Lógica de predicados. Deducción Natural _{Lógica}

Contenidos I

Introducción

Para todo

Existe

• Definición de DER

Consecuencia sintáctica

Deducción natural

- Definimos inductivamente el conjunto DER_P de las derivaciones de la lógica de predicados.
- Caso base: derivación trivial (idem PROP)
- Para los conectivos: las mismas reglas de introducción y eliminación que en PROP
- Para los cuantificadores (∀ y ∃) se agregan reglas de introducción y eliminación.

Contenidos I

Introducción

• Para todo

Existe

Definición de DER

Consecuencia sintáctica

¿Cómo probar un ∀? Hipótesis.

 $\delta_1, \dots \delta_n$, x es una variable fresca

Tesis.

Para todo x vale α

Demostración.

Probamos α usando $\delta_1, \ldots \delta_n$ Como x no aparece en $\delta_1, \ldots \delta_n$ la prueba es independiente de x. Luego, hemos probado α para

cualquier x, usando $\delta_1, \ldots \delta_n$

Introducción ∀

$$\delta_1, \dots, \delta_n
\vdots
\frac{\dot{\alpha}}{(\forall x)\alpha} I_{\forall}(*)$$

(*) x no ocurre libre en las hipótesis $\delta_1, \ldots, \delta_n$.

¿Cómo utilizar un ∀?

Hipótesis.

 $\delta_1, \dots \delta_n$, y t es el nombre de un individuo.

Tesis.

El individuo nombrado por t cumple la propiedad α

Demostración.

Probamos $(\forall x)\alpha$ usando $\delta_1, \dots \delta_n$ Luego, vale $\alpha[t/x]$.

Eliminación

$$\begin{array}{c} \delta_1, \dots, \delta_n \\ \vdots \\ \frac{(\forall x)\alpha}{\alpha \lceil t/x \rceil} E_{\forall}(*) \end{array}$$

(*) t debe estar libre para x en α .

Contenidos I

Introducción

Para todo

Existe

• Definición de DER

Consecuencia sintáctica

¿Cómo probar un 3?

Hipótesis.

$$\delta_1, \ldots \delta_n$$
.

Tesis.

Algún individuo cumple la propiedad α .

Demostración.

Pruebo que α vale para cierto t, usando $\delta_1, \dots \delta_n$.

Luego, existe un elemento para el cual vale α .

Introducción ∃

$$\begin{array}{ccc} \delta_1, \dots, \delta_n & \vdots & \\ \frac{\alpha[t/x]}{(\exists x)\alpha} I_{\exists}(*) & \end{array}$$

(*) t debe estar libre para x en α .

¿Cómo utilizar un 3?

Hipótesis.

 $\delta_1, \dots \delta_n$, algún individuo cumple la propiedad α , y $x \notin FV(\{\delta_1, \dots \delta_n\})$.

Tesis.

Se cumple β .

Demostración.

Asumimos que x cumple α . Probamos β usando

$$\delta_1, \dots \delta_n$$
 y α

Luego, hemos probado β , usando $\delta_1, \dots \delta_n$ y $(\exists x)\alpha$

Eliminación 3

$$\frac{\delta_1, \dots, \delta_n, [\alpha]^{(1)}}{\vdots} \\
\frac{(\exists x)\alpha \qquad \beta}{\beta} E_{\exists}^{(1)}(*)$$

(*) x no ocurre libre ni en β ni en las hipótesis $\delta_1, \ldots, \delta_n$.

Contenidos I

Introducción

Para todo

Existe

Definición de DER

Consecuencia sintáctica

Definición: DER_P

El conjunto DER_P de las derivaciones de la lógica de predicados se define inductivamente como sigue:

Análogo a DER

1)

Definición:DER $_P$ — \forall

 $I \forall$

Si
$$Pointsize Pointsize P$$

$E \forall$

Si $(\forall x)\varphi \in DER_P$ y t está libre para x en φ , entonces

 $(\forall x)\varphi$

$$\frac{D}{(\forall x)\varphi} \in DER_P$$

$$\frac{(\forall x)\varphi}{\varphi[t/x]}$$

 $\in DER_P$

Definición: DER $_P$ 3

 $I\exists$

Si
$$\varphi[t/x] \in DER_P$$
 y t está libre para x en φ , entonces

$$\begin{array}{c}
D \\
\underline{\varphi[t/x]} \\ (\exists x)\varphi
\end{array} \in \mathrm{DER}_{P}$$

Definición: $DER_P \exists$

 $E\exists$

$$\operatorname{Si} \stackrel{D}{(\exists x)} \varphi \in \operatorname{DER}_P \operatorname{y} \stackrel{\varphi}{\psi'} \in \operatorname{DER}_P \operatorname{y} x \notin \operatorname{FV}(H(D') - \{\varphi\})$$

y $x \notin FV(\psi)$, entonces

Contenidos I

Introducción

Para todo

Existe

Definición de DER

Consecuencia sintáctica

Consecuencia sintáctica

Definición

Sea $\Gamma \subseteq \text{FORM}$ y $\varphi \in \text{FORM}$. Decimos que φ es consecuencia sintáctica de Γ o que φ se deriva de Γ ssi existe $D \in \text{DER}_P$ tal que: $C(D) = \varphi$ y $H(D) \subseteq \Gamma$.

Notación

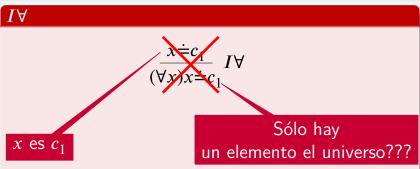
 $\Gamma \vdash \varphi$ se lee φ se deriva de Γ .

 $\vdash \varphi$ se lee φ es teorema.

Restricciones sobre las variables

¿Se necesitan las restricciones en∀ y ∃ ?

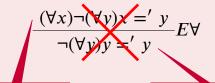
Sin las restricciones, las reglas permiten construir derivaciones que corresponden a razonamientos incorrectos.



La introducción es incorrecta porque x está libre en la hipótesis.

¿Se necesitan las restricciones en \forall y \exists ?

$E \forall$

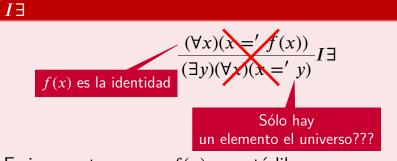


Hay mas de un elemento.

Hay un elemento que no es igual a sí mismo???

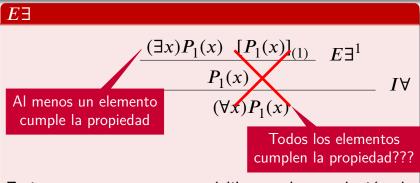
Es incorrecta porque y no está libre para x en $\neg(\forall y)x='y$.

¿Se necesitan las restricciones en ∀ y ∃ ?



Es incorrecta porque f(x) no está libre para y en $(\forall x)(x = 'y)$.

¿Se necesitan las restricciones en ∀ y ∃ ?



Es incorrecta porque x está libre en la conclusión de la eliminación de $(\exists x)P_1(x)$

Restricciones y alcance

- Hay que recordar que las hipótesis canceladas, en realidad, son hipótesis normales de sub-derivaciones.
- Son hipótesis normales (abiertas, sin cancelar), desde donde aparecen hasta la regla que las cancela y por lo tanto, valen las restricciones en todas las reglas que se utilicen entre esos lugares.

Controlar la zona de cancelación

$$\frac{(\exists x)P_1(x) \quad \frac{[P_1(x)]_{(1)}}{(\forall x)P_1(x)} I^{\forall x}}{(\forall x)P_1(x)} E \exists^1$$

Es incorrecto porque la hipótesis $P_1(x)$ está abierta desde donde aparece hasta la regla que la cancela.

Ejemplos

$$\vdash (\forall x_1)(\forall x_2)\alpha \to (\forall x_2)(\forall x_1)\alpha$$

$$\vdash (\exists x_1)(\exists x_2)\alpha \to (\exists x_2)(\exists x_1)\alpha$$

$$\vdash (\forall x_1)(\alpha \land \beta) \to (\forall x_1)\alpha \land (\forall x_1)\beta$$

$$\vdash (\exists x_1)(\alpha \lor \beta) \to (\exists x_1)\alpha \lor (\exists x_1)\beta$$

$$\vdash (\forall x)(\alpha \to \beta) \to (\alpha \to (\exists x)\beta)$$

$$\vdash (\forall x)(\alpha \to \beta) \to (\alpha \to (\forall x)\beta), \text{ si } x \notin FV(\alpha)$$

$$\vdash (\forall x)(\alpha \to \beta) \to ((\exists x)\alpha \to \beta), \text{ si } x \notin FV(\beta)$$

Propiedades de los cuantificadores

Lema: propiedades de derivabilidad del ∀

- Si $\Gamma \vdash \varphi$ y $x \notin FV(\Gamma)$ entonces $\Gamma \vdash (\forall x)\varphi$.
- Si $\Gamma \vdash (\forall x) \varphi$ y t libre para x en φ , entonces $\Gamma \vdash \varphi[t/x]$.

Lema: propiedades de derivabilidad del 3

- Si t es libre para x en φ entonces $\varphi[t/x] \vdash (\exists x)\varphi$
- Si $x \notin FV(\psi) \cup FV(\Gamma)$ entonces, si $\Gamma, \varphi \vdash \psi$ luego $\Gamma, (\exists x) \varphi \vdash \psi$

Igualdad e identidad

Hasta ahora usamos hemos interpretado el símbolo igualdad. Otra alternativa es caracterizarlo como *identidad* a través de axiomas.

Axiomas de Identidad

Esquemas de Axiomas

Propiedades de los Axiomas

- I4 exige además que la relación sea una congruencia con respecto a todas las relaciones definibles en el lenguaje.
- Si interpretamos a \doteq como la identidad, se demuestra que toda estructura $\mathcal M$ cumple

$$\mathcal{M} \models \{I1, I2, I3, I4\}$$

Identidad y Deducción Natural (1/2)

Los axiomas pueden incorporarse como reglas de derivación.

$$\overline{t \doteq t} RI1$$

$$\frac{t \doteq s}{s \doteq t} RI2$$

$$\frac{t \doteq s \quad s \doteq r}{t \doteq r} RI3$$

Identidad y Deducción Natural (2/2)

Los axiomas pueden incorporarse como reglas de derivación.

$$\frac{t_1 \doteq s_1 \dots t_n \doteq s_n}{t[t_1, \dots, t_n/z_1, \dots, z_n] \doteq t[s_1, \dots, s_n/z_1, \dots, z_n]} RI4$$

$$\frac{t_1 \doteq s_1 \quad \dots \quad t_n \doteq s_n \quad \varphi[t_1, \dots, t_n/z_1, \dots, z_n]}{\varphi[s_1, \dots, s_n/z_1, \dots, z_n]} RI4^*$$

(*) Para cada $i \in [1..n]$ se tiene que t_i y s_i están libres para z_i en φ .

Otras Versiones de las Reglas

Sea \mathscr{L} un lenguaje de tipo $\langle r_1, \dots r_n; a_1, \dots a_m; k \rangle$. Entonces, los axiomas RI4 pueden derivarse de

$$\frac{t_1 \doteq s_1 \dots t_{a_j} \doteq s_{a_j}}{f_j(t_1, \dots, t_{a_j}) \doteq f_j(s_1, \dots, s_{a_j})} RI4'$$

$$\frac{t_1 \doteq s_1 \quad \dots \quad t_{r_i} \doteq s_{r_i} \quad P(t_1, \dots, t_{r_i})}{P_i(s_1, \dots, s_{r_i})} \; RI4'^*$$

usando inducción en TERM y FORM.

$\Gamma \models \varphi$

Para poder probar consistencia, debemos extender la definición de F a todo FORM.

Intuitivamente, $\Gamma \models \varphi$ vale sólo si, para todas las estructuras \mathscr{M} y todas las posibles asignaciones \tilde{a} (en $|\mathscr{M}|$) de valores a las variables libres de Γ y de φ , se verifica que: si las hipótesis en $\Gamma(\tilde{a})$ son ciertas, entonces también es cierta $\varphi(\tilde{a})$

Definición. $\varphi(\tilde{a}), \Gamma(\tilde{a})$

```
Dados \Gamma \subseteq FORM, \varphi \in FORM
   tales que FV(\Gamma) \cup FV(\varphi) \subseteq \{y_1, y_2, \dots\},\
   y una estructura \mathcal{M}
   donde \tilde{a} una secuencia (a_1, a_2, \dots) de elementos de
       |\mathcal{M}| (eventualmente repetidos)
definimos \Gamma(\tilde{a}) y \varphi(\tilde{a}) como la sustitución simultánea
\Gamma[\bar{a}_1, \bar{a}_2, .../y_1, y_2 ...] y \varphi[\bar{a}_1, \bar{a}_2, .../y_1, y_2 ...] en todas
las fórmulas de \Gamma y en \varphi de los y_i por los \bar{a}_i.
```

Def 2.8.1. $\mathcal{M} \models \Gamma(\tilde{a}) \vee \Gamma \models \varphi$

- i) $\mathcal{M} \models \Gamma(\tilde{a})$ si para todo $\psi \in \Gamma(\tilde{a})$ se cumple $\mathcal{M} \models \psi$
- ii) $\Gamma \models \varphi$ si para toda estructura \mathcal{M} y para toda secuencia \tilde{a} en $|\mathcal{M}|$, si $\mathcal{M} \models \Gamma(\tilde{a})$ entonces $\mathcal{M} \models \varphi(\tilde{a})$

Observación

Esta definición generaliza la definición 2.2.4. Que se aplica sólo si $\Gamma\subseteq {\rm SENT}$ y $\varphi\in {\rm SENT}$.

Lema 2.8.2. Corrección de DER_P

Si $\Gamma \vdash \varphi$ entonces $\Gamma \models \varphi$

Aplicaciones

Demostrar que:

- $\not\vdash (\forall x)(\exists y)\varphi \to (\exists y)(\forall x)\varphi$
- $(\forall x)P(x, x), (\forall y)(\forall x)(P(x, y) \rightarrow P(y, x)) \nvdash (\forall x)(\forall y)(\forall z)(P(x, y) \land P(y, z) \rightarrow P(x, z))$