user-de-
fined number of T iterations, that generates a set of T classifiers.
Then, a weight that increases with its performance is associated



Fig. 3. Example of melanoma showing a very diffuse border. Left: manual segmentation by dermatologist. Right: automatic segmentation with Otsu method based on color
norm.

Fig. 2. The importance of hair removal in segmentation. The lesion boundary in (d) is found after applying the hair removal algorithm. Once the lesion has been segmented,
the information inside the original lesion (a) is used for subsequent stages.
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with each of them. Classification of new unlabeled data is per-
formed by a weighted vote of the T classifiers.

The algorithms we considered for the classification framework
are C4.5 decision trees (Quinlan, 1993), and AdaBoost.M1 (Freund
and Schapire, 1997). Tree classifiers are particularly useful to deal
with non-metric data; they exhibit comparable accuracy to widely
used classifiers such as neural networks or nearest neighbor classi-
fiers, especially when one does not count on prior information
about the appropriate classifier form. Quinlan’s C4.5 decision tree
has proved to be one of the best performing classification trees.
In the C4.5 algorithm the decision tree is grown fully, until leaves
have minimum impurity. Nominal values are treated as in Quin-
lan’s ID3 tree, that is by splitting nodes based on optimizing the en-
tropy-based information gain. Continuous variables are treated as
in Brieman’s Classification And Regression Trees (CART), that is,
by sorting the values and choosing the splitting point as the one
that optimizes the information gain. Then, the full grown tree is
subject to cost-complexity pruning, which has the ability of di-
rectly replacing a complex subtree with a leaf.

AdaBoost (ADAptive BOOSTing) is one of the many variations on
basic boosting. It allows the designer to continue adding weak clas-
sifiers until reaching some target training error. In AdaBoost each



Fig. 4. Definition of the three sub-regions used in local features extraction.
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training sample receives a weight which determines its probability
of being selected for a training set for an individual component
classifier. If a training sample is accurately classified, then its
chance of being used again in a subsequent component classifier
is reduced; conversely, if the sample is not classified accurately,
then its chance of being used again is raised. In this way, AdaBoost
concentrates on those samples that are hard to classify. In the ini-
tialization, all training samples weights are set to the same value.
Then, on each iteration, training samples are drawn at random
according to these weights, and train a component classifier (here
a C4.5 decision tree) using the selected samples. Next, the weights
of the samples that were correctly classified are decreased, and
those of misclassified samples are increased. Then a new subset
of samples, drawn following this updated distribution, is used to
train the next classifier. The process is iterated until a design train-
ing error is reached.
5. Database composition

In order to enable performance evaluation for lesion segmenta-
tion, features’ measurements and melanoma classification, a der-
moscopy image database was built. To simplify the work of the
dermatologist in labeling the database, a graphical tool for manual
segmentation and diagnosis was developed. For each database im-
age, the dermatologist defines the lesion boundary by hand, and
digitally fills a diagnostic report for both dermoscopy algorithms
(ABCD rule and 7 points checklist). An expert dermatologist pro-
cessed our complete set of dermoscopic images using this tool,
leading to a full labeled database.

The database is composed of 655 images of melanocytic lesions:
544 benign lesions and 111 malignant melanoma. Actually, the ori-
ginal set of dermoscopic images was larger, but some images were
discarded for the following reasons: the images do not capture the
whole lesion, poor image quality or excessive presence of hair.
Among the set of benign melanocytic lesions, 150 correspond to
dysplastic nevi, 77 dermal nevi, 36 junctional nevi, 65 compound
nevi and 216 unclassified. This composition was based on the exis-
tence of dermoscopic and histopathologic studies, which were
used as ground truth for the classification procedure. It is impor-
tant to note that dysplastic melanocytic nevi are the benign lesions
that are visually the most alike to malignant melanoma; many of
them are clinically doubtful for experienced dermatologists.
6. Performance evaluation and results

Performance evaluation was conducted using 10 times –
10-fold cross-validation. To assess the impact of the learning and
classification method, we compared our results with SVM with
model selection (preceded by ReliefF feature selection). A RBF ker-
nel was used, and optimal parameters (the weight that controls
model complexity and the RBF parameter) were obtained by grid
search optimization with 10 fold cross-validation. The same exper-
iments were repeated, replacing automatic segmentation with
manual segmentation, performed by a dermatologist. This was car-
ried onto assess the influence of automatic segmentation errors.

In a previous version of this work (Capdehourat et al., 2009), in
order to deal with class imbalance in a situation where the size of
the minority class was small, we applied on it a widely used syn-
thetic over-sampling technique (SMOTE, by Nitesh V. Chawla et
al. (2002)). This enabled us to compare our results with those re-
ported by Celebi et al. (2007), where the same over-sampling tech-
nique was used. Note that since the database used by Celebi et al. is
very similar to ours in size and composition (476 benign lesions
and 88 malignant melanoma), this performance comparison makes
sense, but only up to a certain point. The results we obtained in this
previous work were better than those reported by Celebi et al.
(2007) (who obtain a specificity of 86% for a 95% sensitivity, and
AUC of 0.966). In the experiments reported here, with a larger
database and still using SMOTE to compensate class imbalance,
our AdaBoost/C4.5 approach shows again higher performance
(specificity of 89% for a 95% sensitivity, and AUC of 0.977).

More recently, in a joint exploration with Fiori et al. (2010), we
have observed that the use of SMOTE tends to overestimate the
performance of the classification method. For example, generating
five features with independent, identically distributed random val-
ues (standard normal distributions for both classes), and classify-
ing with Naive Bayes, values of AUC of almost 0.8 were reached
(when 0.5 was expected). For that reason, partly because now
the number of melanomas in the database is larger, we decided
to conduct performance evaluation by randomly subsampling the
majority class. This procedure was repeated in order to use all in-
stances in the majority class.

Fig. 5 shows the overall system performance (ROC curves) using
AdaBoost/C4.5 for both automatically and manually segmented
databases. The plot on the top shows the results when applying
SMOTE to deal with class imbalance. The bottom plot shows the
corresponding results when using subsampling of the majority
class. Note that the use of SMOTE clearly biases the system perfor-
mance evaluation. In both cases, results obtained over the manu-
ally segmented database are slightly superior. Table 3 shows
performance indicators, for the manually and automatically seg-
mented databases, using Adaboost/C4.5 and SVM, and both class
balancing strategies. While the SVM approach using manually or
automatically segmented images yielded essentially the same per-
formance, the performance of Adaboost/C4.5 classification of man-
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Fig. 5. ROC curves for automatic and manual lesion segmentation. Top: oversam-
pling of the minority class using SMOTE. Bottom: random subsampling of the
majority class.

Table 3
Performance indicators for two different classifiers, and two class balancing
strategies.

Segmentation Classifier SMOTE Spread subsampling

Specificity for
90%
sensitivity (%)

AUC Specificity for
90%
sensitivity (%)

AUC

Automatic AdaBoost
– C4.5

94.5 0.977 77.0 0.921

SVM 91.1 0.953 74.7 0.890

Manual AdaBoost
– C4.5

97.8 0.986 85.0 0.937

SVM 89.5 0.948 75.0 0.889

Table 4
Performance indicators for dermoscopy algorithms, reported by Dolianitis et al.
(2005).

Dermoscopy algorithm Sensitivity Specificity

ABCD rule 77.5 80.5
7 points checklist 81.4 73.0
Menzies 84.6 77.7
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ually segmented images was higher than for the automatically seg-
mented ones. In agreement with our previous experiments (Cap-
dehourat et al., 2009), the classification results using Adaboost/
C4.5 are better than the ones obtained with SVM, for all cases. To
end up with this section, Table 4 shows performance indicators
for dermoscopy algorithms reported by Dolianitis et al. (2005).
Comparison with the ROC curves in Fig. 5 reveals that our method
outperforms all of them. Again, note that this comparison should
not be taken stricto sensu, because of multiple factors (different
databases, etc.).
7. A preliminary study on detection of dermoscopic structures

In this section we address the detection of three dermoscopic
structures used in the 7 points checklist. A simple blue-whitish veil
detector, proposed by Celebi et al. (2008), was implemented and
tested. For the detection of atypical pigment network, a simple
detector is proposed. Finally, we propose a new detector of irregu-
lar pigmentation, that combines three detectors reported in the lit-
erature, and provides a binary answer regarding the absence or
presence of such structure. The goal of this study is to evaluate
the state of the art in this area, and to gain insight with pattern
detection in order to develop new classifiers based on these
dermoscopic structure detectors. The final objective is to combine
these classifiers based on dermoscopic structures, with the classi-
fier proposed in the previous sections, which is based on general
shape, color and texture features.

7.1. Blue-whitish veil

A blue-whitish veil detector was implemented, based on Celebi
et al. (2008). In this work the classification of each pixel as veil or
non veil is obtained using a decision tree over two color features
extracted from the image. This algorithm was tested on a selected
subset of 39 images from our database, with encouraging results.
On this subset, this detector did not miss any lesion presenting
blue-whitish veil. Figs. 6 and 7 show examples of successful and
false blue-white veil detections, respectively.

7.2. Atypical pigmented network

Di-Leo et al. (2010) proposed a strategy for atypical pigmented
network detection. This strategy is based on texture features, ex-
tracted from the lesion using mathematical morphology and Fou-
rier Transform. From these features, a network image like the
one shown in Fig. 8 is produced. Presence or absence of atypical
pigment network is decided by means of a logistic model tree fed
by statistics extracted from the network image. We implemented
another algorithm to generate the network image, based also on
mathematical morphology. The method consists in finding seg-
ments in the image, in a similar way to the first stage of the hair
removal algorithm described in Section 4. A network image exam-
ple obtained with this method is shown in Fig. 9. Not surprisingly,
results are satisfactory because this algorithm tries to identify im-
age segments that approximate the structure of the network.

7.3. Irregular pigmentation

We consider an approach to atypical pigmentation detection
based on three detectors of asymmetric blotches (or structureless
areas), adapted from (Stoecker et al., 2005; Pellacani et al., 2003).
Several modifications were introduced. While in their work the
authors calculate geometric features of the blotches found to char-
acterize lesion malignancy, our aim is slightly more ambitious as



Fig. 6. Left: original image with blue-whitish veil. Right: detected blue–white veil area. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Fig. 7. Left: original image that does not present blue-whitish veil. Right: detected blue–white veil area. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

Fig. 8. Left: original image. Right: detected atypical pigmented network area.
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we focus on determining the presence or absence of irregular
pigmentation.

The binary outputs of the three classifiers (presence or absence
of irregular pigmentation) are combined for better results. The two
algorithms based on (Stoecker et al., 2005) perform structure
detection by simply thresholding the red and green channels. In
one of these algorithms, each pixel within the lesion is compared
to the fixed threshold. In the other one, the difference between
the color of lesion pixels and the outer skin color is considered.
The third detector is based on (Pellacani et al., 2003), which only
uses gray level images, and detects dark areas by simply threshold-
ing the gray level; we defined the threshold value by choosing the
value that maximized the classification performance (presence or
absence of irregular pigmentation) when ran on the entire labeled



Fig. 9. Left: Original image. Right: network image obtained with the proposed mathematical morphology-based algorithm.

Fig. 10. Example of lesion presenting irregular pigmentation, that is correctly
detected.

Fig. 11. Two lesions that are not well suited for detection with the proposed
algorithm. Top: irregular pigmentation with low contrast. Bottom: dark lesion that
does not present irregular pigmentation.
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database. In all three binary classifiers, pigmentation is typified as
atypical if any of the two following conditions on the largest
detected connected component hold: (i) its area exceeds half the
lesion size; (ii) its area falls within the range of 10% to 50% of the
lesion size, and the distance between its barycenter and the
lesion’s barycenter is larger than 20% of the lesion diameter. Using
this criteria, each of the classifiers provide a yes/no answer to the
presence of irregular pigmentation. Then, the three classifiers are
combined using Adaboost. Performance evaluation of irregular pig-
mentation detection, on the entire database, gave an AUC of 0.66.

Fig. 10 shows a lesion that is well suited for the detection algo-
rithm described above. The main difficulties in characterizing atyp-
icality, that are not taken into account by the three classifiers
described above, are the existence of irregular pigmentation which
is not dark enough (Fig. 11, top), and on the contrary, quite dark
lesions with no irregular pigmentation (Fig. 11, bottom). We are
currently working on these problems, and investigating new algo-
rithms, such as (Madasu and Lovell, 2009; Heckbert, 1982; Di-Leo
et al., 2010).

8. Conclusions and future work

In this work we presented a machine learning approach to clas-
sify melanocytic lesions from dermatoscopic images. Feature
extraction is inspired from popular dermoscopic algorithms de-
scribed in the medical literature. The use of machine learning tech-
niques allows to overcome major limitations of dermoscopy
algorithms, namely ad hoc choices of weights and thresholds in-
volved in the decision process. The learning and classification
stages are performed using AdaBoost with C4.5 decision trees.
Using automatically segmented images, we obtained a specificity
of 77% for a sensitivity of 90%, and an AUC of 0.921. It seems also,
from the comparison of the results obtained from manually seg-
mented lesions (specificity of 85% for a sensitivity of 90%, AUC of
0.937), that errors in automatic segmentation have an important
impact and should be reduced. As pointed out earlier, this is a hard
problem since many melanocytic lesions show highly diffuse con-
tours. Note, however, that nothing prevents us to manually seg-
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ment the training database, and to propose to the user, for each
new lesion, the choice of candidate segmentations.

Results of the proposed approach are promising and seem to be
superior than those reported in the literature. However, perfor-
mance evaluation is delicate because all reported results were ob-
tained using different databases and different validation strategies.
At this point, construction of a large database of dermatoscopic
images that could be used as reference testbed appears to be a fun-
damental issue.

Concerning our algorithm, to further improve its performance,
methods to detect a larger number of geometry or texture based
structures, similar to those used in the 7 points checklist, should
be developed. Because of their strong discriminative power, we
are confident that the inclusion of these patterns information in
the classification framework will boost the performance. The
detection of dermoscopic patterns is ongoing research; a prelimin-
ary study was presented here. The next step will be to design a
classifier based on the detection of these structures.

Note that, contrarily to the classifier based on asymmetry, color/
texture and border irregularities proposed in the previous sections,
the information related to dermoscopic patterns cannot be directly
used for melanoma detection. Indeed, the presence of all the
patterns is not systematic to every melanoma. This suggest that a
separate classifier should be designed for the dermatoscopic struc-
tures-based approach, and both results have to be presented to the
clinician for further diagnosis. Hopefully this combination strategy
will be implemented in future versions. To our knowledge, such a
combined framework for automatic melanocytic lesion classifica-
tion has not been proposed yet.

Another interesting related line of research is the characteriza-
tion of the discriminative power of the considered features. This
can be obtained by means of automatic feature selection strategies
like the ones that were mentioned here. A rigorous study of this to-
pic, complemented with the comparison of the weights assigned to
visual features in the ABCD and other clinical diagnosis rules, may
yield useful recommendations to dermatologist for their medical
practice. As evidenced by an exhaustive exploration of the medical
literature, the choice of weights and thresholds involved in the der-
moscopy algorithms is far from being a solved issue.
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