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Adaptive Nearest Neighbor Pattern Classification 

Shlomo Geva and Joaquin Sitte 

Abstract-We describe a variant of nearest neighbor pattern classi- 
fication (NN) [l] and supervised learning by learning vector quanti- 
zation (LVQ) [2], [3]. The decision surface mapping method, which we 
call DSM, is a fast supervised learning algorithm, and is a member of 
the LVQ family of algorithms, A relatively small number of prototypes 
are selected from a training set of correctly classified samples. The 
training set is then used to adapt these prototypes to map the decision 
surface separating the classes. This algorithm is compared with NN 
pattern classification, learning vector quantization (LVQl) [2], and a 
two-layer perceptron trained by error backpropagation [4]. When the 
class boundaries are sharply defined (i.e., no classification error in the 
training set) the DSM algorithm outperforms these methods with re- 
spect to error rates, learning rates, and the number of prototypes re- 
quired to describe class boundaries. 

I. INTRODUCTION 

The nearest neighbor (NN) method assigns an unclassified sam- 
ple vector to the class of the nearest of a set of correctly classified 
prototypes, or codebook vectors. Cover and Hart have shown that 
in a large sample, the error of this rule is bounded above by twice 
the Bayes probability of error [ 11. 

Learning vector quantization (LVQ1, LVQ2, LVQ2.1, and 
LVQ3), described by Kohonen [2], [3], is a nearest neighbor clas- 
sification method in which a fixed number of prototype vectors are 
progressively modified to cover the input space. The LVQ family 
of algorithms is concerned with optimal placement of these proto- 
types, so as to reflect the probability distribution of the training 
samples. The adaptive decision surface mapping (DSM) algorithm 
is a variation of the LVQ method, but we have dropped the require- 
ment that the prototypes reflect the probability distribution of the 
classes. Instead, the algorithm adapts the prototype vectors to 
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closely map the decision surface separating classes. DSM is de- 
scribed in detail in the next section. In Section I11 we present com- 
parative results for three classification problems, which indicate a 
drastic performance improvement over the LVQ and backpropa- 
gation. 

11. ADAPTIVE DECISION SURFACE MAPPING 

The DSM algorithm starts by selecting a small subset of proto- 
types from the training set. The initial prototypes are selected at 
random. We have found that good results are obtained when the 
proportion of prototypes from each class in the initial subset 
matches the a priori probabilities of the classes, and it is indeed 
the procedure commonly followed with LVQ. This information is 
usually available in the training set, when random sampling is used, 
or may have to be provided externally if the training set does not 
reflect the a priori probabilities of the classes. 

In the learning stage, the training set is used to modify the pro- 
totypes in order to gradually adapt the decision surface they define 
to that defined by the entire training set and reduce the classifica- 
tion error rate. Samples from the training set are cyclically or ran- 
domly presented for classification. When a training sample is cor- 
rectly classified, that is, the training sample is of the same class as 
the nearest prototype, no modifications are applied. When misclas- 
sification occurs, modifications take place to apply both punish- 
ment and reward. 

The punishment step takes the nearest neighbor prototype, which, 
in this case, is of the wrong class, and moves it away from the 
training sample, along the line connecting the two vectors 

Gw(r + 1)  = Gw(r)  - a(?)[:(?) - G w ( r ) ]  

The reward step searches for the nearest correct prototype and 
moves it towards the training sample, along the line connecting the 
two vectors 

G C ( t  + 1) = Gc(r )  + a( t ) [x ’ ( r )  - G J r ) ] .  

The term a is a scalar gain factor, monotonically decreasing with 
time. For the cases discussed below, we have found that very good 
results are obtained when a starts from a value of 0.3 or less, and 
linearly decreases to 0, at a rate consistent with the desired training 
limit (number of presentations). The algorithm is not very sensitive 
to initial values of a, but if alpha starts too small, training takes 
longer. 

In the earlier stages of the training process a is relatively large; 
therefore the process is allowed to rapidly modify prototypes to 
remove large classification errors caused by the initial conditions. 
In later stages, as a decreases, a more refined adaptation takes place 
to correct smaller classification errors or to arrive at a compromise 
configuration where errors are minimized. 

The algorithm modifies prototypes only on misclassification, and 
since errors are more likely to occur with samples near class bound- 
aries, it rearranges prototypes, in pairs, on each side of a class 
boundary, to correct or at least reduce the magnitude of these er- 
rors. 

It is possible that a configuration eliminating all classification 
errors on the training set could be amved at before a reaches a 
value of 0. In that instance training is complete. 

DSM is different from all the variants of LVQ. In LVQl modi- 
fications are applied at each presentation, either to punish an in- 
correct classification or to reward a correct one. LVQZ modifies 
the nearest and next-to-nearest neighbors whenever the nearest 
neighbor is of a different class, and the next nearest neighbor is of 
the same class, as the training sample. Furthermore, LVQZ re- 
quires the training vector to fall within a window which is deter- 
mined by the relative distances of the training sample from the pro- 
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totypes. LVQ2.1 applies modifications upon incorrect, as well as 
correct, classifications. Finally, LVQ3 is a combination of the ear- 
lier LVQ algorithms. 

111. EXPERIMENTAL RESULTS 

To demonstrate the performance of the DSM algorithm we have 
conducted experiments with three classification problems with dif- 
ferent degrees of complexity, all with nonlinearly separable classes. 
The problems involve the classification of two-dimensional real 
valued vectors, taken from within a rectangle. The classes were 
defined by partitioning the rectangles into several disjoint regions. 

For each of the problems we have used a training set of 6400 
samples and a test set of 6400 samples, all taken at random. All 
the comparisons are related to the same training set, initial condi- 
tions, and test set. We compare the performance of DSM, LVQ1, 
NN, and a two-layer perceptron trained by backpropagation. It turns 
out that DSM not only out performs the other methods, but also is 
the only method that produces results that are consistently better 
than NN and at the same time is the most economical. 

Because LVQ1, backpropagation, and DSM are based on ran- 
dom processes, we have repeated each experiment many times and 
averaged the results. 

A .  Straight Line Class Boundaries 

The classification problem here is adapted from Hart [ 5 ] ,  and is 
depicted in Fig. 1 .  We have tested DSM, NN, LVQ1, and a two- 
layer perceptron, trained by backpropagation, with varying num- 
bers of prototypes/nodes. The nearest neighbor classification error 
produced by the training set, when used to classify the test set, was 
1.14%. The error rates for the other methods are summarized in 
Table I. 

Fig. 1 shows a set of 24 random prototypes which were used to 
initiate both DSM and LVQ1. Figs. 2 and 3 show the final config- 
urations amved at by LVQl and DSM respectively. LVQl tends 
to generate a uniform spread of prototypes within class boundaries. 
The error rate for this configuration is 3.06%. DSM, on the other 
hand, tends to locally rearrange prototypes so as to follow the de- 
cision surface on either side. It does not modify prototypes well 
inside a class distribution, only those in the vicinity of the class 
boundary. The prototypes' spread is therefore nonuniform, and in- 
spection of Figs. 1 and 3 reveals that DSM does not utilize all 24 
prototypes; yet it produces significantly better results. The error 
rate for the DSM configuration is 0.41 % , significantly better than 
the NN error rate of 1.14%. 

This classification problem has a family of perfect solutions 
which require only ten prototypes. One such solution is depicted 
in Fig. 4 .  When DSM was initialized with ten randomly selected 
prototypes, it produced this very configuration consistently, and an 
average error rate of 0.43%. LVQl produced poor results ( 12.34% 
error), while backpropagation used with a perceptron having ten 
nodes in the hidden layer produced reasonable results (1 .66% er- 
ror), but not better than nearest neighbor. 

While backpropagation training required lo00 presentations of 
each training sample, LVQl and DSM were trained with only ten 
presentations. It is possible that slightly better results for the per- 
ceptron could be obtained by reducing the learning rate and in- 
creasing the number of presentations, but the training times in- 
volved were already orders of magnitude longer than those required 
by DSM and LVQl . 

It is also possible to reduce the number of modifications in back- 
propagation, by accumulating the changes and applying them after 
each epoch, but it is still a global modification affecting every 
weight. 

The results clearly show that DSM produces consistently better 
results than LVQl and does not display the same performance deg- 
radation as the number of prototypes is reduced. For this classifi- 
cation problem, any configuration having fewer than ten prototypes 

0 2 4 6 8 10 
Fig. 1 .  Straight line class boundaries. Depicted is the initial random set of 
24 prototypes, which were subsequently modified by adaptive learning using 
DSM and LVQl. 
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Fig. 2. LVQl solution: prototypes are uniformly spread within class 
boundaries and follow class boundaries on either side. 

TABLE I 
ERROR RATES (%) PRODUCED BY DSM, LVQl, AND BACKPROPAGATION 

FOR CLASSIFICATION PROBLEM 1 (CORRESPONDING NN ERROR 
RATE Is 1.14%) 

Number of 
Prototypes DSM LVQ 1 Backpmpagation 

6 
8 
9 

10 
20 
24 
50 

250 

7.14 
3.82 
1.86 
0.43 
0.45 
0.41 
0.49 
0.79 

19.00 
19.55 
14.64 
12.34 
4.44 
3.06 
2.51 
1.84 

9.42 
1.53 
9.27 
1.66 
1.53 
1.38 
1.56 
1.55 

is bound to produce some nearest neighbor classification error, re- 
gardless of the size of the training set. Even with eight prototypes, 
DSM produced an error rate of only 3.82 96, while LVQ 1 produced 
an error rate of 19.55 %. A perceptron trained by backpropagation 
produced somewhat erratic results when having a small number of 
nodes at the hidden layer. Table I shows that it is sensitive to the 
number of nodes, producing a good result ( 1.53 96 error) when eight 
nodes are used and a poor result (9.27% ) when nine nodes were 
used. Again, it is possible that a better result is obtainable with the 
perceptron, but there is no way of telling in what way parameters 
should be adjusted, which is an old problem associated with back- 
propagation. 
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Fig. 3. DSM solution: prototypes are adjusted to follow class boundaries. 
Not all of the prototypes are actually utilized. 
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Fig. 4. A perfect solution to the problem, using only ten prototypes 

B. Curved Class Boundaries 

The second classification problem we have used is depicted in 
Fig. 5 .  It is more complicated, involves four classes, and none of 
the class boundaries are straight lines. The error rate of nearest 
neighbor classification by the entire training set was 1.85%. The 
error rates for the other methods are summarized in Table 11. 

The error rate DSM produces is significantly below that of NN, 
while it is considerably more economical than LVQl for similar 
error rates. Experiments with more complicated class structures and 
with spaces of higher dimensionality support these results. The 
performance of DSM is consistently better than that of LVQl , while 
it proved impractical to simulate backpropagation with complex 
problems that require large training sets and a large hidden layer, 
on a sequential computer. 

An additional advantage of DSM is that many training sessions 
can be attempted, in a short time, to find a good solution, simply 
by increasing the number of prototypes used. Backpropagation is 
too slow to be repeated many times, and in any case it is not always 
clear what modifications are necessary to improve the performance. 
For example, backpropagation produced better results with 40 hid- 
den layer neurons than it did with 50 when trained with the same 
learning parameters. It is very sensitive to the initial conditions and 
the shape of the error surface it minimizes, allowing it to be trapped 
in false minima. 

Fig. 5 shows an initial set of 50 random prototypes that were 
used to initiate LVQl and DSM. Figs. 6 and 7 show the final con- 
figurations arrived at by LVQl and DSM rspectively. In this par- 
ticular case DSM produced an average error rate of 2.2% while 
LVQ 1 produced an average error rate of 8.8 % . Inspection of Figs. 
5 and 7 reveals that the DSM solution utilizes only 40 prototypes, 
not 50, and yet results in considerably lower error rates than LVQl . 
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Fig. 5 .  Curved class boundaries. Depicted is the initial random set of 50 
prototypes, which were subsequently modified by adaptive learning using 
DSM and LVQl . 
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Fig. 6.  LVQl solution: prototypes are uniformly spread within class 
boundaries and follow class boundaries on either side. 

TABLE I1 
ERROR RATES (%) PRODUCED BY DSM, LVQ1, AND BACKPROPACATION 

FOR CLASSIFICATION PROBLEM 2 (CORRESPONDING NN ERROR 
RATE Is 1.85 X) 

Number of 
Prototypes DSM LVQl Backpropagation 

24 3.17 10.55 3.16 
40 2.11 8.77 2.33 
50 2.02 8.55 3.83 

100 1.53 5.49 3.13 
200 1.54 3.64 3.44 

C. The Generalized XOR Problem 

The third problem we have used is that of the two-dimensional 
binary XOR problem, generalized to real-valued two-dimensional 
vectors. The problem is depicted in Fig. 8. The results are given 
in Figs. 9 and 10. 

LVQl produces eratic error rates when a very small number of 
prototypes are used, as Fig. 9 shows. LVQl is sensitive to the 
geometry of the problem, and the classification error rate fluctuates 
in the range of 2 %  to 6% as the number of prototypes increases 
from 5 to 32. As the number of prototypes is further increased, 
LVQl performance improves gradually, with ever decreasing Ruc- 
tuations. However, even with 640 prototypes the error rate is 
0.95%. which is still worse than the 0.84% of NN classification. 
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Fig. 7 .  Prototype selection of DSM. Points are adjusted to follow class 
boundaries. 
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Fig. 8. Classification problem 3. A generalized two-dimensional XOR clas- 

sification. 

.................................................................................... + 

Number of prototypos 
Fig. 9. LVQl error rates as a function of the number of prototypes used. 

When only four prototypes are used LVQl produces an error of 
0.50% and outperforms NN classification (0.84% errors). The al- 
gorithm places one prototype at the center of each of the disjoint 
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Number of prototypes 
Fig. 10. DSM and backpropagation error rates as a function of the number 

of prototypes used. 

class regions, hence the low error rate. As soon as a fifth prototype 
is added, the balance is disturbed, and the region which has two 
prototypes introduces a significant error (3 .38%).  An additional 
prototype brings the error rate to 5.91 % and it continues to fluc- 
tuate up or down, depending on the geometric configurations gen- 
erated by LVQ1. When 16 prototypes are used, the geometry is 
again favorable. There are four prototypes in each region, which 
are symmetrically placed, and the error rate drops to 1.20%. It is 
useful to have an equal number of prototypes in each disjoint class 
region in this particular problem, but in general one does not know 
the class boundaries. LVQl produces the same results, consis- 
tently, even when different sets of initial prototypes are used. This 
eratic behavior is less obvious when a large number of prototypes 
are used. 

The behavior of DSM is somewhat similar, but at a much smaller 
scale, and is due to a different cause. As Fig. 10 shows, the error 
rate does fluctuate as the number of prototypes is increased from 5 
to 32, but the range is now between 0.08% and 0.27%, always 
smaller than the 0.84% NN classification. 

To explain these fluctuations we must recall that it is possible 
for DSM to use only a subset of the available prototypes to describe 
the decision surface; therefore different initial configurations may 
lead to different numbers of prototypes being actually used, and to 
different results. In general, DSM performs better with fewer pro- 
totypes, provided that the number is not too small to effectively 
describe the decision surface. 

As the number of prototypes is increased, the performance of 
DSM degrades somewhat. With 640 prototypes it reaches 0.67%, 
still better than NN. This behavior is to be expected: DSM trains 
the prototypes to reduce the error rate on the training set. As pro- 
totypes are added, DSM is able to find a decision surface that is 
closer to the decision surface defined by the training set, and the 
error rate moves toward that of NN classification. The conclusion 
from this is that, provided that DSM is not initialized with too few 
prototypes, it should find a configuration better than NN. This is 
indeed observed in all experiments. LVQl,  on the other hand, pro- 
duces results that are consistently worse than NN, although it is 
possible that by a careful, or lucky, choice of prototypes it will 
outperform NN. 

With the generalized XOR problem, as one might expect, the per- 
ceptron trained with backpropagation produced good results and 
outperformed NN when the number of nodes in the hidden layer 
exceeded 4. However, as Fig. 10 shows, it did not outperform 
DSM. 

The reason that DSM is able to produce better results than NN 
is the averaging out of the random fluctuations of samples in the 
training set, near class boundaries. 

r 
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IV. DISCUSSION 

Kohonen, in introducing LVQl [2], suggests that “with pattern 
recognition problems it is the decision surface between classes and 
not the inside of the class distribution which should be described 
most accurately.” Yet LVQl generates a configuration that utilizes 
the prototype vectors to describe not only the decision surface, but 
also the insides of class distributions. Indeed, if one is to construct 
a probability function to describe the class distributions, based on 
the prototype vectors, then LVQ is more appropriate than DSM. 

DSM, on the other hand, is a much more effective algorithm for 
describing the class boundaries. It is worth noting here that al- 
though we have not compared the performance of DSM with all 
the flavors of the LVQ, these do not vary much in performance [3]. 

DSM is concerned only with an accurate description of the class 
boundaries; rather than move prototypes away from regions where 
classification errors occur, it rearranges prototypes, in pairs, on 
each side of the boundary to reduce the error rates. In fact, it is 
because DSM is not concerned with the insides of class distribu- 
tions that it is capable of mapping the decision surface more eco- 
nomically. DSM “draws” prototypes from inside class distribu- 
tions toward the class boundaries to produce a more accurate 
description. 

The results presented here show that DSM outperforms back- 
propagation with respect to error rates and training times. In some 
instances, e.g. the XOR problem, backpropagation does produce 
competitive error rates, but not in all cases; it is certainly imprac- 
tical for very complex problems, as it requires the adjustment of 
many more configuration parameters and requires unrealistic train- 
ing times. It is hard to predict how backpropagation will perform 
on a new problem, and it typically requires a considerable effort to 
fine-tune the learning parameters and perceptron structure. DSM is 
much more predictable and requires no modifications for different 
problems, and it is easy to find an economical DSM configuration 
to outperform NN classification. 

DSM shares with the LVQ’s a clear advantage over backpropa- 
gation, which relates to retraining. If the decision surface changes, 
DSM requires short retraining, as the performance will degrade 
only in the areas where change occurred, and the existing config- 
uration is a good starting point. On the other hand, a perceptron 
trained by backpropagation may require complete retraining, as a 
solution to one problem is not always a good starting solution to 
another problem, even if it is similar. Therefore, DSM is more 
suitable for dynamic, real-time classification problems. 

When the decision surface to be described is smooth it requires 
fewer points to describe adequately than when it is rough. Random 
selection of prototypes from the training set will work well as long 
as there is an adequate number of prototypes, so that even an un- 
lucky initial spread of prototypes will leave sufficient numbers in 
the difficult to map areas, to allow for accurate decision surface 
mapping. As long as the number of prototypes we use is not so 
small that it contains severe random fluctuations in the spatial 
spread of prototype vectors, we can expect good results. 

While we have shown that for the problems described DSM con- 
sistently outperforms LVQl, it must be stressed that in cases where 
the training set contains a probabilistic error, or fuzzy class bound- 
aries, DSM exhibits instabilities. Our preliminary results show that 
there is no clear advantage to DSM, and LVQ may even be superior 
owing to its stability. 

However, DSM can be used to improve a solution previously 
obtained with LVQl. A classifier obtained by LVQl is used to 
generate a new training set, with no probabilistic errors. With this 
consistent training set DSM is once again stable and may be used. 
DSM then provides an accurate description of the LVQl decision 
surface and, importantly, requires substantially fewer prototypes. 
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Performance and Generalization of the Classification 
Figure of Merit Criterion Function 

Etienne Barnard 

Abstract-A new criterion function for training neural networks, in- 
troduced by Hampshire and Waibel [l], is studied. It is shown that this 
criterion function has some highly desirable properties. However, these 
properties are not directly related to generalization (as was suggested 
in [l]); it is shown that systematic improvement of generalization in- 
volves a different class of modifications. 

I. INTRODUCTION 

The training of various neural nets can be viewed as the opti- 
mization of criterion functions (also known as objective functions 
or energy functions). Of these functions, by far the most popular 
is the mean-square-error (MSE) criterion function, which is com- 
monly used in conjuction with backpropagation [2], but an infinite 
variety of other possibilties exists [3]. It has long been known that 
the choice of criterion function can play an important role in the 
performance of classifiers [4], and this issue has recently been the 
focus of renewed attention [l], [3]. 

In assessing the performance of a classifier such as a neural net- 
work, a number of related metrics should carefully be distinguished 
from one another. Conceptually the simplest metric of performance 
is the numerical vahe  of the criterion function. Since training is 
accomplished by optimizing this function, it is obvious to think of 
the criterion function as a measure of the classifier’s performance. 
However, in almost all applications the success of the classifier will 
be measured not by the value of the criterion function obtained but 
by the error rate of the classifier. A somewhat more relevant metric 
of performance is therefore the classifier’s error rate on the training 
set. In [3] it is shown that these two metrics of performance are 
generally not equal and, indeed, that they can differ appreciably for 
certain criterion functions. Training-set performance, on the other 
hand, is also not a true measure of the value of a classifier; how 
well it fares on new, unseen test data is usually the real issue. Thus, 
the ability to generalize to a disjoint test set is the most important 
measure of a classifier’s performance. 
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