
IEEE TRANSACTIONS ON NEURAL NETWORKS. VOL. 2, NO. 2, MARCH 1991 . - 318

121
r31

141

t51

[61

171

181

r91

0. Hebb, The Organization of Behavior.
F. Rosenblatt, “A bibliography of perceptron literature, ” in Collected
Technical Papers, vol. 2, Cognitive Systems Research Program, Re-
port no. 4, Cornell University, July 1963.
F. Rosenblatt, Principles of Neurodynamics. East Lansing, MI:
Spartan Books, 1962.
M. Minsky and S . Papert, Perceptrons, an Introduction to Computa-
tional Geometry. Cambridge, MA: MIT Press, 1st ed. 1969, ex-
panded ed., 1988.
F. Rosenblatt, “Perceptual generalization over transformation
groups,” in Selforganizing Systems, (Yovits and Cameron, Eds.)
Elmsford, NY: Pergamon Press, 1960.
F. Rosenblatt, A Model for Experiential Storage in Neural Networks
(Computer and Information Sciences, Tou and Wilcox, Eds.). East
Lansing, MI: Spartan Books, 1964.
T. H. Barker, “A computer program for simulation of perceptrons and
similar neural networks. Cognitive Systems Research Program, Report
no. 8, Cornell University, July 1966.
H. C. Hay and C. W. Wightman, “The Mark I perceptron, design and
performance,” in IRE Nat. Convention Rec., part 2, 1960.

New York: Wiley, 1949.

Adaptive Nearest Neighbor Pattern Classification

Shlomo Geva and Joaquin Sitte

Abstract-We describe a variant of nearest neighbor pattern classi-
fication (NN) [l] and supervised learning by learning vector quanti-
zation (LVQ) [2], [3]. The decision surface mapping method, which we
call DSM, is a fast supervised learning algorithm, and is a member of
the LVQ family of algorithms, A relatively small number of prototypes
are selected from a training set of correctly classified samples. The
training set is then used to adapt these prototypes to map the decision
surface separating the classes. This algorithm is compared with NN
pattern classification, learning vector quantization (LVQl) [2], and a
two-layer perceptron trained by error backpropagation [4]. When the
class boundaries are sharply defined (i.e., no classification error in the
training set) the DSM algorithm outperforms these methods with re-
spect to error rates, learning rates, and the number of prototypes re-
quired to describe class boundaries.

I. INTRODUCTION

The nearest neighbor (NN) method assigns an unclassified sam-
ple vector to the class of the nearest of a set of correctly classified
prototypes, or codebook vectors. Cover and Hart have shown that
in a large sample, the error of this rule is bounded above by twice
the Bayes probability of error [11.

Learning vector quantization (LVQ1, LVQ2, LVQ2.1, and
LVQ3), described by Kohonen [2], [3], is a nearest neighbor clas-
sification method in which a fixed number of prototype vectors are
progressively modified to cover the input space. The LVQ family
of algorithms is concerned with optimal placement of these proto-
types, so as to reflect the probability distribution of the training
samples. The adaptive decision surface mapping (DSM) algorithm
is a variation of the LVQ method, but we have dropped the require-
ment that the prototypes reflect the probability distribution of the
classes. Instead, the algorithm adapts the prototype vectors to

Manuscript received October 5 , 1990.
The authors are with the Faculty of Information Technology, Queens-

land University of Technology, GPO Box 2434, Brisbane, Queensland,
4001 Australia.

IEEE Log Number 9042019.

closely map the decision surface separating classes. DSM is de-
scribed in detail in the next section. In Section I11 we present com-
parative results for three classification problems, which indicate a
drastic performance improvement over the LVQ and backpropa-
gation.

11. ADAPTIVE DECISION SURFACE MAPPING

The DSM algorithm starts by selecting a small subset of proto-
types from the training set. The initial prototypes are selected at
random. We have found that good results are obtained when the
proportion of prototypes from each class in the initial subset
matches the a priori probabilities of the classes, and it is indeed
the procedure commonly followed with LVQ. This information is
usually available in the training set, when random sampling is used,
or may have to be provided externally if the training set does not
reflect the a priori probabilities of the classes.

In the learning stage, the training set is used to modify the pro-
totypes in order to gradually adapt the decision surface they define
to that defined by the entire training set and reduce the classifica-
tion error rate. Samples from the training set are cyclically or ran-
domly presented for classification. When a training sample is cor-
rectly classified, that is, the training sample is of the same class as
the nearest prototype, no modifications are applied. When misclas-
sification occurs, modifications take place to apply both punish-
ment and reward.

The punishment step takes the nearest neighbor prototype, which,
in this case, is of the wrong class, and moves it away from the
training sample, along the line connecting the two vectors

Gw(r + 1) = Gw(r) - a(?)[:(?) - G w (r)]

The reward step searches for the nearest correct prototype and
moves it towards the training sample, along the line connecting the
two vectors

G C (t + 1) = Gc(r) + a(t) [x ’ (r) - G J r)] .

The term a is a scalar gain factor, monotonically decreasing with
time. For the cases discussed below, we have found that very good
results are obtained when a starts from a value of 0.3 or less, and
linearly decreases to 0, at a rate consistent with the desired training
limit (number of presentations). The algorithm is not very sensitive
to initial values of a, but if alpha starts too small, training takes
longer.

In the earlier stages of the training process a is relatively large;
therefore the process is allowed to rapidly modify prototypes to
remove large classification errors caused by the initial conditions.
In later stages, as a decreases, a more refined adaptation takes place
to correct smaller classification errors or to arrive at a compromise
configuration where errors are minimized.

The algorithm modifies prototypes only on misclassification, and
since errors are more likely to occur with samples near class bound-
aries, it rearranges prototypes, in pairs, on each side of a class
boundary, to correct or at least reduce the magnitude of these er-
rors.

It is possible that a configuration eliminating all classification
errors on the training set could be amved at before a reaches a
value of 0. In that instance training is complete.

DSM is different from all the variants of LVQ. In LVQl modi-
fications are applied at each presentation, either to punish an in-
correct classification or to reward a correct one. LVQZ modifies
the nearest and next-to-nearest neighbors whenever the nearest
neighbor is of a different class, and the next nearest neighbor is of
the same class, as the training sample. Furthermore, LVQZ re-
quires the training vector to fall within a window which is deter-
mined by the relative distances of the training sample from the pro-

1045-922719 I/0300-03 I 8$O I .OO 0 199 I IEEE

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 2. NO. 2. MARCH 1991

10

8 -

6 -

4 -

2 -

0

319

-.
'

1

I . r ' b - 1 '

totypes. LVQ2.1 applies modifications upon incorrect, as well as
correct, classifications. Finally, LVQ3 is a combination of the ear-
lier LVQ algorithms.

111. EXPERIMENTAL RESULTS

To demonstrate the performance of the DSM algorithm we have
conducted experiments with three classification problems with dif-
ferent degrees of complexity, all with nonlinearly separable classes.
The problems involve the classification of two-dimensional real
valued vectors, taken from within a rectangle. The classes were
defined by partitioning the rectangles into several disjoint regions.

For each of the problems we have used a training set of 6400
samples and a test set of 6400 samples, all taken at random. All
the comparisons are related to the same training set, initial condi-
tions, and test set. We compare the performance of DSM, LVQ1,
NN, and a two-layer perceptron trained by backpropagation. It turns
out that DSM not only out performs the other methods, but also is
the only method that produces results that are consistently better
than NN and at the same time is the most economical.

Because LVQ1, backpropagation, and DSM are based on ran-
dom processes, we have repeated each experiment many times and
averaged the results.

A . Straight Line Class Boundaries

The classification problem here is adapted from Hart [5] , and is
depicted in Fig. 1 . We have tested DSM, NN, LVQ1, and a two-
layer perceptron, trained by backpropagation, with varying num-
bers of prototypes/nodes. The nearest neighbor classification error
produced by the training set, when used to classify the test set, was
1.14%. The error rates for the other methods are summarized in
Table I.

Fig. 1 shows a set of 24 random prototypes which were used to
initiate both DSM and LVQ1. Figs. 2 and 3 show the final config-
urations amved at by LVQl and DSM respectively. LVQl tends
to generate a uniform spread of prototypes within class boundaries.
The error rate for this configuration is 3.06%. DSM, on the other
hand, tends to locally rearrange prototypes so as to follow the de-
cision surface on either side. It does not modify prototypes well
inside a class distribution, only those in the vicinity of the class
boundary. The prototypes' spread is therefore nonuniform, and in-
spection of Figs. 1 and 3 reveals that DSM does not utilize all 24
prototypes; yet it produces significantly better results. The error
rate for the DSM configuration is 0.41 % , significantly better than
the NN error rate of 1.14%.

This classification problem has a family of perfect solutions
which require only ten prototypes. One such solution is depicted
in Fig. 4 . When DSM was initialized with ten randomly selected
prototypes, it produced this very configuration consistently, and an
average error rate of 0.43%. LVQl produced poor results (12.34%
error), while backpropagation used with a perceptron having ten
nodes in the hidden layer produced reasonable results (1 .66% er-
ror), but not better than nearest neighbor.

While backpropagation training required lo00 presentations of
each training sample, LVQl and DSM were trained with only ten
presentations. It is possible that slightly better results for the per-
ceptron could be obtained by reducing the learning rate and in-
creasing the number of presentations, but the training times in-
volved were already orders of magnitude longer than those required
by DSM and LVQl .

It is also possible to reduce the number of modifications in back-
propagation, by accumulating the changes and applying them after
each epoch, but it is still a global modification affecting every
weight.

The results clearly show that DSM produces consistently better
results than LVQl and does not display the same performance deg-
radation as the number of prototypes is reduced. For this classifi-
cation problem, any configuration having fewer than ten prototypes

0 2 4 6 8 10
Fig. 1 . Straight line class boundaries. Depicted is the initial random set of
24 prototypes, which were subsequently modified by adaptive learning using
DSM and LVQl.

10 7 I

8 1 . 'I
6 -

4 - I
'1 ., ; EJ , ..
0
0 2 4 6 8 10

Fig. 2. LVQl solution: prototypes are uniformly spread within class
boundaries and follow class boundaries on either side.

TABLE I
ERROR RATES (%) PRODUCED BY DSM, LVQl, AND BACKPROPAGATION

FOR CLASSIFICATION PROBLEM 1 (CORRESPONDING NN ERROR
RATE Is 1.14%)

Number of
Prototypes DSM LVQ 1 Backpmpagation

6
8
9

10
20
24
50

250

7.14
3.82
1.86
0.43
0.45
0.41
0.49
0.79

19.00
19.55
14.64
12.34
4.44
3.06
2.51
1.84

9.42
1.53
9.27
1.66
1.53
1.38
1.56
1.55

is bound to produce some nearest neighbor classification error, re-
gardless of the size of the training set. Even with eight prototypes,
DSM produced an error rate of only 3.82 96, while LVQ 1 produced
an error rate of 19.55 %. A perceptron trained by backpropagation
produced somewhat erratic results when having a small number of
nodes at the hidden layer. Table I shows that it is sensitive to the
number of nodes, producing a good result (1.53 96 error) when eight
nodes are used and a poor result (9.27%) when nine nodes were
used. Again, it is possible that a better result is obtainable with the
perceptron, but there is no way of telling in what way parameters
should be adjusted, which is an old problem associated with back-
propagation.

r

320

6 -

4 -

2 -

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 2. NO. 2. MARCH 1991

10 -
8 -

6 -

4 -

2 -

lo 8 8

I

I '
' I

I '

Fig. 3. DSM solution: prototypes are adjusted to follow class boundaries.
Not all of the prototypes are actually utilized.

0 8
0 2 4 6 8 10

Fig. 4. A perfect solution to the problem, using only ten prototypes

B. Curved Class Boundaries

The second classification problem we have used is depicted in
Fig. 5 . It is more complicated, involves four classes, and none of
the class boundaries are straight lines. The error rate of nearest
neighbor classification by the entire training set was 1.85%. The
error rates for the other methods are summarized in Table 11.

The error rate DSM produces is significantly below that of NN,
while it is considerably more economical than LVQl for similar
error rates. Experiments with more complicated class structures and
with spaces of higher dimensionality support these results. The
performance of DSM is consistently better than that of LVQl , while
it proved impractical to simulate backpropagation with complex
problems that require large training sets and a large hidden layer,
on a sequential computer.

An additional advantage of DSM is that many training sessions
can be attempted, in a short time, to find a good solution, simply
by increasing the number of prototypes used. Backpropagation is
too slow to be repeated many times, and in any case it is not always
clear what modifications are necessary to improve the performance.
For example, backpropagation produced better results with 40 hid-
den layer neurons than it did with 50 when trained with the same
learning parameters. It is very sensitive to the initial conditions and
the shape of the error surface it minimizes, allowing it to be trapped
in false minima.

Fig. 5 shows an initial set of 50 random prototypes that were
used to initiate LVQl and DSM. Figs. 6 and 7 show the final con-
figurations arrived at by LVQl and DSM rspectively. In this par-
ticular case DSM produced an average error rate of 2.2% while
LVQ 1 produced an average error rate of 8.8 % . Inspection of Figs.
5 and 7 reveals that the DSM solution utilizes only 40 prototypes,
not 50, and yet results in considerably lower error rates than LVQl .

10

8

6

4

2

0
0 2 4 6 8 10

Fig. 5 . Curved class boundaries. Depicted is the initial random set of 50
prototypes, which were subsequently modified by adaptive learning using
DSM and LVQl .

10

8

6

4

2

0
0 2 4 6 8 10

Fig. 6. LVQl solution: prototypes are uniformly spread within class
boundaries and follow class boundaries on either side.

TABLE I1
ERROR RATES (%) PRODUCED BY DSM, LVQ1, AND BACKPROPACATION

FOR CLASSIFICATION PROBLEM 2 (CORRESPONDING NN ERROR
RATE Is 1.85 X)

Number of
Prototypes DSM LVQl Backpropagation

24 3.17 10.55 3.16
40 2.11 8.77 2.33
50 2.02 8.55 3.83

100 1.53 5.49 3.13
200 1.54 3.64 3.44

C. The Generalized XOR Problem

The third problem we have used is that of the two-dimensional
binary XOR problem, generalized to real-valued two-dimensional
vectors. The problem is depicted in Fig. 8. The results are given
in Figs. 9 and 10.

LVQl produces eratic error rates when a very small number of
prototypes are used, as Fig. 9 shows. LVQl is sensitive to the
geometry of the problem, and the classification error rate fluctuates
in the range of 2 % to 6% as the number of prototypes increases
from 5 to 32. As the number of prototypes is further increased,
LVQl performance improves gradually, with ever decreasing Ruc-
tuations. However, even with 640 prototypes the error rate is
0.95%. which is still worse than the 0.84% of NN classification.

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 2, NO. 2, MARCH 1991

..
I

1

321

I I

10

8

6

4

2

0
0 2 4 6 8 10

Fig. 7 . Prototype selection of DSM. Points are adjusted to follow class
boundaries.

1 -

class 1 class 0

class 0 class 1

O + '1

0 1
Fig. 8. Classification problem 3. A generalized two-dimensional XOR clas-

sification.

.. +

Number of prototypos
Fig. 9. LVQl error rates as a function of the number of prototypes used.

When only four prototypes are used LVQl produces an error of
0.50% and outperforms NN classification (0.84% errors). The al-
gorithm places one prototype at the center of each of the disjoint

1

0.8 - n -
o 0.6
E

0.4
b

U

0.2

..
NN I

, . I

2 33 65 96 128

Number of prototypes
Fig. 10. DSM and backpropagation error rates as a function of the number

of prototypes used.

class regions, hence the low error rate. As soon as a fifth prototype
is added, the balance is disturbed, and the region which has two
prototypes introduces a significant error (3 .38%). An additional
prototype brings the error rate to 5.91 % and it continues to fluc-
tuate up or down, depending on the geometric configurations gen-
erated by LVQ1. When 16 prototypes are used, the geometry is
again favorable. There are four prototypes in each region, which
are symmetrically placed, and the error rate drops to 1.20%. It is
useful to have an equal number of prototypes in each disjoint class
region in this particular problem, but in general one does not know
the class boundaries. LVQl produces the same results, consis-
tently, even when different sets of initial prototypes are used. This
eratic behavior is less obvious when a large number of prototypes
are used.

The behavior of DSM is somewhat similar, but at a much smaller
scale, and is due to a different cause. As Fig. 10 shows, the error
rate does fluctuate as the number of prototypes is increased from 5
to 32, but the range is now between 0.08% and 0.27%, always
smaller than the 0.84% NN classification.

To explain these fluctuations we must recall that it is possible
for DSM to use only a subset of the available prototypes to describe
the decision surface; therefore different initial configurations may
lead to different numbers of prototypes being actually used, and to
different results. In general, DSM performs better with fewer pro-
totypes, provided that the number is not too small to effectively
describe the decision surface.

As the number of prototypes is increased, the performance of
DSM degrades somewhat. With 640 prototypes it reaches 0.67%,
still better than NN. This behavior is to be expected: DSM trains
the prototypes to reduce the error rate on the training set. As pro-
totypes are added, DSM is able to find a decision surface that is
closer to the decision surface defined by the training set, and the
error rate moves toward that of NN classification. The conclusion
from this is that, provided that DSM is not initialized with too few
prototypes, it should find a configuration better than NN. This is
indeed observed in all experiments. LVQl, on the other hand, pro-
duces results that are consistently worse than NN, although it is
possible that by a careful, or lucky, choice of prototypes it will
outperform NN.

With the generalized XOR problem, as one might expect, the per-
ceptron trained with backpropagation produced good results and
outperformed NN when the number of nodes in the hidden layer
exceeded 4. However, as Fig. 10 shows, it did not outperform
DSM.

The reason that DSM is able to produce better results than NN
is the averaging out of the random fluctuations of samples in the
training set, near class boundaries.

r

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 2. NO. 2, MARCH 1991 322

IV. DISCUSSION

Kohonen, in introducing LVQl [2], suggests that “with pattern
recognition problems it is the decision surface between classes and
not the inside of the class distribution which should be described
most accurately.” Yet LVQl generates a configuration that utilizes
the prototype vectors to describe not only the decision surface, but
also the insides of class distributions. Indeed, if one is to construct
a probability function to describe the class distributions, based on
the prototype vectors, then LVQ is more appropriate than DSM.

DSM, on the other hand, is a much more effective algorithm for
describing the class boundaries. It is worth noting here that al-
though we have not compared the performance of DSM with all
the flavors of the LVQ, these do not vary much in performance [3].

DSM is concerned only with an accurate description of the class
boundaries; rather than move prototypes away from regions where
classification errors occur, it rearranges prototypes, in pairs, on
each side of the boundary to reduce the error rates. In fact, it is
because DSM is not concerned with the insides of class distribu-
tions that it is capable of mapping the decision surface more eco-
nomically. DSM “draws” prototypes from inside class distribu-
tions toward the class boundaries to produce a more accurate
description.

The results presented here show that DSM outperforms back-
propagation with respect to error rates and training times. In some
instances, e.g. the XOR problem, backpropagation does produce
competitive error rates, but not in all cases; it is certainly imprac-
tical for very complex problems, as it requires the adjustment of
many more configuration parameters and requires unrealistic train-
ing times. It is hard to predict how backpropagation will perform
on a new problem, and it typically requires a considerable effort to
fine-tune the learning parameters and perceptron structure. DSM is
much more predictable and requires no modifications for different
problems, and it is easy to find an economical DSM configuration
to outperform NN classification.

DSM shares with the LVQ’s a clear advantage over backpropa-
gation, which relates to retraining. If the decision surface changes,
DSM requires short retraining, as the performance will degrade
only in the areas where change occurred, and the existing config-
uration is a good starting point. On the other hand, a perceptron
trained by backpropagation may require complete retraining, as a
solution to one problem is not always a good starting solution to
another problem, even if it is similar. Therefore, DSM is more
suitable for dynamic, real-time classification problems.

When the decision surface to be described is smooth it requires
fewer points to describe adequately than when it is rough. Random
selection of prototypes from the training set will work well as long
as there is an adequate number of prototypes, so that even an un-
lucky initial spread of prototypes will leave sufficient numbers in
the difficult to map areas, to allow for accurate decision surface
mapping. As long as the number of prototypes we use is not so
small that it contains severe random fluctuations in the spatial
spread of prototype vectors, we can expect good results.

While we have shown that for the problems described DSM con-
sistently outperforms LVQl, it must be stressed that in cases where
the training set contains a probabilistic error, or fuzzy class bound-
aries, DSM exhibits instabilities. Our preliminary results show that
there is no clear advantage to DSM, and LVQ may even be superior
owing to its stability.

However, DSM can be used to improve a solution previously
obtained with LVQl. A classifier obtained by LVQl is used to
generate a new training set, with no probabilistic errors. With this
consistent training set DSM is once again stable and may be used.
DSM then provides an accurate description of the LVQl decision
surface and, importantly, requires substantially fewer prototypes.

REFERENCES

[l] T. M. Cover and P. E. Hart, “Nearest neighbor pattern classifica-
tion,” IEEE Trans. Inform. Theory, vol. IT-13, pp. 21-027, Jan. 1967.

[2] T Kohonen, in Self-organization and Associative Memory, 2nd ed.

[3] T. Kohonen, “Statistical pattern recognition revisited,” in Advanced
Neural Computers, R. Eckmiller, Ed.

[4] D. E. Rummelhart, G. E. Hinton, and R. J . Williams, “Learning in-
ternal representations by error propagation,” in Parallel Distribured
Processing: Explorations in the Microstructures of Cognition, vol. 1,
Foundations, D. E. Rummelhart and J . L. McClelland, Eds. Cam-
bridge, MA: MIT Press, pp. 318-362.

[5] P. E. Hart, “The condensed nearest neighbor rule,” IEEE Trans. In-
form. Theory, vol. IT-14, pp. 515-516, May 1968.

1988, pp. 199-202.

1990, pp. 137-144.

Performance and Generalization of the Classification
Figure of Merit Criterion Function

Etienne Barnard

Abstract-A new criterion function for training neural networks, in-
troduced by Hampshire and Waibel [l], is studied. It is shown that this
criterion function has some highly desirable properties. However, these
properties are not directly related to generalization (as was suggested
in [l]); it is shown that systematic improvement of generalization in-
volves a different class of modifications.

I. INTRODUCTION

The training of various neural nets can be viewed as the opti-
mization of criterion functions (also known as objective functions
or energy functions). Of these functions, by far the most popular
is the mean-square-error (MSE) criterion function, which is com-
monly used in conjuction with backpropagation [2], but an infinite
variety of other possibilties exists [3]. It has long been known that
the choice of criterion function can play an important role in the
performance of classifiers [4], and this issue has recently been the
focus of renewed attention [l], [3].

In assessing the performance of a classifier such as a neural net-
work, a number of related metrics should carefully be distinguished
from one another. Conceptually the simplest metric of performance
is the numerical vahe of the criterion function. Since training is
accomplished by optimizing this function, it is obvious to think of
the criterion function as a measure of the classifier’s performance.
However, in almost all applications the success of the classifier will
be measured not by the value of the criterion function obtained but
by the error rate of the classifier. A somewhat more relevant metric
of performance is therefore the classifier’s error rate on the training
set. In [3] it is shown that these two metrics of performance are
generally not equal and, indeed, that they can differ appreciably for
certain criterion functions. Training-set performance, on the other
hand, is also not a true measure of the value of a classifier; how
well it fares on new, unseen test data is usually the real issue. Thus,
the ability to generalize to a disjoint test set is the most important
measure of a classifier’s performance.

Manuscript received October 29, 1990.
The author is with the Department of Electronics and Computer Engi-

IEEE Log Number 904202 1.
neering, University of Pretoria, Pretoria, 0002 South Africa.

1045-923.7/91103OO-0322%01 .OO 0 1991 IEEE

