Máquinas de Vectores de Soporte Support Vector Machines (SVM)

Reconocimiento de Patrones

Departamento de Procesamiento de Señales Instituto de Ingeniería Eléctrica Facultad de Ingeniería, UdelaR

2018

Motivación

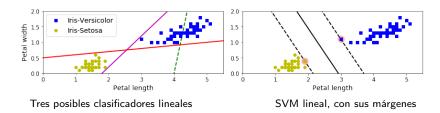
Limitantes del perceptrón:

- Sólo contempla el caso linealmente separable
- No hay unicidad de la solución

Limitantes de los métodos de Kernel:

- En training: irrealizable si se requiere evaluar $k(\mathbf{x}_n, \mathbf{x}_m)$ para todo par de muestras de entrenamiento
- En testing o clasificación de nuevo \mathbf{x} : costo computacional de evaluar $k(\mathbf{x}, \mathbf{x}_n)$ para todo \mathbf{x}_n de entrenamiento puede ser excesivo.

Motivación Caso linealmente separable

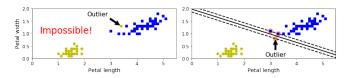


Clasificador SVM: hiperplano separador más distante de las muestras de entrenamiento.

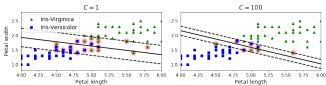
- Intuición: generaliza mejor.
- Agregar muestras fuera de los márgenes no afecta la frontera de decisión. Completamente determinada por las muestras que soportan los márgenes (vectores de soporte, SV).

Motivación Caso NO linealmente separable

SVM lineal: ¿Qué ocurre en el ejemplo anterior si hay outliers?



Solución: permitirnos ampliar el margen a costa de admitir algunas muestras mal clasificadas \Rightarrow soft margin SVM.



C-SVM. El parámetro C controla el trade off margen vs. muestras mal clasificadas

Motivación SVM no lineal, kernels, kernel trick

Agregando características no lineales se puede llegar a transformar un problema no linealmente separable en uno linealmente separable.

Kernel polinómico

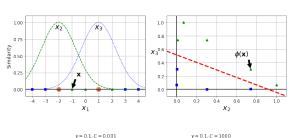
Ejemplo: $\phi(x_1,x_2) = [1,\sqrt{2}x_1,\sqrt{2}x_2,x_1^2,x_2^2,\sqrt{2}x_1x_2]^T.$

Kernel Trick: $k(\mathbf{x}, \mathbf{x}') = \phi(\mathbf{x})^T \phi(\mathbf{x}') = (1 + \mathbf{x}^T \mathbf{x}')^2$. Kernel polinómico de orden 2.

Kernel RBF Gaussiano

ldea: agregar características calculadas con una función de similitud que mida cuan parecida es una instancia a un landmark particular: $k(\mathbf{x},\mathbf{x}') = \mathrm{e}^{-\gamma \|\mathbf{x} - \mathbf{x}'\|^2}.$

- Landmarks: se suelen tomar todas las muestras
- $\phi(\mathbf{x})$ mapea a un espacio de dim. infinita (Taylor de $\exp(\cdot)$).



Agenda

- Resumiendo:
 - SVM busca el hiperplano separador (en el espacio transformado) que maximiza el margen
 - SVM permite contemplar el caso no linealmente separable
 - SVM permite controlar trade-off entre margen y errores en training
- Veremos que:
 - Parámetros: se determinan resolviendo un problema convexo
 - Clasificación de nuevas muestras x: depende sólo de los $k(x, x_n)$ con x_n SV (subconjunto muy reducido de muestras)
- Discutiremos qué sucede con SVM y la maldición de la dimensionalidad

Problema de dos clases

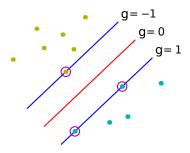
- $\{(\mathbf{x}_1,t_1),(\mathbf{x}_2,t_2),\ldots,(\mathbf{x}_N,t_N)\}$ conjunto de entrenamiento, $\mathbf{x}_n \in \mathcal{X}$ espacio de características, $t_n \in \{-1,+1\}$ etiqueta de clase.
- $\phi: \mathcal{X} \to \mathcal{Y}$ mapeo no lineal a un espacio de dimensión mayor, $\dim(\mathcal{Y}) > \dim(\mathcal{X})$.
- Superficie de decisión: $g(\mathbf{x}) = \mathbf{w}^T \phi(\mathbf{x}) + b, \ \mathcal{S} = \{\mathbf{x}: \ g(\mathbf{x}) = 0\}.$ En el espacio \mathcal{Y} : hiperplano de normal $\frac{\mathbf{w}}{\|\mathbf{w}\|}$ y sesgo $\frac{-b}{\|\mathbf{w}\|}$.
- Clasificación: nueva muestra \mathbf{x} se clasifica según $\operatorname{signo}(g(\mathbf{x}))$.

Conjunto de aprendizaje linealmente separables

Problema linealmente separable \Rightarrow Existe al menos un par (\mathbf{w},b) para el cual todas las muestras están bien clasificadas, i.e.

$$\forall n = 1, \dots, N, \ t_n g(\mathbf{x}_n) > 0.$$

SVM: entre los (\mathbf{w},b) posibles, elegir aquél que corresponde al hiperplano separador de margen máximo.



Clasificador de máximo margen

¿Por qué? Maximizar el margen minimiza el error de generalización del clasificador (es intuitivo y se puede demostrar [Vapnik, 1996])

Tenemos:

- Distancia de un punto $\mathbf{y} = \phi(\mathbf{x})$ al plano $\{g(\mathbf{x}) = 0\}$: $\frac{|g(\mathbf{x})|}{||w||}$.
- Caso linealmente separable ⇒ para cualquier hiperplano separador,

$$|g(\mathbf{x}_n)| = t_n g(\mathbf{x}_n), \quad n = 1, \dots, N.$$

⇒ Solución de máximo margen:

$$(P) \qquad \max_{\mathbf{w}, b} \min_{n \in \{1, \dots, N\}} \left\{ \frac{t_n \left(\mathbf{w}^T \phi(\mathbf{x}_n) + b \right)}{\|\mathbf{w}\|} \right\}$$

Optimización del clasificador de máximo margen

- (P) problema de optimización complejo.
- Se puede transformar en un problema equivalente (P') sencillo de optimizar, observando que $f_n(\mathbf{w},b) = \frac{t_n(\mathbf{w}^T\phi(\mathbf{x}_n)+b)}{\|\mathbf{w}\|}$ es invariante ante escalados:

$$\forall \lambda > 0, f_n(\lambda \mathbf{w}, \lambda b) = f_n(\mathbf{w}, b).$$

- \Rightarrow Podemos re-escalar para que $t_k(\mathbf{w}^T\phi(\mathbf{x}_k)+b)=1$ para el (o los) \mathbf{x}_k que realizan el margen.
- ⇒ Con esa normalización,

$$\forall n = 1, \dots, N, t_n(\mathbf{w}^T \phi(\mathbf{x}_n) + b) \ge 1.$$

Optimización del clasificador de máximo margen

Problema equivalente para clasificador de máximo margen:

$$(P') \qquad \left\{ \begin{array}{l} \min_{\mathbf{w},b} \frac{1}{2} \|\mathbf{w}\|^2 \\ \text{sujeto a } t_n(\mathbf{w}^T \phi(\mathbf{x}_n) + b) \ge 1, \quad n = 1, \dots, N. \end{array} \right.$$

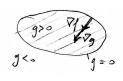
Puntos activos/inactivos:

si
$$t_n(\mathbf{w}^T \phi(\mathbf{x}_n) + b)$$
 $\begin{cases} = 1 & \mathbf{x}_n \text{ punto activo} \\ > 1 & \mathbf{x}_n \text{ punto inactivo}. \end{cases}$

Al maximizar el margen habrá al menos dos puntos activos.

- (P') es un problema de programación cuadrática fácil de resolver (e.g. solvers de Matlab, CVX, etc).
- (P') (problema primal) admite una formulación aún más sencilla (problema dual) via las condiciones de KKT.

Paréntesis: condiciones de Karush-Kuhn-Tucker



Consideramos el problema
$$\left\{ \begin{array}{l} \min f(\mathbf{x}) \\ \text{s.t. } g(\mathbf{x}) \geq 0 \end{array} \right.$$

Dos posibilidades para la solución:

- ① $\mathbf{x} \in \{g > 0\}$: entonces \mathbf{x} mínimo local de $f \Rightarrow \nabla f(\mathbf{x}) = 0$.
- ① $\mathbf{x} \in \{g=0\}$: entonces debe ser $\nabla f(\mathbf{x}) \perp \{g=0\}$, de lo contrario existiría $\mathbf{x}' \in \{g=0\}$ vecino de \mathbf{x} con $f(\mathbf{x}') < f(\mathbf{x})$.
 - Como $\nabla g(\mathbf{x}) \perp \{g = 0\}, \; \exists \lambda \neq 0 \; \text{t.q.} \; \nabla f(\mathbf{x}) = \lambda \nabla g(\mathbf{x}).$
 - Además debe ser $\lambda > 0$, de lo contrario existiría $\mathbf{x}' \in \{g > 0\}$ vecino de \mathbf{x} con $f(\mathbf{x}') < f(\mathbf{x})$.

Paréntesis: condiciones de Karush-Kuhn-Tucker

- Definimos el Lagrangeano $\mathcal{L}(\mathbf{x}, \lambda) = f(\mathbf{x}) \lambda g(\mathbf{x})$.
- Las dos situaciones de solución se resumen en una única (KKT):

$$\frac{\partial \mathcal{L}}{\partial \mathbf{x}} = 0, \quad \lambda \ge 0, \quad \lambda g(\mathbf{x}) = 0$$

• Obs.1: La solución $(\mathbf{x}^*, \lambda^*)$ es un punto silla de $\mathcal{L}(\mathbf{x}, \lambda)$:

$$\forall \ (\mathbf{x}, \lambda), \quad \mathcal{L}(\mathbf{x}^*, \lambda) \leq \mathcal{L}(\mathbf{x}^*, \lambda^*) \leq \mathcal{L}(\mathbf{x}, \lambda^*).$$

Ejercicio Demostrar

Obs.2: De Obs.1, la optimización correspondiente es

$$(\mathbf{x}^*, \lambda^*) = \arg\min_{\mathbf{x}} \max_{\lambda > 0} \mathcal{L}(\mathbf{x}, \lambda).$$

Vuelta al clasificador de máximo margen (caso separable)

$$\text{Teníamos } (P') \quad \left\{ \begin{array}{l} \min_{\mathbf{w},b} \frac{1}{2} \|\mathbf{w}\|^2 \\ \text{sujeto a } t_n(\mathbf{w}^T \phi(\mathbf{x}_n) + b) \geq 1, \quad n = 1, \dots, N. \end{array} \right.$$

Llamamos $\mathbf{a} = (a_1, a_2, \dots, a_N)$ a los multiplicadores de Lagrange:

$$\mathcal{L}(\mathbf{w}, b, \mathbf{a}) = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{n=1}^{N} a_n \left(t_n(\mathbf{w}^T \phi(\mathbf{x}_n) + b) - 1 \right).$$

$$\frac{\partial \mathcal{L}}{\partial \mathbf{w}} = 0 \Rightarrow \boxed{\mathbf{w} = \sum_{n=1}^{N} a_n t_n \phi(\mathbf{x}_n)} (*) \quad \frac{\partial \mathcal{L}}{\partial b} = 0 \Rightarrow \boxed{\sum_{n=1}^{N} a_n t_n = 0} (**)$$

$$\stackrel{(*),(**)}{\Longrightarrow} \mathcal{L}(\mathbf{w},b,\mathbf{a}) = \tilde{\mathcal{L}}(\mathbf{a}) = \sum_{n=1}^{N} a_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_n a_m t_n t_m \underbrace{\phi^T(\mathbf{x}_n) \phi^{(\mathbf{x}_m)}}_{b(\mathbf{x}_m)}$$

Optimización del clasificador de máximo margen (separable)

El nuevo problema equivalente (llamado problema dual porque involucra sólo a los multiplicadores) queda:

$$(D') \qquad \left\{ \begin{array}{l} \max_{\mathbf{a}} \tilde{\mathcal{L}}(\mathbf{a}) \\ \text{sujeto a } \sum_{n=1}^{N} a_n t_n = 0, \quad a_n \ge 0, \quad n = 1, \dots, N. \end{array} \right.$$

Problema de programación cuadrática más sencillo (involucra únicamente a los multiplicadores)

Clasificador de máximo margen (caso separable)

- Clasificación de nueva muestra \mathbf{x} : se evalúa el signo de $g(\mathbf{x}) = \mathbf{w}^T \phi(\mathbf{x}_n) + b \stackrel{(*)}{=} \sum_{n=1}^N a_n t_n k(\mathbf{x}_n, \mathbf{x}) + b$ (veremos luego cómo calcular el sesgo b).
- Vectores de soporte: De las condiciones KKT, $a_n \ge 0$, $t_n g(\mathbf{x}_n) 1 = 0$, $a_n (t_n g(\mathbf{x}_n) 1) = 0$.
 - ⇒ Dos tipos de muestra:
 - ① $a_n=0 \to \text{No}$ influyen en la clasificación de una nueva muestra: $g(\mathbf{x})=\sum_{a_n\neq 0}a_nt_nk(\mathbf{x}_n,\mathbf{x})+b$
 - ① $t_n g(\mathbf{x}_n) = 1 \rightarrow$ muestras que caen sobre los hiperplanos de máximo margen. Se llaman **vectores de soporte (SV)**.

Clasificador de máximo margen (caso separable)

- Obs. 1: en general $\#SV \ll N \Rightarrow$ etapa de testing rápida.
- Obs. 2: $g(\mathbf{x}) = \sum_{\mathbf{x}_n SV} a_n t_n k(\mathbf{x}_n, \mathbf{x}) + b$ es un promedio ponderado (y con signo) de cuán similar es la muestra \mathbf{x} a los SV. La decisión se toma según $\operatorname{signo}(g(\mathbf{x}))$.
- ¿Cuánto vale el *bias b*? Ejercicio Usando la def. de SV, mostrar que

$$b = \frac{1}{\#SV} \sum_{\mathbf{x}_n SV} \left(t_n - \sum_{\mathbf{x}_m SV} a_m t_m k(\mathbf{x}_n, \mathbf{x}_m) \right).$$

Ejemplo XOR

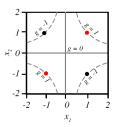
Ejercicio Queremos diseñar un clasificador para el problema XOR, en donde los puntos (-1,-1) y (1,1) son de la clase ω_1 , y (-1,1) y (1,-1) son de la clase ω_2 .

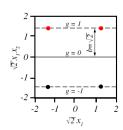
- Considerando el mapeo $\phi: \mathbb{R}^2 \to \mathbb{R}^6$, $\mathbf{y} = \phi(x_1, x_2) = [1, \sqrt{2}x_1, \sqrt{2}x_2, \sqrt{2}x_1x_2, x_1^2, x_2^2]^T$, demostrar que el problema se vuelve separable en el espacio transformado.
- Diseñar un clasificador de máximo margen para el problem.
- Especificar los hiperplanos (separador, y de márgenes) y el margen.

Ejemplo XOR

$$\text{Maximizar: } \tilde{\mathcal{L}}(\mathbf{a}) = \sum_{n=1}^4 a_k - \frac{1}{2} \sum_{n=1}^4 \sum_{m=1}^4 a_n a_m t_n t_m \underbrace{(\mathbf{x}_n^T \mathbf{x}_m + 1)^2}_{\text{Kernel pol. orden 2}},$$

- sujeto a: $a_1 a_2 + a_3 a_4 = 0$, $a_n \ge 0$, $n \in \{1, 2, 3, 4\}$.
- La solución es $a_1 = a_2 = a_3 = a_4 = 1/8$ y $b = \sqrt{2}$.
- La función discriminante es $g(x) = x_1x_2$.



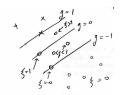


Caso no separable linealmente

Idea: modificar la formulación anterior para autorizar algunos puntos mal clasificados en entrenamiento.

Obs.: Definiendo una penalización para los errores, habrá un compromiso entre mayor margen (mejor generalización) y mayor cantidad de errores en entrenamiento.

Penalización:
$$\xi_n = \left\{ egin{array}{ll} 0 & {
m si} \ {f x}_n \ {
m bien} \ {
m clasificado} \\ |t_n - g({f x}_n)| & {
m si} \ {
m no} \end{array} \right.$$



- Puntos en la frontera: $g(\mathbf{x}_n) = 0 \Rightarrow \xi_n = 1$
- Puntos mal clasificados: $\xi_n > 1$

Caso no separable linealmente: C-SVM

Remplazamos la condición de clasificación perfecta (hard margin):

$$t_n(\mathbf{w}^T\phi(\mathbf{x}_n) + b) \ge 1, \quad n = 1, \dots, N$$

por la condición relajada (soft margin):

$$t_n(\mathbf{w}^T\phi(\mathbf{x}_n) + b) \ge 1 - \xi_n, \quad \xi_n \ge 0, \quad n = 1, \dots, N$$

Objetivo: maximizar el margen penalizando errores:

$$\begin{cases} \min_{\mathbf{w},b} \left\{ \frac{1}{2} ||\mathbf{w}||^2 + C \sum_{n=1}^N \xi_n \right\}, & C > 0 \\ \text{s.t.} & \begin{cases} t_n(\mathbf{w}^T \phi(\mathbf{x}_n) + b) \ge 1 - \xi_n, \\ \xi_n \ge 0, & n = 1, \dots, N. \end{cases} \end{cases}$$

Pregunta ¿Qué representa C? $C \uparrow +\infty$?, $C \downarrow 0$?

Optimización de C-SVM

Ejercicio

- Escribir el Lagrangeano para C-SVM, en función de \mathbf{w}, b y los multiplicadores a y $\boldsymbol{\mu}$.
- Escribir las condiciones de optimalidad y KKT.
- Demostrar que el Lagrangeano del problema dual es

$$\tilde{\mathcal{L}}(\mathbf{a}) = \sum_{n=1}^{N} a_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_n a_m t_n t_m k(\mathbf{x}_n, \mathbf{x}_m),$$

y que el problema dual es

$$\left\{ \begin{array}{l} \max_{\mathbf{a}} \tilde{\mathcal{L}}(\mathbf{a}) \ \ \text{sujeto a} \\ \sum_{n=1}^N a_n t_n = 0, \\ 0 \leq a_n \leq C, \quad \mu_n = C - a_n, \quad n = 1, \dots, N. \end{array} \right.$$

C-SVM

• Clasificación de una nueva muestra x: se evalúa el signo de

$$g(\mathbf{x}) = \sum_{n=1}^{N} a_n t_n k(\mathbf{x}_n, \mathbf{x}) + b.$$

- Vectores de soporte: verifican $a_n > 0$, $t_n g(\mathbf{x}_n) = 1 \xi_n$. Dos casos:
 - (a) $a_n < C \Rightarrow \mu_n > 0 \stackrel{\mu_n \xi_n = 0 \text{(KKT)}}{\Longrightarrow} \xi_n = 0$: SV del lado correcto, fuera del margen

C-SVM

• Bias b: SV: $0 < a_n < C \Rightarrow \xi_n = 0 \Rightarrow t_n g(\mathbf{x}_n) = 1$. Idem que para hard margin,

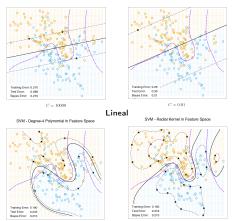
$$b = \frac{1}{\#SV} \sum_{\mathbf{x}_n SV} \left(t_n - \sum_{\mathbf{x}_m SV} a_m t_m k(\mathbf{x}_n, \mathbf{x}_m) \right),$$

con
$$SV = \{ \mathbf{x}_n : 0 < a_n < C, n = 1, ..., N \}.$$

 Elección de parámetros: usualmente C, la elección del kernel y sus parámetros se estiman conjuntamente usando Grid Search y validación cruzada, sobre el conjunto de entrenamiento.

C-SVM

Ejemplo: Cada clase es una mezcla de 10 gaussianas de baja varianza, cuyas medias siguen una distribución gaussiana.



Polinomial (orden 4) y RBF ($\gamma=1$). En ambos casos C ajustado por validación cruzada.

Extensión multi-clase

No hay una única forma de extender SVM.

- ① Uno contra el resto: M clasificadores binarios, una clase y el resto para cada clase, $g^j(\mathbf{x}) = \mathbf{w}^{jT}\mathbf{x} + w^j_0, j=1,...,c$. Luego una muestra nueva \mathbf{x} se asigna a la clase con mayor discriminante, $\arg\max_{j=1,...,c}g^j(\mathbf{x})$. Poco simétrico o balanceado. Regiones indefinidas.
- ② Clasificación por pares: se consideran los c(c-1)/2 pares de clases, y para cada una se diseña un clasificador. Nueva muestra: se pasa por todos los clasificadores, y se asigna a la clase más votada. Hay que resolver más problemas, pero con menos muestras. Regiones indefinidas.
- **③** Error Correcting Output Coding: se generan $L = \log_2 c$ particiones binarias del conjunto de clases. A cada clase le corresponde un único código binario $\mathbf{d} = (d_1, d_2, \dots, d_L) \in \{-1, 1\}^L$. Para cada partición se entrena un clasificador g^1, \dots, g^L . Clasificación de nueva muestra \mathbf{x} : a la clase más cercana a $(\operatorname{sgn}(g^1(\mathbf{x})), \dots, \operatorname{sgn}(g^L(\mathbf{x})))$ en distancia de Hamming.

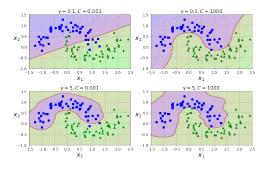
Viendo que en SVM la frontera de decisión queda determinada por los SV (y que $\#SV \ll N$), tiene sentido preguntarse si este método tiene alguna ventaja al respecto.

Observación 1:
$$k(\mathbf{x}, \mathbf{x}') = (1 + \mathbf{x}^T \mathbf{x}')^d$$
, con $\mathbf{x}, \mathbf{x}' \in \mathbb{R}^p$

- Todo los términos tienen pesos fijos, por lo que el kernel no tiene total libertad para concentrarse en subespacios.
- Si la separación lineal se da, por ejemplo, en el subespacio lineal definido por las dos primeras coordenadas, el kernel tendrá dificultad en encontrar la estructura.
- Cuanto mayor p, más compleja la búsqueda de la estructura, y más muestras se precisan.
- Ver ejemplo numérico en Hastie et al., sección 12.3.4.

Observación 2: $k(\mathbf{x}, \mathbf{x}') = e^{-\gamma ||\mathbf{x} - \mathbf{x}'||^2}$

- Si $\gamma \to +\infty$, $\mathbf{K} = [k(\mathbf{x}_n, \mathbf{x}_m)]_{i,j=1}^N \to Id \Rightarrow$ Las muestras de entrenamiento sólo son consideradas similares a ellas mismas \Rightarrow Overfitting, mala generalización, frontera irregular.
- Si $\gamma \to 0$, entonces $\forall \mathbf{x}, \mathbf{x}', \ k(\mathbf{x}, \mathbf{x}') \to 1 \Rightarrow$ Efecto regularizador, underfitting, frontera regular.



Observación 3: margen, generalización, rol de la dimensión

Dimensión de Vapnik-Chervonenkis (VC) (capacidad de un modelo)

- Un modelo de clasificación f con parámetro θ , se dice que separa el conjunto $\{x_1, x_2, \ldots, x_n\}$ si para todas las asignaciones de etiquetas binarias, existe un θ que clasifica sin error.
- La dimensión VC de f definido sobre el espacio X es el cardinal del mayor subconjunto de X que puede ser separado por f.
- Ejemplos: $VC(\text{rectas en } \mathbb{R}^2) = 3;$ $VC(\text{hiperplanos en } \mathbb{R}^d) = d+1;$ $VC(\{\text{sgn}(\sin \omega x), \ \omega > 0\}) = +\infty; \ VC(1\text{-KNN}) = +\infty$

Observación 3 (cont.)

Riesgo empírico, riesgo verdadero

- $-f: X \mapsto \{-1, 1\}, f(\mathbf{x}) = \text{sgn}(g(\mathbf{x})).$
- $\{(\mathbf{x}_n,t_n),n=1,\ldots,N,t_n\in\{-1,1\}\}$ muestras etiquetadas.
- Costo 0-1: $\frac{1}{2}|f(\mathbf{x}_n)-t_n|$.
 - Riesgo empírico o error promedio de training:

$$R_{emp}[f] = \frac{1}{N} \sum_{n=1}^{N} \frac{1}{2} |f(\mathbf{x}_n) - t_n|.$$

• Riesgo (verdadero): $R[f] = \int \frac{1}{2} |f(\mathbf{x}) - t_n| dP(\mathbf{x}, t)$.

Cómo se vinculan $R_{emp}[f]$, R[f] y la dimensión VC??

Observación 3 (cont.)

Cota de Vapnik-Chervonenkis

Con probabilidad $\geq 1 - \delta$,

$$R[f] \leq R_{emp}[f] + \underbrace{\sqrt{\frac{1}{N} \left(h \left(\ln \left(\frac{2N}{h} \right) + 1 \right) + \ln \left(\frac{4}{\delta} \right) \right)}}_{\text{término de capacidad}}.$$

- Cuando $N \to +\infty$, $R[f] \to R_{emp}[f]$.
- h baja \Rightarrow reduce el término de capacidad.
- Pero: si h demasiado baja \Rightarrow difícil reducir $R_{emp}[f]$.

Observación 3 (cont.)

- Recordemos que $VC(\text{hiperplanos en } \mathbb{R}^d) = d+1.$
- Un resultado fundamental: se demuestra que, si R radio es de la esfera más pequeña que contiene los datos, Indep. de d, VC(hiperplanos de margen ρ) $\leq \frac{R^2}{\rho^2} + 1$.

⇒ Conclusión: maximizar el margen es una forma de controlar la "maldición de la capacidad" al trabajar en espacios de muy alta dimensión.

Observación 4: SVM como método de regularización L^2

Consideremos el problema de regresión

$$(\mathcal{P}): \min_{\mathbf{w},b} \sum_{n=1}^{N} [1 - t_n g(\mathbf{x}_n)]_+ + \frac{\lambda}{2} ||\mathbf{w}||^2, \quad \text{con } [x]_+ = \max\{0, x\}$$

 $(L(t_n, g(\mathbf{x}_n)) = [1 - t_n g(\mathbf{x}_n)]_+$ se conoce como hinge loss function).

Observación: la solución de (\mathcal{P}) , con $\lambda = \frac{1}{C}$, es la solución del problema C-SVM.

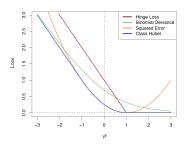
⇒ Conclusión: C-SVM es un ajuste a datos con regularización:

- La regularización es equivalente a maximizar el margen
- ullet Cuanto mayor λ (i.e. menor C), más regular será la solución.

Vínculo de SVM con otros métodos de clasificación

Consideremos ahora la siguiente familia de métodos de clasificación lineal $(f(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b)$ con regularización por $\|\mathbf{w}\|_2^2$:

$$\min_{\mathbf{w},b} \sum_{n=1}^{N} L(t_n, f(\mathbf{x}_n)) + \frac{\lambda}{2} ||\mathbf{w}||^2.$$



Loss Function	L[y, f(x)]	Minimizing Function
Binomial Deviance Logistic Regression	$\log[1 + e^{-yf(x)}]$	$f(x) = \log \frac{\Pr(Y = +1 x)}{\Pr(Y = -1 x)}$
SVM Hinge Loss SVM	$[1 - yf(x)]_{+}$	$f(x) = \text{sign}[\Pr(Y = +1 x) - \frac{1}{2}]$
Squared Error	$[y - f(x)]^2 = [1 - yf(x)]^2$	$f(x) = 2\Pr(Y = +1 x) - 1$
"Huberised" Square Hinge Loss	-4yf(x), $yf(x) < -1[1 - yf(x)]_+^2 otherwise$	$f(x) = 2\Pr(Y = +1 x) - 1$