Electrónica 2

Práctico 3 Alta Frecuencia

Los ejercicios marcados con \star son opcionales. Además cada ejercicio puede tener un número, que indica el número de ejercicio del libro del curso (*Microelectronic Circuits, 4th. edition. Sedra/Smith.*) o una fecha, que indica en que prueba (examen o parcial) se planteó el ejercicio.

Objetivo: El objetivo general del presente práctico es familiarizar al estudiante con el modelo de alta frecuencia de los transistores (tanto FET como BJT). Se presentan ejercicios donde se estudian diferentes configuraciones de amplificadores como por ejemplo: fuente o emisor común, cascodo, etc. También se estudian casos de una o varias etapas, y se busca estudiar la respuesta en frecuencia de amplificadores diferenciales. Se espera que el estudiante maneje varias técnicas para el análisis de estos circuitos, como el uso del teorema de Miller y la aplicación del método de las constantes de tiempo de circuito abierto.

NOTA: se sugiere verificar los resultados obtenidos en los ejercicios considerados en este práctico utilizando simulaciones en SPICE.

Ejercicio 1. (7.27)

La Figura 1 muestra el circuito equivalente a un amplificador FET (modelado en alta frecuencia) con una resistencia R_s conectada en el source (fuente). El propósito de este ejercicio es mostrar que el valor de R_s puede ser usado para controlar la ganancia y el ancho de banda del amplificador, permitiendo de esa forma al diseñador sacrificar ganancia para mejorar el ancho de banda.

- (a) Deducir una expresión para la ganancia de tensión a baja frecuencia (considerar C_{qs} y C_{qd} iguales a cero).
- (b) Deducir los valores de R_{gs} y R_{gd} (resistencias asociadas a C_{gs} y C_{gd}) de forma de poder determinar ω_H usando el método de las constantes de tiempo de circuito abierto.
- (c) Si $R=100k\Omega$, gm=4mA/V, $RL=5k\Omega$, y Cgs=Cgd=1pF, usar las expresiones en (a) y (b) para hallar la ganancia a baja frecuencia y la caída 3dB superior (ω_H) para los casos $Rs=0\Omega$, 100Ω y 250Ω . En cada caso evaluar el producto ganancia por ancho de banda.

Ejercicio 2.

El objetivo de este ejercicio es ver la interrelación entre el efecto Miller, la ganancia y el ancho de banda del amplificador. En el circuito de la Figura 2 hallar la frecuencia de corte superior f_H y la ganancia a frecuencia media (V_o/V_i) utilizando Miller y suponiendo que el polo dominante es el de la entrada. C_{c1} ,

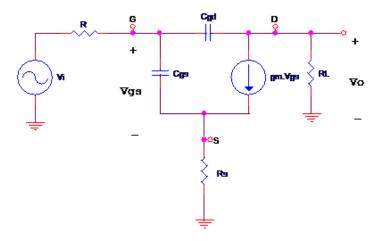


Figura 1

 C_{c2} y C_S son condensadores de desacople. Al evaluar las alternativas para doblar f_H un diseñador considera las opciones de cambiar R_{in} o R_o . Para lograr este cambio en f_H :

- (a) ¿Qué cambio, por separado, debe hacerse en las resistencias?
- (b) ¿Qué ganancia de tensión resulta en cada caso?
- (c) ¿Qué diseño elegiría?

Ejercicio 3. (Examen 02/2000 de Electrónica II plan 91)

Este ejercicio compara el desempeño de un amplificador con y sin cascode y analiza en que casos esto representa una ventaja.

- (a) Calcular la ganancia entre el punto A y el B en baja frecuencia del circuito de la Figura 3 a).
- (b) Calcular la expresión analítica del primer polo de la respuesta en frecuencia del circuito de la Figura 3 a), sabiendo que para todos los transistores se cumple que: $C_{CB} = 2.4 pF$, $f_T = 300 MHz$, $h_{fe} = 250$. Determinar también su valor numérico.
- (c) Comparar el resultado anterior con el que se obtendría para el circuito de la Figura 3 b) si todos los transistores son idénticos. Explicar cualitativamente el origen de la diferencia hallada.
- (d) Como cambia la relación entre el primer polo de ambos circuitos si R_L se sustituye por Z_L de la figura 3 c).

Notas: En todos los circuitos analizados la polarización es tal que el valor de V_{out} es $V_{CC}/2$ en continua. Suponer que $r_{bb'}=0$ y $C_{CE}=0$.

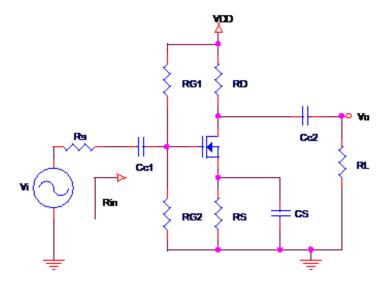


Figura 2

Ejercicio 4.

Hallar la frecuencia de caída de 3dB superior de la transferencia V_o/V_i del circuito de la figura 4 utilizando el teorema de Miller, utilizando el método de las constantes de tiempo de circuito abierto, y operando directamente (Se obtendrá una expresión literal en función de las resistencias del circuito y los parámetros del transistor).

Datos: $R_s//R_1//R_2=1k\Omega, R_1=R_2, I_c=1mA, R_L=313\Omega, C_E$ y C_S infinitos, $V_{CC}=15V,$ transistor BC337.

Ejercicio 5.

Considere el circuito del ejercicio Ejercicio 4 implementado con un transistor P2N2222A y los siguientes valores de resistencias: $R_1=180k\Omega,\ R_2=47k\Omega,\ R_L=1.2k\Omega,\ R_E=470\Omega$ y $R_s=10k\Omega.$ Calcular para dicho circuito la frecuencia de caída de 3dB. Si ahora la fuente de señal posee una resistencia de entrada $RS=50\Omega$ cual es la frecuencia de caída de 3dB.

Simular con SPICE y comparar resultados.

Ejercicio 6. (7.53)

Para el circuito de la Figura 6 calcular gm, r_{π} de ambos transistores, la ganancia a frecuencias medias, y las frecuencias de caída de 3dB inferior y superior. Los transistores se supondrán idénticos con $\beta=100, C_{\mu}=0.8pF, f_{T}=0.6GHz$.

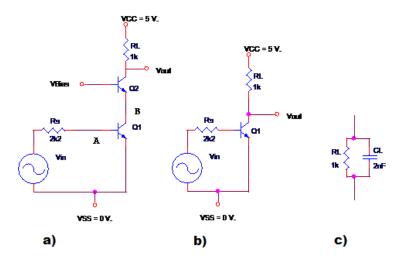


Figura 3

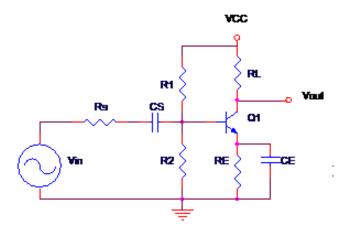


Figura 4

Ejercicio 7.

- (a) Hallar la ganancia a frecuencias medias y la frecuencia de caída de 3dB superior del circuito de la Figura 7 a).
- (b) Si se modifica el circuito según la Figura 7 b), ¿cuáles son los nuevos valores de ganancia y frecuencia de caída de 3dB? Comparar con los resultados de la parte anterior.

Ejercicio 8. (Primer Parcial Electrónica 2, 10/2003)

(a) Para el circuito de la Figura 8 calcular la ganancia diferencial $(V_{out1}-V_{out2})/V_{in}$ en la banda pasante y la frecuencia de caída de 3dB si se cumple que:

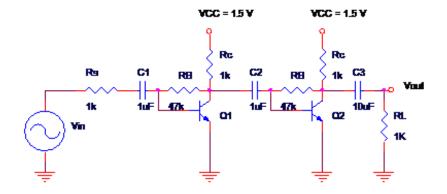


Figura 6

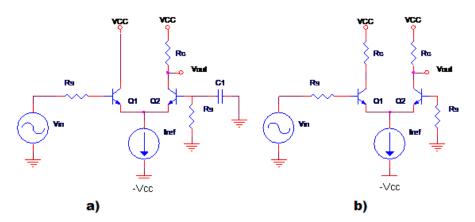


Figura 7

- Las fuentes de corriente I_0 e I_1 son ideales y de valores tales que todos los transistores operan en la zona de saturación.
- Las capacidades de overlap C_{gs0} , C_{gd0} y las capacidades a sustrato C_{sb} , C_{db} son despreciables.
- lacktriangle Los condensadores indicados como C se considerarán infinitos.
- El voltaje de Early de los transistores es infinito.
- V_{in} es una fuente de señal diferencial ideal $(R_s = 0)$.
- Los transistores $Q_{1..4}$ tienen todos largo de canal L_1 y ancho W_1 ; los transistores Q_5 y Q_6 son idénticos con largo de canal L_2 y ancho W_2 . La capacidad de óxido por unidad de área es C_{ox} .
- (b) NOTA: Esta parte del problema se sugiere realizarla junto con el práctico de Realimentación. Si en paralelo con R_L se agrega una carga capacitiva C_L , que condición debe cumplir el valor de dicho condensador para que el márgen de fase del circuito sea mayor a 65.5 manteniendo la frecuencia de caída de 3dB de la parte anterior.

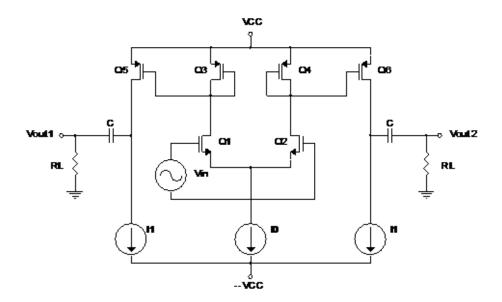


Figura 8

Solución

Ejercicio 1

(a)
$$\frac{v_o}{v_i} = \frac{-R_L gm}{1 + R_s gm}$$

(b)
$$R_{gs} = \frac{R + R_s}{1 + R_s qm}$$
; $R_{gd} = R + R_L \left[1 + \frac{Rgm}{1 + R_s qm}\right]$

	$R_s(\Omega)$	G	$f_H (MHz)$	$G.f_H$
(c)	0	20	72.34	1.45e6
(C)	100	14.29	99.13	1.42e6
	250	10	138.4	1.38e6

Ejercicio 2

(a) $R_{in}^* = \frac{R_{in}R_s}{R_s + R_{in}}$; $R_o^* = \frac{R_o}{2} - \frac{1}{gm}(1 + \frac{C_{gs}}{C_{gd}})$; Cambiando R_{in} la ganancia pasa a valer la mitad, mientras que cambiando R_o pasa a valer menos de la mitad.

Ejercicio 3

(b)
$$f_{p1}^{cascodo} = \frac{1}{2\pi (R_s||R_{\pi 1})(C_{\pi 1} + 2C_{\mu 2})} = 2.41Mz$$

(c) $f_{p1}^{EC}=456kHz$. En la configuración cascado C_{μ} no se ve afectado por el efecto Miller, mientras que en la configuración de emisor común si.

(d) En ambas configuraciones: $f_{p1} = \frac{1}{2\pi R_L(C_L + 2C_{\mu 2})} = 79.5kHz$

Ejercicio 4

Miller	Constantes de tiempo	Sol. exacta
1.13MHz	1.12MHz	1.1MHz

Ejercicio 5

Con
$$R_s=10k\Omega,\,f_H=16.75kHz.$$
 Con $R_s=50\Omega,\,f_H=2.6MHz$

Ejercicio 7

(a)
$$\frac{v_o}{v_i} = \frac{\beta R_C}{R_S + 2r_{pi}}$$
; $f_H = \frac{1}{2\pi[(C_\pi/2 + C_\mu)(R_S||2r_\pi) + C_\mu R_C]}$

(b)
$$\frac{v_o}{v_i} = \frac{\beta R_C}{2R_S + 2r_{pi}}; f_H = \frac{1}{2\pi [(C_\pi + C_\mu (1 + gmR_C))(R_S||r_\pi) + C_\mu R_C]}$$

7

Ejercicio 8

(a)
$$\frac{v_{o1} - v_{o2}}{v_{in}} = \frac{gm5gm1R_L}{gm3} \frac{1}{1 + s \frac{C_{gs3} + C_{gs5}}{gm3}}$$

(b)
$$C_L < \frac{C_{gs3} + C_{gs5}}{4gm5gm1R_L^2}$$