
SYMANTEC ADVANCED THREAT RESEARCH

1

Analysis of the Windows Vista Security Model
Matthew Conover, Principal Security Researcher, Symantec Corporation

Abstract—This paper provides an in-depth technical

assessment of the security improvements implemented in
Windows Vista, focusing primarily on the areas of User Account
Protection and User Interface Privilege Isolation. This paper
discusses these features and touches on several of their
shortcomings. It then demonstrates how it is possible to combine
these attacks to gain full control over the machine from low
integrity, low privilege process.

Index Terms—Computer security, Windows Vista, Windows
Resource Protection, File Virtualization, Registry Virtualization,
Integrity Level, UAP, LUA, UIPI

I. INTRODUCTION
indows Vista is a radical departure from prior

versions of the Windows operating system. With its
introduction, enhancements have been made to virtually all
aspects of the Windows security model. These changes should
decrease the ease by which the operating system can be
compromised.

In this research, Symantec researchers evaluated the
security of the Windows Vista February 2006 CTP build.
During this research we discovered a number of
implementation flaws that continued to allow a full machine
compromise to occur. By exploiting these flaws, a low
privilege, low integrity level process can bypass User Account
Protection, and ultimately execute code at a high privilege,
high integrity level.

Since the conclusion of our initial phase of research, several
new Windows Vista builds have been released. We recently
re-evaluated our findings on the publicly released Windows
Vista Beta 2 build 5384 and observed certain exploit paths
have been fixed. Where applicable, we will indicate where our
initial findings differ from the public Windows Vista Beta 2.

Windows Vista is a work in progress and it should be
expected that security issues, including those discussed in this
paper, will continue to be addressed until its final release.

A. What’s Covered
This paper focuses on attacks against the Windows Vista

security model from the perspective of malicious code. The
scenario addressed in this paper is an out-of-the-box
configuration that a typical user will see when presented with
a new Windows Vista installation. In this configuration the
user is a Protected Administrator [1] using Internet Explorer 7
to browse a malicious website that exploits a vulnerability [2].
This vulnerability inadvertently introduces malicious code

running with low privileges on to the host. In this paper, we
discuss a technique whereby a weakness in earlier Windows
Vista builds will allow this malicious code to gain full control
over the machine, ultimately acquiring LocalSystem
privileges.

B. What’s Not Covered
Malicious code that is already running with full

LocalSystem privileges is outside of the scope of this paper,
since the malicious code has roughly the same capabilities as
it had in previous versions of Windows.

This paper only discusses the elevation of privileges to
LocalSystem. Kernel-mode rootkits are also outside the
scope of this paper. An assessment of Windows Vista kernel-
mode security will be covered in a separate research paper. An
assessment of the new Windows Vista TCP/IP network stack
will also be covered in a separate research paper.

C. Prerequisites
As this paper is primarily focused on changes between Vista

and the preceding Windows versions, the reader is expected to
have familiarity with the traditional Windows security
model—including general knowledge of Access Control Lists
(ACLs), System ACLs (SACLs) versus Discretionary ACLs
(DACLs), Security Identifiers (SIDs), etc. The reader is
advised to review [4] and [5].

II. USER ACCOUNT PROTECTION (UAP)

A. Introduction
Windows Vista introduces a security feature, User Account

Protection (UAP), which is also known as Least-Privilege
User Accounts or Limited User Accounts (LUA). User
accounts created during a Windows Vista installation are
Protected Administrators and are subject to UAP. Protected
Administrators are users in the Administrators groups, other
than the Built-in Administrator (which is exempt from ever
running under a LUA process). This means that when running
without restriction, the user is capable of activities such as
installing software, writing to HKEY_LOCAL_MACHINE,
starting drivers, starting services, etc.

However, all processes launched by the Protected
Administrator run with minimal privileges. When a Protected
Administrator launches a program from the Start Menu, the
program will run in a restricted context with a smaller subset
of the privileges than the user actually possesses. If the

W

SYMANTEC ADVANCED THREAT RESEARCH

2

program requires administrative privileges (i.e., it won’t
function properly without them), the Protected Administrator
can run the process unrestricted. By running the process
unrestricted, the process inherits the full privileges of the user
(referred to as elevation). A program will be run in an elevated
state using one of the mechanisms discussed in Section III.A.
Whenever a program is to be elevated, a popup box will
appear asking the user to approve or deny. According to [1],
there is no way to launch an elevated process from a Protected
Administrator without the user’s consent.

It is also possible to use a standard user account -- a user
account without administrator privileges, rather than a
Protected Administrator account. Standard user accounts were
available in Windows XP. Although Microsoft recommends
the use of standard user account, the default behavior when
installing Windows XP or Windows Vista is to create an
administrator user account. To create a standard user account,
the user must perform additional manual steps. Therefore, we
will only cover the default Windows Vista user account
behavior that a general user would encounter after installing
Windows Vista. This is not meant to imply that there are no
privilege escalation attacks possible from a standard user
account; rather, we focused our attention toward the most
likely user configuration.

B. Mandatory Integrity Control (MIC)
Mandatory integrity control (referred to here as integrity

levels) is a new feature added in Windows Vista. It is
controlled by an access control entry (ACE) in the system
access control list (SACL) of a securable object (e.g., a file,
process, registry key, etc.). Every process will have an
integrity level, and child (spawned) processes will inherit the
integrity level from the parent process. Integrity levels can be
enabled/disabled via the registry key
HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\
CurrentVersion\Policies\System\EnableMIC.

Amusingly, the integrity level is associated with SACLs
rather than DACLs (discretionary access control lists). DACLs
are used to identify the trustee (a user, group, etc.) that are
allowed or denied access to a securable object. In contrast, a
SACL has had the historical role of generating audit records to
record access to securable objects.

A process cannot interact with another process that has a
higher integrity level. So CreateRemoteThread,
SetThreadContext, WriteProcessMemory, and related
APIs will fail from a lower integrity process when used
against a higher integrity process. This is meant to prevent
privilege escalation attacks. However it is still possible for:

1. A higher integrity process to call
CreateRemoteThread, SetThreadContext,
WriteProcessMemory, etc. against a lower integrity
process.

2. Processes of any integrity level to interact using
inter-process communication (named pipes, LPC,
etc.).

3. A lower integrity server to impersonate a higher

integrity client using APIs such as
ImpersonateNamedPipeClient, as long as the
impersonation level of the client allows it.

Registry keys and files can have an integrity level as well;

files or registry keys can only be written to if the process has a
sufficient integrity level. This is why Low Rights Internet
Explorer is only able to write to a small number of registry
locations, even if it is run by a user who is a Protected
Administrator.

The following table shows the integrity levels and their

effective permissions:

Integrity
Access Level System Privileges

High Administrative (can install files to the
Program Files folder and write to
sensitive registry areas like
HKEY_LOCAL_MACHINE)

Medium User (can create and modify files in the
user's Documents folder and write to
user-specific areas of the registry, such as
HKEY_CURRENT_USER)

Low Untrusted (can only write to low integrity
locations, such as the Temporary
Internet Files\Low folder or the
HKEY_CURRENT_USER\Software\LowRe
gistry key)

The integrity access levels are governed by the following
SACL ACEs:

SID Integrity Level

S-1-16-16384 System Mandatory Level
S-1-16-12288 High Mandatory Level
S-1-16-8192 Medium Mandatory Level
S-1-16-4096 Low Mandatory Level

C. UI Privilege Isolation (UIPI)

Directly related to integrity levels is User Interface
Privilege Isolation (UIPI), which was added to prevent
privilege escalation attacks such as Shatter [6]. If a lower
privileged process is able to send window messages (using the
SendMessage and PostMessage APIs) to a higher
privileged process, the lower privileged process can cause
arbitrary code execution in the context of the higher privileged
process. To address this, in Vista it is no longer possible for a
process of a lower integrity level to send window messages to

SYMANTEC ADVANCED THREAT RESEARCH

3

a higher integrity process. This is enforced by the windowing
and graphics subsystem known as USER (presumably within
the system driver win32k.sys).

The SetWindowsHookEx and SetWinEventHook APIs
provide a way to hook all other processes interacting with the
same desktop and receive notification when those processes
receive window messages. Internally, these APIs result in a
DLL being loaded into all the other processes sharing the
desktop. Prior to Windows Vista, this could also lead to
arbitrary code execution in the context of a process with
higher privileges than the initiating (calling) process had. In
Windows Vista, lower privileged processes are prevented
from invoking the SetWindowsHookEx and
SetWinEventHook APIs on a higher integrity process.

UIPI is implemented at the process level. The process
security descriptor will contain a special ACE in the SACL
with SID S-1-16-16640 (UI Access Mandatory Level) to
indicate the process is allowed to interact with more privileged
processes sharing the desktop.

Certain processes, such as uxss.exe (Microsoft User
Experience Subsystem) and consent.exe (Consent UI for
administrative applications) are two processes that have the UI
Access Mandatory Level, because they need to interact with
the desktop.

D. Restricted Process
UAP is synonymous with restricted process. A restricted

process is one with a restricted token that has some of the
user’s privileges removed and certain SIDs marked as “deny
only” (see Appendix B). Restricted processes are setup using
the CreateRestrictedToken API.

As an example, an unrestricted process created by a user in
the Administrators group has the SeDebugPrivilege. This
allows the user to debug any process on the system; it can be
used as a way to manipulate and gain control over a more
privileged process. Therefore, on Windows Vista, the majority
of privileges are removed from a restricted process.

A restricted process created with UAP enabled has a reduced
set of privileges:

SeChangeNotifyPrivilege enabled
SeTimeZonePrivilege disabled
SeIncreaseWorkingSetPrivilege disabled
SeUndockPrivilege disabled
SeShutdownPrivilege disabled

By contrast, an unrestricted process created by an
administrator has a much larger set of privileges:

SeChangeNotifyPrivilege enabled
SeSecurityPrivilege disabled
SeBackupPrivilege disabled
SeRestorePrivilege disabled
SeSystemtimePrivilege disabled
SeShutdownPrivilege disabled
SeRemoteShutdownPrivilege disabled
SeTakeOwnershipPrivilege disabled

SeDebugPrivilege disabled
SeSystemEnvironmentPrivilege disabled
SeSystemProfilePrivilege disabled
SeProfileSingleProcessPrivilege disabled
SeIncreaseBasePriorityPrivilege disabled
SeLoadDriverPrivilege disabled
SeCreatePagefilePrivilege disabled
SeIncreaseQuotaPrivilege disabled
SeUndockPrivilege disabled
SeManageVolumePrivilege disabled
SeImpersonatePrivilege enabled
SeCreateGlobalPrivilege enabled
SeCreateSymbolicLinkPrivilege disabled
SeIncreaseWorkingSetPrivilege disabled
SeTimeZonePrivilege disabled

If a privilege is disabled, it means it is ignored during access
checks but can be enabled by the process. If a privilege is
removed instead of disabled, as is the case for restricted
processes, it cannot be enabled.

Another way in which a process is restricted is with the
“Group used for deny only” attribute associated with the
Administrators group SID. Normally, a process created by an
administrator is granted access to most secured objects,
because the Administrators group is explicitly granted access.
For a restricted process, the Administrators group SID is set to
“Group used for deny only.” This means if the Administrators
group is explicitly denied access, the restricted process is also
denied access. On the other hand, if the Administrators group
is explicitly granted access, this is ignored for restricted
processes. Put another way, deny only SIDs match access
denied rules but not access granted rules.

III. UNRESTRICTED PROCESSES (ELEVATION)

A. Introduction

A process will be elevated under a few circumstances:
1. If the application is an installer (has the extension

“.msi”, matches a common installer like InstallShield,
is named setup.exe, etc.)

2. Application Compatibility [7]
a. If the application has an application

compatibility entry in the registry under
HKEY_CURRENT_USER\Software\Microsof
t\Windows
NT\CurrentVersion\AppCompatFlags\La
yers\<path_to_executable> with the
value RUNASADMIN

b. AppCompat database entry (a file that ends
with <application_name>.sdb) created
with CompatAdmin.exe

3. The application’s manifest [1] file
(<appname>.exe.manifest) or resource (embedded
within the executable) that contains
requestedExecutionLevel of
requireAdministrator

4. Manually by the user right-clicking on the executable
and selecting “Run Elevated…” in Windows Explorer

5. Also when a program is:

SYMANTEC ADVANCED THREAT RESEARCH

4

a. Launched from an already privileged process
b. Launched from Task Manager via entering

Ctrl-Shift-Esc or entering Ctrl-Alt-Del and
clicking “Task Manager” (see the next section
for more details). This elevation trick has
since been resolved in more recent Windows
Vista builds.

COM objects can also run elevated in the form of out-of-
process DLLs loaded into a privileged surrogate process. This
occurs when in
HKEY_CURRENT_ROOT\Classes\CLSID\<CLSID>\Elevat
ion\Enabled is set to 1. When this happens, a Consent
Popup will ask for the user’s authorization. If the user
approves, the COM object is elevated via the
CoCreateInstanceAsAdmin API [1], which is new to
Windows Vista. The CoCreateInstanceAsAdmin API will
initiate an RPC call to the AppInfo Admin Broker service,
which will load the DLL in a child process of svchost.exe
running as LocalSystem (either rundll32.exe or another
instance of svchost.exe). The following COM objects are
currently configured to be run elevated in the registry:

{08d450b7-f7e5-4424-
8229-11888adb7c14}

%SystemRoot%\system32\font
ext.dll

{1138506a-b949-46a7-
b6c0-ee26499fdeaf}

%SystemRoot%\system32\wucl
tux.dll

{26FE7361-BD5A-4DCB-
B309-C6F42DDE661C}

"%ProgramFiles%\Internet
Explorer\IEInstal.exe"

{304CE942-6E39-40D8-
943A-B913C40C9CD4}

c:\Windows\system32\wfapi.
dll
HNetCfg.FwMgr

{33E5987B-CA8A-4a8a-
921A-8AC16A1676EB}

%SystemRoot%\System32\shpa
fact.dll

{375C3A49-8654-49C6-
BD32-7E7FE88509B4}

%programfiles%\AdhocMeetin
gs\WinCollabElev.dll
WinCollabElev.Elev.1

{3ad05575-8857-4850-
9277-11b85bdb8e09}

%SystemRoot%\system32\shel
l32.dll

{49F371E1-8C5C-4d9c-
9A3B-54A6827F513C}

ntshrui.dll

{4BC67F23-D805-4384-
BCA3-6F1EDFF50E2C}

c:\Windows\system32\wercpl
support.dll
ERCLuaElevationHelper

{514B5E31-5596-422F-
BE58-D804464683B5}

intl.cpl

{6311429E-2F1A-4777-
880F-C7289FD10169}

ntshrui.dll

{7007ACD1-3202-11D1-
AAD2-00805FC1270E}

%SystemRoot%\System32\nets
hell.dll

{71B804C5-5577-471D-
8FE5-C4A45B654EB8}

%SystemRoot%\System32\Auxi
liaryDisplayCpl.dll

{72A7994A-3092-4054-
B6BE-08FF81AEEFFC}

%SystemRoot%\System32\shpa
fact.dll

{77F419AA-771A-45ff-
AC66-7567FA3243D3}

ntshrui.dll

{86d5eb8a-859f-4c7b-
a76b-2bd819b7a850}

%SystemRoot%\System32\shpa
fact.dll

{8c2db90a-6c3d-48fa-
a571-0be2836c630c}

%SystemRoot%\System32\shpa
fact.dll

{9df523b0-a6c0-4ea9-
b5f1-f4565c3ac8b8}

timedate.cpl

{a036417d-768d-4566-
8be4-5f5e1268fa9f}

%SystemRoot%\System32\ntsh
rui.dll

{A0ADD4EC-5BD3-4f70-
A47B-07797A45C635}

%SystemRoot%\System32\cscu
i.dll

{A2D75874-6750-4931-
94C1-C99D3BC9D0C7}

%ProgramFiles%\Windows
Defender\MsMpCom.dll

{A3BB0AD5-ECA3-4A81-
B2CB-15FD8349D400}

%SystemRoot%\System32\SLLU
A.exe
SLLUA.SLLUAObject.1

{A7A63E5C-3877-4840-
8727-C1EA9D7A4D50}

%SystemRoot%\System32\fveu
i.dll

{afb8cfa2-6d7b-4108-
9202-cc08d7222dc9}

%SystemRoot%\system32\shel
l32.dll

{bCEA735B-4DAC-4B71-
9C47-1D560AFD2A9B}

DfsShlEx.dll
DfsShell.DfsShellAdmin.1

{c529C7EF-A3AF-45F2-
8A47-767B33AA5CC0}

%SystemRoot%\system32\ndfa
pi.dll
ndfapi.NDFAPI.1

{cee8ccc9-4f6b-4469-
a235-5a22869eef03}

PNPXAssoc.dll

{D3667F1E-CCB8-4A69-
99DF-59A2B2A6753F}

%SystemRoot%\System32\Auxi
liaryDisplayCpl.dll

{e6f59608-8aa2-4dbe-
a651-c2f6585e4f30}

%SystemRoot%\System32\shpa
fact.dll

{E9495B87-D950-4ab5-
87A5-FF6D70BF3E90}

wscui.cpl

{edb5f444-cb8d-445a-
a523-ec5ab6ea33c7}

ntshrui.dll

B. The Legacy Shell Trick
The elevation trick using Task Manager mentioned in the

previous section (case 5b) has since been resolved in more
recent Windows Vista builds. It originally worked because
the process is launched from WinLogon. This occurs because
WinLogon is responsible for handling the Secure Attention
Sequence, which is what Ctrl-Alt-Del and Ctrl-Shift-Esc are.
WinLogon runs unrestricted and with high integrity. An
executable that is launched from here via the “File -> New
Task” menu option of Task Manager runs with full privileges.
This does not seem to have been intentional. In fact, [1] states,
“The only way for the Shell to run as administrator is to log on
with the machine administrator account (Built-in
Administrator).” This statement is inaccurate. It was possible
to kill the existing Explorer.exe from Task Manager and
restart it via “File -> New Task” menu option, and entering
“explorer”. Task Manager launches processes via
CreateProcess instead of CreateRestrictedProcess,
so Windows Explorer is launched without restrictions and
operates like the legacy shell from Windows XP. That is, there
will no longer be any consent prompts when launching
applications, and files can be moved, renamed, deleted without
needing to elevate.

C. Consent Prompts and Admin Brokers
Since Windows Explorer itself runs with a restricted token

and medium integrity level, it lacks sufficient privilege to
launch the application unrestricted on its own. Instead, it uses
a surrogate: the AppInfo Admin Broker service. AppInfo
runs as LocalSystem and has more privileges than even a
Protected Administrator. Because it is a service, AppInfo
runs in Isolated Session 0 (discussed in the next section).

The AppInfo Admin Broker service exposes an RPC
interface function RunAsAdminProcess. When a process is
to be run elevated, Windows Explorer (through the
ShellExecute API) uses this RPC interface to request
AppInfo launch the application with the user’s full
credentials.

When AppInfo receives the RPC request, it launches
consent.exe which produces a popup window on the

SYMANTEC ADVANCED THREAT RESEARCH

5

desktop asking for the user’s consent. If the user clicks
“Approve”, AppInfo calls the ImpersonateLoggedOnUser
and CreateProcessAsUser APIs to launch the process as
the user. It is necessary for AppInfo to use
CreateProcessAsUser instead of CreateProcess,
because the AppInfo service is used by all users and there
may be more than one user logged onto the machine.

IV. SERVICE ISOLATION (“ISOLATED SESSION 0”)
In previous versions of Windows, services and user

processes all ran under the same session. With Vista, services
run in the “Isolated Session 0” [8]. This means that a normal
service cannot show any popup or dialog boxes to the user. If
a service tries to generate a popup event or a dialog box to
receive user interaction, it will sit forever since the user will
not be able to see it. This is true even if the service is
configured as interactive (i.e., allowed to interact with the
desktop). The interactive session the user logs into is, in fact, a
Terminal Server session. Using query.exe, one can see all
the interactive sessions. In fact, the Microsoft-sanctioned way
to send a message from a service running in the Isolated
Session 0 is to use WTSSendMessage which is part of the
Windows Terminal Services API.

How does AppInfo running under a surrogate
svchost.exe process in the Isolated Session 0 cause the
Consent Prompt in another session? It uses
CreateProcessAsUser to launch consent.exe in Session
1 with the “UI Access Mandatory Level” discussed in Section
II.C supra.

V. FILE AND REGISTRY VIRTUALIZATION

A. Introduction
Windows developers have usually assumed the user has

administrative privileges. Operations such as writing to the
Windows system directory or the HKEY_LOCAL_MACHINE
registry require administrative privileges; a standard user
(likewise, under a LUA process) cannot write to these
locations. According to [1], disabling virtualization “… will
result in a regression to a Windows XP application
compatibility pass rate of 56 percent.”

To work around this, Microsoft has introduced file and
registry virtualization to retain applications backwards-
compatibility. When lower privileged processes that attempt to
modify global locations fail due to lack of permission, the data
is instead transparently written to a per-user location (known
as virtualization). These per-user locations are checked before
global locations. In other words, the per-user location
overrides the global location.

B. Registry Virtualization
Registry virtualization is implemented by ntoskrnl and

ntkrnlpa (i.e., the operating system kernel itself). When

running under a LUA process, registry write attempts that fail
(due to insufficient permission) have their location changed
from:
HKEY_LOCAL_MACHINE\Software

to:
HKEY_CURRENT_USER\Software\Classes\VirtualSto

re\MACHINE\Software

C. File Virtualization
File virtualization is implemented by the file system filter

driver luafv.sys. When running under a LUA process, file
write attempts that fail (due to insufficient permission) have
their location changed from:
C:\Progra~1 (C:\Program Files)

to:
%UserProfile%\AppData\Local\VirtualStore\C\P

rogra~1

For example, if a LUA process tries to replace a
configuration file (e.g., %WinDir%\win.ini) and lacks
sufficient privileges to modify the real %WinDir%\win.ini,
then win.ini is virtualized to the per-user location. If that
user later reads from %WinDir%\win.ini, the user will see
his/her modifications. However, no other users will see these
modifications.

It is also interesting to note that certain executable file
extensions (cmd, bat, exe, dll, etc.) are not virtualized, even
though this isn’t mentioned in [9]. This means the user cannot
overwrite an executable file by file virtualization. Attempts to
do so will fail due to access denied. For a complete list, see
Appendix F at the end of this paper.

D. Low Rights Internet Explorer Virtualization
Virtualization for Low Rights Internet Explorer is not done

by the file system driver that handles normal file and registry
virtualization. Instead this is done by an AppCompat shim
DLL located in %WinDir%\AppCompat\iebrshim.dll (IE
Broker Shim). A low integrity process cannot even write to the
user-specific locations used for LUA file and registry
virtualization. That is, a low integrity process cannot even
write to
%UserProfile%\AppData\Local\VirtualStore used for
medium integrity level file virtualization or
HKEY_CURRENT_USER\Software\Classes\Virtual used
for medium integrity level registry virtualization. This is to
prevent low-to-medium privilege escalation attacks, as LUA
processes run at the medium integrity level.

Since all files and registry keys have a default integrity
level of medium, a low integrity process is only able to write
to locations that have been explicitly allowed (by setting the
integrity level to low integrity).

Per-user file virtualization is in:
%UserProfile%\AppData\Local\Microsoft\Window

s\Temporary Internet Files\Virtualized

Per-user registry virtualization is in:

SYMANTEC ADVANCED THREAT RESEARCH

6

HKEY_CURRENT_USER\Software\Microsoft\Interne
t Explorer\InternetRegistry

Other low integrity file locations are:

• %UserProfile%\AppData\Local\Microsoft\
Windows\Temporary Interface Files\Low

• %UserProfile%\AppData\Local\Microsoft\
Windows\History\Low

• %UserProfile%\AppData\Local\Temp\Low

Other low integrity registry locations are:
• HKEY_CURRENT_USER\Software\Microsoft\I

nternet Explorer\LowRegistry
• HKEY_CURRENT_USER\Software\Microsoft\W

indows\CurrentVersion\Internet
Settings\5.0\LowCache

• HKEY_CURRENT_USER\Software\Microsoft\W
indows\CurrentVersion\Explorer\MenuOrd
er\Favorites

• HKEY_CURRENT_USER\Software\Microsoft\I
nternet Explorer\Toolbar

Most settings are controlled by

HKLM\Software\Microsoft\Internet Explorer\Low
Rights.

When the user launches Internet Explorer, it will first run
IEUser.exe, which runs at the default medium integrity
level. IEUser.exe will spawn a low-integrity
IExplore.exe, which is what the user sees and interacts
with. When the user wishes to install an ActiveX control or
something requiring administrative privileges, the
IEInstall.exe Admin Broker is used (which runs at high
integrity). IEInstall.exe is marked as an elevated
LocalServer32 COM object (CLSID 26FE7361-BD5A-
4DCB-B309-C6F42DDE661C). When the user wishes to save
a downloaded file, this will be done by IEUser.exe which
runs with medium integrity. Here is a diagram from [10]
which illustrates this:

VI. WINDOWS RESOURCE PROTECTION (WRP)
Windows Resource Protection (WRP) replaces the System

File Protection (SFP) that existed in previous versions of
Windows. WRP now protects more than just files, it also

protects registry keys. All signed executable code and drivers
in an OS manifest are protected by WRP.

SFP worked by registering for notification of file changes in
WinLogon. If any changes were detected to a protected system
file, the modified file was restored to a saved copy located in
%WinDir%\System32\dllcache.

In Windows Vista, WRP works by setting the ACLs on the
protected file and registry keys so that they can only be written
to by the processes with the TrustedInstaller SID.
LocalSystem and Administrators are given read-only access.
The result is that the files and registry keys can only be
modified by the TrustedInstaller service, which is
located in
%WinDir%\servicing\TrustedInstaller.exe.
Windows Update will call the TrustedInstaller to make
OS updates. The TrustedInstaller will only install signed
updates.

VII. ATTACKS

A. Introduction
Windows Vista has unique challenges in trying to prevent

privilege escalation attacks compared to the approach taken by
UNIX derivatives. This section will focus on the privilege
escalation attacks that result from the approach Microsoft has
taken with Windows Vista.

If a higher integrity process uses registry keys and
configuration files that are writable by a lower integrity
process, then the security model is tainted, as this permits a
lower integrity process to influence the behavior of a higher
integrity process. In this section, we will show a number of
flaws in the LUA implementation and, as a result, show how it
allows privilege escalation from low integrity to medium
integrity, then medium integrity to high integrity, then high
integrity to LocalSystem.

B. UNIX Security Model
UNIX has supported standard user accounts with limited

privileges for decades. Therefore, UNIX programmers are
well adjusted to accommodating standard users. If a limited
user wants to install a program into a global location that the
user doesn’t have write access to, the user will need to su (the
switch user command) to a user that has write access to the
global location (usually the root account). The limited user
accounts also serve as a form of sandboxing. For example, it is
common for the Apache web server to run under the user
account apache. File permissions can be set to prevent
apache from reading/writing to anything the web server
doesn’t need access to. Then if the web server is
compromised, the attacker is restricted by the limited access of
the apache account.

We have over-generalized this to avoid having to discuss
specifics (Linux Security Modules, chroot, etc.). Some UNIX
security models are quite similar to Windows Vista. For
example, SELinux also has mandatory access controls and
per-process privilege levels that are fixed at the time of
program execution.

SYMANTEC ADVANCED THREAT RESEARCH

7

C. Windows Visa Security Model
Windows Vista’s developers had to choose the best way to

improve the overall security model while still retaining the
most backward compatibility. While most of their decisions
seem reasonable, two particular decisions lead to several
seemingly intractable implementation flaws.

First, Windows programmers have been quite lax on
leveraging and exercising rights and privileges in the existing
Windows security model. A common behavior is to open a
registry key or file for all access, when really only read access
was needed. Another problem is making the assumption the
user has administrative privileges (and requiring more
privileges than actually needed). These assumptions are not
just made by third-party Windows programmers—several
Microsoft-implemented programs also fail without
administrative privileges (e.g., the clock in the taskbar and
shutdown.exe). For this reason, Microsoft has been forced
to use “Application Compatibility” shims and file/registry
virtualization to allow pre-Vista programs to function
properly.

Second, Windows Vista can have several processes created
by the same user operating at different integrity levels. This
obviously creates an incentive for a low integrity level process
to try to acquire the higher integrity level of the other process
created by the same user. Windows Vista tries to close to
obvious holes: for example, UIPI to prevent a lower integrity
process from sending window messages to a higher integrity
process. There is still far too much overlap between processes
running at different integrity levels. A medium integrity
processes can modify registry keys under
HKEY_CURRENT_USER which are also used by high integrity
processes.

D. From Low Integrity Level

Scenario:
A user browses a malicious website using Low Rights

Internet Explorer 7. The malicious website then exploits a
previously unknown vulnerability, resulting in arbitrary code
execution in the context of IExplore.exe (running at the
low integrity level). The goal of the malicious code at this
stage is to obtain execution on the target and reach medium
integrity level.

Internet Explorer is the only process running at low
integrity on a default Windows Vista installation. At the low
integrity level, Internet Explorer is running below the default
integrity level of other services. On the February build, we
discovered that a low integrity process that reconnects to the
same machine over the network (i.e., loops back) via SMB can
again enjoy slightly elevated privileges.

It should be noted that the vulnerability we will now discuss
was closed as of the public Windows Beta 2 (build 5384),
however it is instructive to observe how it works since other
services (e.g., IIS, PNP, IPv4 over IPv6) might offer a
malicious program other opportunities to “loop-back”.

If the user account is “matt” and the user’s home directory
is c:\users\matt, a medium integrity process can create
c:\users\matt\test.txt, whereas the low integrity
process cannot (since the default integrity level of a file/folder
is always medium integrity). So, if a low integrity process can
force the use of the user’s default credentials, it results in a
privilege escalation. Thus, if a malicious ActiveX object tries
to write to
“c:\users\matt\AppData\Roaming\Microsoft\Windo
ws\Start Menu\Programs\Startup\malicious.exe”
in order to gain execution when the next time the user logs in,
it will fail. However, a malicious ActiveX object can loopback
to the directory using SMB and write to
“\\127.0.0.1\C$\users\matt\AppData\Roaming\Mic
rosoft\Windows\Start
Menu\Programs\Startup\malicious.exe.” This is
because a write operation through a file share will use the
default integrity level of medium. This share is enabled by
default and normally only available to Administrators. Since
the attacker is connecting to a local share, no
username/password is needed by the malicious code. The
primary ways to exploit this vulnerability are to:

1. Place a malicious executable in the Startup folder.
This is the most straightforward attack, but the
malicious program will not be run until the user’s next
login.

2. Replace a program shortcut the Start Menu such as
Internet Explorer.lnk so that when the current
user clicks the Internet Explorer button, it launches a
malicious program at medium integrity level. This is
seemingly the most effective attack since it is quite
unlikely the user will notice the change.

E. From Medium Integrity Level - Introduction

Scenario:

The low integrity escalation vulnerability discussed in the
previous section was used to place “malicious.exe” in the
user’s Startup folder. Programs in this folder are executed
when the user logs on to the machine. So for this section, it is
assumed the user logged off and later logged back into the
machine, resulting in the execution of “malicious.exe”.
Thus “malicious.exe” is now executing at the medium
integrity level.

To elevate privileges from medium to high integrity level, it
is necessary to find a high integrity process that can be
influenced by a medium integrity process. Possible attacks are:

• Communicate over named pipe or LPC with a high
integrity process (e.g., CSRSS, LSM, SMSS, etc.) and
try to get the high integrity process to, for example,
write to a file that a medium integrity process cannot.

• Find a shared memory section used by a high
integrity process that is writable with medium
integrity level, similar to the technique used in [11].

• Find a configuration file or registry key that is
writable from a medium integrity process and used as
input in a high integrity process.

SYMANTEC ADVANCED THREAT RESEARCH

8

Specifically, everything under HKEY_CURRENT_USER is

writable from a medium integrity process, and high integrity
processes also have a high degree of interaction with
HKEY_CURRENT_USER. This is a logical vector for attack and
potentially creates a large problem.

F. From Medium Integrity Level – Method 1
In this attack, a subterfuge (i.e., slight of hand trick) is used

to mislead the user. There are certain operations performed by
the user where the user expects to see a consent prompt asking
for authorization to elevate a process. Microsoft does not lock
the executable in question prior to prompting for consent. So if
this executable file being elevated is in a location writable at
medium integrity level, then it is possible to replace the file
after the consent prompt but before the user clicks “Approve.”
For example, the user attempts to run a trusted program that is
signed by Microsoft, so the consent prompt will have a green
banner to show it is signed by a trusted vendor. The attack
works by having malicious.exe running in the background
at medium integrity. Whenever consent.exe is launched, the
malicious program will check which program is being
launched and see if it has write access. If it does, it will copy
its own malicious application over the program that is about to
elevated. The user reaction time (especially at today’s
processor speeds) to see the consent prompt and click
“Approve” provides ample time to overwrite the program
about to be launched. So the user will end up launching a
malicious program, thinking that they were running a signed,
trusted program as the consent prompt indicated. The user will
have no way to detect to this.

COM objects are frequently represented as DLLs. So when

a process wants to load the COM object, it is loaded using
rundll32.exe to load the COM object into a surrogate process
like svchost.exe or dllhost.exe. If the COM object requires
administrative privileges, then CoCreateInstanceAsAdmin
is called and the user is prompted for consent. Presumably, the
DLL of the COM object can also be overwritten in the same
manner as executables can. If so, then the user can also be
misled during elevation of COM objects. At the time of
publication, this conjecture has not been experimentally
verified.

G. From Medium Integrity Level – Method 2
This attack also uses a subterfuge to mislead the user.

Global COM objects are located under
HKEY_LOCAL_MACHINE\Software\Classes\CLSID. User-
specific COM objects are located under
HKEY_CURRENT_USER\Software\Classes\CLSID.
Because COM objects under HKEY_CURRENT_USER take
precedence over COM objects in HKEY_LOCAL_MACHINE,
“malicious.exe” can enumerate all elevated COM objects
under HKEY_LOCAL_MACHINE, and re-create the same COM
entries under HKEY_CURRENT_USER, and substitute the values
with the paths to malicious COM objects. Users may be easily

deceived by this subterfuge and unwittingly consent to execute
the malicious COM objects. For example, most of the items
under the control panel are COM objects that will result in
consent prompts. At the time of publication, this conjecture
has not been verified.

If this is the only step implemented, then a keen user may
notice that the consent prompt is red or yellow (unsigned or
untrusted) instead of green (signed and trusted). Windows
considers an application trusted if it is signed by a trusted
certificate authority with Authenticode.

While the attack described in this section was found to exist
in the February CTP, it has been fixed as of the public
Windows Beta 2 (build 5384). Later Vista builds only refer to
HKEY_LOCAL_MACHINE registry keys for COM elevation and
ignore entries under HKEY_CURRENT_USER so this exploit
path is no longer possible.

H. From Medium Integrity Level – Method 3
The final attack makes use of the AppInit_DLLs key and

requires registry virtualization to be enabled. This attack is
only effective against the 32-bit version of Windows Vista, as
registry virtualization is disabled on the 64-bit version of
Windows Vista. This key is located under
HKEY_LOCAL_MACHINE\Software\Microsoft\Windows
NT\CurrentVersion\Windows. To implement this attack:

• Create a REG_SZ entry named AppInit_DLLs that
and set it to the full path to the malicious DLL

• Create a REG_DWORD entry named
LoadAppInit_DLLs set to 1

A medium integrity process cannot write to

HKEY_LOCAL_MACHINE\Software\Microsoft\Windows
NT\CurrentVersion\Windows. Instead, it will be redirected
(virtualized) to
HKEY_CURRENT_USER\Software\Classes\VirtualStore\M
ACHINE\Software\Microsoft\Windows
NT\CurrentVersion\Windows. Because the virtualized
AppInit_DLLs takes precedence, the malicious DLL
specified in the virtualized AppInit_DLLs will be loaded
into all processes running under UAP. Processes running with
full administrative privileges (i.e., non-UAP elevated
processes) are unaffected, because registry virtualization
doesn’t apply to them.

In most cases this would not result in any elevation, because
high integrity processes are almost never running under LUA,
and thus don’t make use of the malicious AppInit_DLLs in
the registry VirtualStore. However, uxss.exe, the User
Experience Subsystem, is an exception. It is a high integrity
process and also has the UI Access Mandatory Level. This is
necessary because uxss.exe controls the desktop, so it is
responsible for sending window messages to all GUI programs
that interact with the desktop. Uxss.exe also needs to run at
high integrity in order to send messages to other high integrity
processes that may interact with the desktop (such as
consent.exe which runs as LocalSystem). Unfortunately,
this permits uxss.exe to conduct Shatter attacks against

SYMANTEC ADVANCED THREAT RESEARCH

9

consent.exe.
Making uxss.exe a restricted process running under LUA

actually makes things worse. Because it runs under LUA, it is
subjected to registry virtualization, and yet at the same time
runs at high integrity with UI access. The ultimate result is
that when the user logs in, uxss.exe is launched as a high
integrity LUA process, reads the virtualized AppInit_DLLs,
and loads a malicious DLL into the high integrity (but
restricted) uxss.exe process.

As of the public Windows Beta 2 (build 5384), uxss.exe
does not exist and since that was the only exploitable process
that was discovered, this exploit path does not work any
longer. Furthermore, registry virtualization is now
configurable on a per process basis.

I. From High Integrity Level, LUA Process
Scenario:

The attack discussed in the previous section was used by
malicious.exe to prepare its malicious.dll to be loaded
into uxss.exe. Once the user logged off and logged back on,
“malicious.dll” was loaded into the address space of
uxss.exe, a high integrity but restricted process.

At this stage, Vista is a step away from becoming
checkmated and full compromise is trivial. Microsoft ignored
its own advice, stated in [12]:

“Applications that use restricted tokens should run the
restricted application on desktops other than the default
desktop. This is necessary to prevent an attack by a restricted
application, using SendMessage or PostMessage, to
unrestricted applications on the default desktop. If necessary,
switch between desktops for your application purposes.”

Since malicious.dll has high integrity, the

SetWinEvent and SetWindowsHookEx APIs can be used.
These allow a DLL to be launched into all processes
interacting with the same desktop. So all malicious.dll has
to do is use one of these APIs and wait for a high integrity,
unrestricted process to be launched. While an effort was made
to reduce the interaction of high privilege services with the
user’s desktop (by placing them in an isolated session as
discussed previously), it was not possible to eliminate the
interaction entirely. Namely, csrss.exe, ctfmon.exe,
LogonUI.exe, WinLogon.exe, and consent.exe are all
processes running with LocalSystem capabilities within
Session 1. So, as soon as one of these processes interacts with
the desktop, the module specified in the hModule parameter
of SetWinEvent or SetWindowsHookEx will be loaded and
its DllMain will be called.

While the attack described in this section was found to exist
in the February CTP, it has been fixed as of the public
Windows Beta 2 (build 5384). There is no longer an
uxss.exe in the latest Vista builds and it was the only
process known to be exploitable.

J. Against Windows Resource Protection

Scenario:

The attack in Section I was used and now malicious.dll
is running as LocalSystem.

The following attack could be done from either
LocalSystem or any account in the Administrators group, as
long as it is a non-LUA process (since the SeTakeOwnership
privilege is needed). LocalSystem and Administrators
both have the ability to take ownership of files. Windows
Resource Protection, as mentioned previously, is implemented
as an ACL that only grants write access to the
TrustedInstaller SID. However, because
Administrators and LocalSystem both have sufficient
privilege to take ownership of securable objects, the steps to
evade WRP are to first enable the SeTakeOwnership
privilege, second take ownership of the WRP-protected file or
registry key, and finally grant Administrators full access.
These steps can be done using the AdjustTokenPrivileges
(for step 1) and SetNamedSecurityInfo (for steps 2 and 3)
APIs. After that, the WRP-protected file or registry key can be
changed without inhibition. There is no longer a thread that
attempts to detect changes to protected system files as was
done by SFP prior to Windows Vista. Therefore, it possible to
backdoor all system files at this stage. In addition, driver
signing restrictions will not help to mitigate this attack. We
have successfully demonstrated in a second paper,
“Assessment of Windows Vista Kernel-Mode Security,” that
driver signing restrictions can be disabled with two binary
patches: one to WINLOAD.EXE and one to CI.DLL.

K. Failed Attacks
This section includes attacks that were unsuccessful. In

some cases, the attack scenario was thoroughly tested and
Windows Vista seems to properly defend against it.
Conducting blackbox testing as we did, there always exists the
possibility of a false negative – a probe that succeeds with a
subtle side-effect we did not notice, may eventually be used to
mount a successful attack upon the operating system’s security
perimeter. This section will highlight the areas of Windows
Vista where attacks were unsuccessful:

Silent installs do not result in any silent elevation. Instead, a
silent install runs with the credentials of the user and the
install fails if more privileges are later required, without
prompting the user.

The attack discussed in Section VII.D allows a low integrity
process to write to any file that a medium integrity process
can. The goal of Section VII.D was to find a way to run an
arbitrary application with medium integrity. The method
chosen was to place an executable in the Startup folder in
the user’s Start Menu. An alternative method, that didn’t
work in testing, would be to place a malicious desktop.ini
in a folder likely to be browsed Windows Explorer. Here is a
sample desktop.ini:

SYMANTEC ADVANCED THREAT RESEARCH

10

[.ShellClassInfo]
IconFile=%SystemRoot%\system32\shell32.dll
IconIndex=-173
LocalizedResourceName=@shell32.dll,-12693

Windows Explorer checks for the presence of desktop.ini

when browsing a folder to allow per-folder customization. A
good candidate is %AppData%\Microsoft\Windows\Start
Menu\desktop.ini (this would be checked each time the
user clicked the Start Menu). The theory was that by giving
the path to a malicious DLL in the desktop.ini, Windows
Explorer would load this DLL when that directory is browsed.
However, during experimentation, this turned out not to be the
case. The DLL referenced in the malicious desktop.ini was
never loaded. It may be worth later investigating why this
didn’t work. Presumably the attack didn’t work because the
DLL is loaded as a data file and only checked for its resource
section (rather than loaded as an executable image). For the
attack to work, the DLL needs to be loaded as a conventional
DLL using the LoadLibrary API, which would cause the
DLL to execute and thereby introduce malicious code into
Windows Explorer.

While [1] states that sending window messages from a
lower integrity process to a higher integrity process is
prevented, it didn’t mention whether the GUI-related APIs
SetWindowsHookEx and SetWinEventHook are also
prevented. However, it has been verified that these are also
prevented from a lower integrity process to a higher integrity
process.

Attempts to override an existing executable such as
%WinDir%\system32\calc.exe by placing a malicious
calc.exe in the corresponding VirtualStore location
failed. It was later determined that this is due to Windows
Vista excluding certain file extensions (see Appendix F) from
virtualization. This seems to be undocumented in all of the
Microsoft documents mentioning file virtualization, however
this is clearly revealed by analyzing the file system filter
driver that implements file virtualization (luafv.sys),

VIII. CONCLUSION

Although we discovered several weaknesses in Windows

Vista Feburary 2006 build, later builds have corrected the
implementations and closed the exploit paths. Windows
Vista’s out-of-the-box security is a significant improvement
over previous versions of Windows. It is likely that the
security community will aggressively probe and seek to
undermine Vista’s security improvements once it is released.
The author expects several other privilege escalation
vulnerabilities to be discovered. There are two areas we can
expect to be scrutinized heavily by malicious code authors and
Spyware vendors trying to work around the additional security
restrictions:

• Ways to acquire medium or high integrity from low
integrity. This is of great interest to malicious code
authors and Spyware vendors trying to break out of
the Low Rights Internet Explorer sandbox.

• LPC/RPC interfaces exposed from high integrity
processes. Since a process of any integrity level can
send commands to these server interfaces, it can
provide an unintended method for a client to perform
more privileged operations than it should. To
illustrate, consider the AppInfo Admin Broker
discussed in Section III.C. It runs at high integrity
and exposes an RPC function
RunAsAdminProcess. This can be called from a
low integrity level. Normally this is not a problem,
because AppInfo prompts the user for consent. If
AppInfo had a vulnerability (perhaps an
undocumented flag) that would cause AppInfo to
execute the command the low integrity client
supplied without a Consent Prompt, this would
provide a trivial way for a malicious process to
acquire higher privileges. There are number of RPC
interfaces exposed from high integrity processes, so it
is just a matter of an attacker finding one that can be
abused. The author fully anticipates this will happen.

Because Windows Vista is still in beta, some of the

behavior described may change prior to Windows Vista’s
public release. Therefore, it is advised the reader continues to
follow up on Microsoft Vista blogs such as [14] and [15].

REFERENCES
[1] Microsoft. (2005, September). Developer Best Practices and Guidelines

for Applications in a Least Privileged Environment. MSDN [Online].
Available:
http://msdn.microsoft.com/windowsvista/default.aspx?pull=/library/en-
us/dnlong/html/AccProtVista.asp

[2] Slashdot. First Windows Vista Security Update Released [Online].
Available: http://it.slashdot.org/article.pl?sid=06/01/15/1910205

[3] T. Newsham. Windows Vista Networking: A Broad Overview [Online].
Available: http://www.symantec.com/avcenter/reference/ATR-
VistaAttackSurface.pdf

[4] Microsoft. Access Control. MSDN [Online]. Available:
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/secauthz/security/access_control.asp

[5] M. Russinovich, D. Solomon. Microsoft Windows Internals, Fourth
Edition: Microsoft Windows™ 2003, Windows XP, and Windows 2000.
Redmond, WA: Microsoft Press, 2005, ch 8.

[6] B. Moore. (2003, October). Shattering by Example [Online]. Available:
http://www.security-
assessment.com/Whitepapers/Shattering_By_Example-
V1_03102003.pdf

[7] Microsoft. Using Application Compatibility Tools for Marking Legacy
Applications with Elevated Run Levels on Microsoft Windows Vista.
MSDN [Online]. Available:
http://www.microsoft.com/technet/windowsvista/deploy/appcompat/acs
hims.mspx

[8] A. Ben-Menahem, A. Tucker. “Windows Vista and ‘Longhorn’ Server:
Understanding, Enhancing and Extending Security End-to-end,” PDC,
Los Angeles, 2005. Available:
http://microsoft.sitestream.com/PDC05/FUN/FUN210_files/Botto_files/
FUN210_Ben-Menahem_Tucker.ppt

[9] R. B. Ward, K. Thirumalai. “Windows Vista and ‘Longhorn’ Server:
Under the Hood of the Operating System Internals
and Your Application,” PDC, Los Angeles, CA, 2005. Available:
http://microsoft.sitestream.com/PDC05/FUN/FUN417_files/Botto_files/
FUN417_Ward_Thirumalai.ppt

[10] Microsoft (2006, January). Understanding and Working in Protected
Mode Internet Explorer [Online]. Available:
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/IETechCol/dnwebgen/ProtectedMode.asp

http://msdn.microsoft.com/windowsvista/default.aspx?pull=/library/en-us/dnlong/html/AccProtVista.asp
http://msdn.microsoft.com/windowsvista/default.aspx?pull=/library/en-us/dnlong/html/AccProtVista.asp
http://it.slashdot.org/article.pl?sid=06/01/15/1910205
http://www.symantec.com/avcenter/reference/ATR-VistaAttackSurface.pdf
http://www.symantec.com/avcenter/reference/ATR-VistaAttackSurface.pdf
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/secauthz/security/access_control.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/secauthz/security/access_control.asp
http://www.security-assessment.com/Whitepapers/Shattering_By_Example-V1_03102003.pdf
http://www.security-assessment.com/Whitepapers/Shattering_By_Example-V1_03102003.pdf
http://www.security-assessment.com/Whitepapers/Shattering_By_Example-V1_03102003.pdf
http://www.microsoft.com/technet/windowsvista/deploy/appcompat/acshims.mspx
http://www.microsoft.com/technet/windowsvista/deploy/appcompat/acshims.mspx
http://microsoft.sitestream.com/PDC05/FUN/FUN210_files/Botto_files/FUN210_Ben-Menahem_Tucker.ppt
http://microsoft.sitestream.com/PDC05/FUN/FUN210_files/Botto_files/FUN210_Ben-Menahem_Tucker.ppt
http://microsoft.sitestream.com/PDC05/FUN/FUN417_files/Botto_files/FUN417_Ward_Thirumalai.ppt
http://microsoft.sitestream.com/PDC05/FUN/FUN417_files/Botto_files/FUN417_Ward_Thirumalai.ppt
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/IETechCol/dnwebgen/ProtectedMode.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/IETechCol/dnwebgen/ProtectedMode.asp

SYMANTEC ADVANCED THREAT RESEARCH

11

[11] C. Cerrudo. “Hacking Windows Internals,” Blackhat Europe,
Amsterdam, Netherlands, 2005. Available:
http://www.blackhat.com/presentations/bh-europe-05/BH_EU_05-
Cerrudo/BH_EU_05_Cerrudo.pdf

[12] Microsoft. Restricted Tokens. MSDN [Online]. Available:
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/secauthz/security/restricted_tokens.asp

[13] Skape, skywing. (2005, December, 1). Bypassing PatchGuard on
Windows x64 [Online]. Uninformed (Volume 3). Available:
http://www.uninformed.org/?v=3&a=3&t=txt

[14] Microsoft. UACBlog [Online]. Available: http://blogs.msdn.com/uac
[15] Microsoft. IEBlog [Online]. Available: http://blogs.msdn.com/ie
[16] M. Conover. Malware Profiling and Rootkit Detection on Windows

[Online]. Available :
http://www.cybertech.net/~sh0ksh0k/projects/ObjProfiler

http://www.blackhat.com/presentations/bh-europe-05/BH_EU_05-Cerrudo/BH_EU_05_Cerrudo.pdf
http://www.blackhat.com/presentations/bh-europe-05/BH_EU_05-Cerrudo/BH_EU_05_Cerrudo.pdf
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/secauthz/security/restricted_tokens.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/secauthz/security/restricted_tokens.asp
http://www.uninformed.org/?v=3&a=3&t=txt
http://blogs.msdn.com/uac
http://blogs.msdn.com/ie
http://www.cybertech.net/%7Esh0ksh0k/projects/ObjProfiler

SYMANTEC ADVANCED THREAT RESEARCH

12

APPENDIX

A. Protected Administrator, Low Rights Internet Explorer

USER INFORMATION

User Name SID
hpvista\matt S-1-5-21-3571944088-1297126955-1855943037-1000

GROUP INFORMATION

Group Name Type SID Attributes
Everyone Well-known group S-1-1-0 Mandatory group

Enabled by default
Enabled group

BUILTIN\Administrators Alias S-1-5-32-544 Group used for deny only
BUILTIN\Users Alias S-1-5-32-545 Mandatory group

Enabled by default
Enabled group

NT AUTHORITY\INTERACTIVE Well-known group S-1-5-4 Mandatory group
Enabled by default
Enabled group

NT AUTHORITY\Authenticated Users Well-known group S-1-5-11 Mandatory group
Enabled by default
Enabled group

NT AUTHORITY\This Organization Well-known group S-1-5-15 Mandatory group
Enabled by default
Enabled group

LOCAL Well-known group S-1-2-0 Mandatory group
Enabled by default
Enabled group

NT AUTHORITY\NTLM Authentication Well-known group S-1-5-64-10 Mandatory group
Enabled by default
Enabled group

Mandatory Label\Low Mandatory Level Unknown SID type S-1-16-4096 Mandatory group
Enabled by default
Enabled group

PRIVILEGES INFORMATION

Privilege Name Description State
SeChangeNotifyPrivilege Bypass traverse checking Enabled
SeTimeZonePrivilege Change the time zone Disabled
SeIncreaseWorkingSetPrivilege Increase a process working set Disabled
SeUndockPrivilege Remove computer from docking

station
Disabled

SeShutdownPrivilege Shut down the system Disabled

B. Protected Administrator, LUA (Medium Integrity)

USER INFORMATION

User Name SID
hpvista\matt S-1-5-21-3571944088-1297126955-1855943037-1000

GROUP INFORMATION

Group Name Type SID Attributes
Everyone Well-known group S-1-1-0 Mandatory group

Enabled by default
Enabled group

SYMANTEC ADVANCED THREAT RESEARCH

13

BUILTIN\Administrators Alias S-1-5-32-544 Group used for deny only
BUILTIN\Users Alias S-1-5-32-545 Mandatory group

Enabled by default
Enabled group

NT AUTHORITY\INTERACTIVE Well-known group S-1-5-4 Mandatory group
Enabled by default
Enabled group

NT AUTHORITY\Authenticated Users Well-known group S-1-5-11 Mandatory group
Enabled by default
Enabled group

NT AUTHORITY\This Organization Well-known group S-1-5-15 Mandatory group
Enabled by default
Enabled group

LOCAL Well-known group S-1-2-0 Mandatory group
Enabled by default
Enabled group

NT AUTHORITY\NTLM Authentication Well-known group S-1-5-64-10 Mandatory group
Enabled by default
Enabled group

Mandatory Label\Low Mandatory Level Unknown SID type S-1-16-8192 Mandatory group
Enabled by default
Enabled group

PRIVILEGES INFORMATION

Privilege Name Description State
SeChangeNotifyPrivilege Bypass traverse checking Enabled
SeTimeZonePrivilege Change the time zone Disabled
SeIncreaseWorkingSetPrivilege Increase a process working set Disabled
SeUndockPrivilege Remove computer from docking station Disabled
SeShutdownPrivilege Shut down the system Disabled

C. Protected Administrator, Unrestricted (High Integrity)

USER INFORMATION

User Name SID
hpvista\matt S-1-5-21-3571944088-1297126955-1855943037-1000

GROUP INFORMATION

Group Name Type SID Attributes
Everyone Well-known group S-1-1-0 Mandatory group

Enabled by default
Enabled group

BUILTIN\Administrators Alias S-1-5-32-544 Mandatory group
Enabled by default
Enabled group
Group owner

BUILTIN\Users Alias S-1-5-32-545 Mandatory group
Enabled by default
Enabled group

NT AUTHORITY\INTERACTIVE Well-known group S-1-5-4 Mandatory group
Enabled by default
Enabled group

NT AUTHORITY\Authenticated Users Well-known group S-1-5-11 Mandatory group
Enabled by default
Enabled group

NT AUTHORITY\This Organization Well-known group S-1-5-15 Mandatory group
Enabled by default
Enabled group

LOCAL Well-known group S-1-2-0 Mandatory group
Enabled by default
Enabled group

NT AUTHORITY\NTLM Authentication Well-known group S-1-5-64-10 Mandatory group
Enabled by default
Enabled group

SYMANTEC ADVANCED THREAT RESEARCH

14

Mandatory Label\ High Mandatory Level Unknown SID type S-1-16-12288 Mandatory group
Enabled by default
Enabled group

PRIVILEGES INFORMATION

Privilege Name Description State
SeChangeNotifyPrivilege Bypass traverse checking Enabled
SeSecurityPrivilege Manage auditing and security log Disabled
SeBackupPrivilege Back up files and directories Disabled
SeRestorePrivilege Restore files and directories Disabled
SeSystemtimePrivilege Change the system time Disabled
SeShutdownPrivilege Shut down the system Disabled
SeRemoteShutdownPrivilege Force shutdown from a remote system Disabled
SeTakeOwnershipPrivilege Take ownership of files or other objects Disabled
SeDebugPrivilege Debug programs Disabled
SeSystemEnvironmentPrivilege Modify firmware environment values Disabled
SeSystemProfilePrivilege Profile system performance Disabled
SeProfileSingleProcessPrivilege Profile single process Disabled
SeIncreaseBasePriorityPrivilege Increase scheduling priority Disabled
SeLoadDriverPrivilege Load and unload device drivers Disabled
SeCreatePagefilePrivilege Create a pagefile Disabled
SeIncreaseQuotaPrivilege Adjust memory quotas for a process Disabled
SeUndockPrivilege Remove computer from docking station Disabled
SeManageVolumePrivilege Perform volume maintenance tasks Disabled
SeImpersonatePrivilege Impersonate a client after authentication Enabled
SeCreateGlobalPrivilege Create global objects Enabled
SeCreateSymbolicLinkPrivilege Create symbolic links Disabled
SeIncreaseWorkingSetPrivilege Increase a process working set Disabled
SeTimeZonePrivilege Change the time zone Disabled

D. LocalSytsem

USER INFORMATION

User Name SID
nt authority\system S-1-5-18

GROUP INFORMATION

Group Name Type SID Attributes
Mandatory Label\UI Access Mandatory Level Unknown SID type S-1-16-16640

Everyone Well-known group S-1-1-0 Mandatory group
Enabled by default
Enabled group

BUILTIN\Users Alias S-1-5-32-545 Mandatory group
Enabled by default
Enabled group

NT AUTHORITY\SERVICE Well-known group S-1-5-6 Mandatory group
Enabled by default
Enabled group

NT AUTHORITY\Authenticated Users Well-known group S-1-5-11 Mandatory group
Enabled by default
Enabled group

NT AUTHORITY\This Organization Well-known group S-1-5-15 Mandatory group
Enabled by default
Enabled group

Unknown SID type S-1-5-80-957450137-3151016590-
2548878560-3726258338-
3930544608

Enabled by default
Enabled group
Group owner

Unknown SID type S-1-5-80-917953661-2020045820-
2727011118-2260243830-
4032185929

Enabled by default
Group owner

Unknown SID type S-1-5-80-2006800713-1441093265- Enabled by default

SYMANTEC ADVANCED THREAT RESEARCH

15

249754844-3404434343-1444102779 Enabled group
Group owner

Unknown SID type S-1-5-80-2898649604-2335086160-
1904548223-3761738420-
3855444835

Enabled by default
Enabled group
Group owner

Unknown SID type S-1-5-80-4022436659-1090538466-
1613889075-870485073-3428993833

Enabled by default
Group owner

Unknown SID type S-1-5-80-2009329905-444645132-
2728249442-922493431-93864177

Enabled by default
Group owner

LOCAL Well-known group S-1-2-0 Mandatory group
Enabled by default
Enabled group

BUILTIN\Administrators Alias S-1-5-32-544 Mandatory group
Enabled by default
Enabled group
Group owner

Mandatory Label\System Mandatory Level Unknown SID type S-1-16-16384 Enabled by default
Enabled Group
Group Owner

PRIVILEGES INFORMATION

Privilege Name Description State
SeTcbPrivilege Act as part of the operating system Enabled
SeChangeNotifyPrivilege Bypass traverse checking Enabled

E. RunAsAdmin privileged COM Objects

*** Privileged COM under HKLM\SOFTWARE\Classes\CLSID (uses CoCreateAsAdmin)
HKLM\SOFTWARE\Classes\CLSID\{08d450b7-f7e5-4424-8229-11888adb7c14}
 InProcServer32 = %SystemRoot%\system32\fontext.dll
 AppID = {642ef9d6-48a5-476b-919a-a507cfd02c0f}
HKLM\SOFTWARE\Classes\CLSID\{1138506a-b949-46a7-b6c0-ee26499fdeaf}
 InProcServer32 = %SystemRoot%\system32\wucltux.dll
 AppID = {f62fdd2e-66d2-423b-9a04-f71ea00f892a}
HKLM\SOFTWARE\Classes\CLSID\{26FE7361-BD5A-4DCB-B309-C6F42DDE661C}
 LocalServer32 = "%ProgramFiles%\Internet Explorer\IEInstal.exe"
 AppID = {7B29F495-0F55-49F7-8885-9E8A22CE3829}
HKLM\SOFTWARE\Classes\CLSID\{304CE942-6E39-40D8-943A-B913C40C9CD4}
 InProcServer32 = c:\Windows\system32\wfapi.dll
 AppID = {304CE942-6E39-40D8-943A-B913C40C9CD4}
 ProgID = HNetCfg.FwMgr
HKLM\SOFTWARE\Classes\CLSID\{33E5987B-CA8A-4a8a-921A-8AC16A1676EB}
 InProcServer32 = %SystemRoot%\System32\shpafact.dll
 AppID = {33E5987B-CA8A-4a8a-921A-8AC16A1676EB}
HKLM\SOFTWARE\Classes\CLSID\{375C3A49-8654-49C6-BD32-7E7FE88509B4}
 InProcServer32 = %programfiles%\AdhocMeetings\WinCollabElev.dll
 AppID = {ADBC18BB-3226-4A5F-8976-CC0ECB8C2D13}
 ProgID = WinCollabElev.Elev.1
HKLM\SOFTWARE\Classes\CLSID\{3ad05575-8857-4850-9277-11b85bdb8e09}
 InProcServer32 = %SystemRoot%\system32\shell32.dll
 AppID = {3ad05575-8857-4850-9277-11b85bdb8e09}
HKLM\SOFTWARE\Classes\CLSID\{49F371E1-8C5C-4d9c-9A3B-54A6827F513C}
 InProcServer32 = ntshrui.dll
HKLM\SOFTWARE\Classes\CLSID\{4BC67F23-D805-4384-BCA3-6F1EDFF50E2C}
 InProcServer32 = c:\Windows\system32\wercplsupport.dll
 AppID = {4BC67F23-D805-4384-BCA3-6F1EDFF50E2C}
 ProgID = ERCLuaElevationHelper
HKLM\SOFTWARE\Classes\CLSID\{514B5E31-5596-422F-BE58-D804464683B5}
 InProcServer32 = intl.cpl
 AppID = {514B5E31-5596-422F-BE58-D804464683B5}
HKLM\SOFTWARE\Classes\CLSID\{6311429E-2F1A-4777-880F-C7289FD10169}
 InProcServer32 = ntshrui.dll
HKLM\SOFTWARE\Classes\CLSID\{7007ACD1-3202-11D1-AAD2-00805FC1270E}
 InProcServer32 = %SystemRoot%\System32\netshell.dll
 AppID = {7007ACD1-3202-11D1-AAD2-00805FC1270E}
HKLM\SOFTWARE\Classes\CLSID\{71B804C5-5577-471D-8FE5-C4A45B654EB8}

SYMANTEC ADVANCED THREAT RESEARCH

16

 InProcServer32 = %SystemRoot%\System32\AuxiliaryDisplayCpl.dll
 AppID = {71B804C5-5577-471D-8FE5-C4A45B654EB8}
HKLM\SOFTWARE\Classes\CLSID\{72A7994A-3092-4054-B6BE-08FF81AEEFFC}
 InProcServer32 = %SystemRoot%\System32\shpafact.dll
 AppID = {72A7994A-3092-4054-B6BE-08FF81AEEFFC}
HKLM\SOFTWARE\Classes\CLSID\{77F419AA-771A-45ff-AC66-7567FA3243D3}
 InProcServer32 = ntshrui.dll
HKLM\SOFTWARE\Classes\CLSID\{86d5eb8a-859f-4c7b-a76b-2bd819b7a850}
 InProcServer32 = %SystemRoot%\System32\shpafact.dll
 AppID = {86d5eb8a-859f-4c7b-a76b-2bd819b7a850}
HKLM\SOFTWARE\Classes\CLSID\{8c2db90a-6c3d-48fa-a571-0be2836c630c}
 InProcServer32 = %SystemRoot%\System32\shpafact.dll
HKLM\SOFTWARE\Classes\CLSID\{9df523b0-a6c0-4ea9-b5f1-f4565c3ac8b8}
 InProcServer32 = timedate.cpl
 AppID = {9df523b0-a6c0-4ea9-b5f1-f4565c3ac8b8}
HKLM\SOFTWARE\Classes\CLSID\{a036417d-768d-4566-8be4-5f5e1268fa9f}
 InProcServer32 = %SystemRoot%\System32\ntshrui.dll
 AppID = {a036417d-768d-4566-8be4-5f5e1268fa9f}
HKLM\SOFTWARE\Classes\CLSID\{A0ADD4EC-5BD3-4f70-A47B-07797A45C635}
 InProcServer32 = %SystemRoot%\System32\cscui.dll
 AppID = {A0ADD4EC-5BD3-4f70-A47B-07797A45C635}
HKLM\SOFTWARE\Classes\CLSID\{A2D75874-6750-4931-94C1-C99D3BC9D0C7}
 InProcServer32 = %ProgramFiles%\Windows Defender\MsMpCom.dll
 AppID = {A79DB36D-6218-48e6-9EC9-DCBA9A39BF0F}
HKLM\SOFTWARE\Classes\CLSID\{A3BB0AD5-ECA3-4A81-B2CB-15FD8349D400}
 LocalServer32 = %SystemRoot%\System32\SLLUA.exe
 AppID = {4C4BB7A4-0D3C-4601-A9C4-325AFB9F77BB}
 ProgID = SLLUA.SLLUAObject.1
HKLM\SOFTWARE\Classes\CLSID\{A7A63E5C-3877-4840-8727-C1EA9D7A4D50}
 InProcServer32 = %SystemRoot%\System32\fveui.dll
 AppID = {A7A63E5C-3877-4840-8727-C1EA9D7A4D50}
HKLM\SOFTWARE\Classes\CLSID\{afb8cfa2-6d7b-4108-9202-cc08d7222dc9}
 InProcServer32 = %SystemRoot%\system32\shell32.dll
 AppID = {afb8cfa2-6d7b-4108-9202-cc08d7222dc9}
HKLM\SOFTWARE\Classes\CLSID\{BCEA735B-4DAC-4B71-9C47-1D560AFD2A9B}
 InProcServer32 = DfsShlEx.dll
 AppID = {BCEA735B-4DAC-4B71-9C47-1D560AFD2A9B}
 ProgID = DfsShell.DfsShellAdmin.1
HKLM\SOFTWARE\Classes\CLSID\{C529C7EF-A3AF-45F2-8A47-767B33AA5CC0}
 InProcServer32 = %SystemRoot%\system32\ndfapi.dll
 AppID = {F3D3AA8D-EF96-4470-848E-BD70B803047A}
 ProgID = ndfapi.NDFAPI.1
HKLM\SOFTWARE\Classes\CLSID\{cee8ccc9-4f6b-4469-a235-5a22869eef03}
 InProcServer32 = PNPXAssoc.dll
 AppID = {cee8ccc9-4f6b-4469-a235-5a22869eef03}
HKLM\SOFTWARE\Classes\CLSID\{D3667F1E-CCB8-4A69-99DF-59A2B2A6753F}
 InProcServer32 = %SystemRoot%\System32\AuxiliaryDisplayCpl.dll
 AppID = {D3667F1E-CCB8-4A69-99DF-59A2B2A6753F}
HKLM\SOFTWARE\Classes\CLSID\{e6f59608-8aa2-4dbe-a651-c2f6585e4f30}
 InProcServer32 = %SystemRoot%\System32\shpafact.dll
 AppID = {e6f59608-8aa2-4dbe-a651-c2f6585e4f30}
HKLM\SOFTWARE\Classes\CLSID\{E9495B87-D950-4ab5-87A5-FF6D70BF3E90}
 InProcServer32 = wscui.cpl
 AppID = {E9495B87-D950-4ab5-87A5-FF6D70BF3E90}
HKLM\SOFTWARE\Classes\CLSID\{edb5f444-cb8d-445a-a523-ec5ab6ea33c7}
 InProcServer32 = ntshrui.dll
 AppID = {edb5f444-cb8d-445a-a523-ec5ab6ea33c7}

*** Privileged COM under HKCU\SOFTWARE\Classes\CLSID (uses CoCreateAsAdmin)

None

F. File Extensions Excluded from Virtualization

acm cer csh hta maf maw mst pst url xsd

ade chm dll ime mag mda mui reg vbe xsl

 adp clb drv inf mam mdb nls scf vbs

SYMANTEC ADVANCED THREAT RESEARCH

17

app cmd dtd ins man mde ocx scr vsmacros
 asa cnt exe isp maq mdt ops sct vss

 asp cnv fon its mar mdw pal shb vst

 aspx com fxp jse mas mdz pcd shs vsw

 bas cpl grp ksh mat msc pif sys wsc

 bat cpx hlp lnk mau msi prf tlb wsf

 bin crt hls mad mav msp prg tsp wsh

G. Renamed System Calls (between XP SP2 and Vista)

From To
ZwAddBootEntry NtAddDriverEntry

ZwClose NtClose
ZwCreateKey NtCreateKey
ZwCreatePagingFile NtCreatePagingFile
ZwDeleteDriverEntry NtDeleteDriverEntry
ZwEnumerateBootEntries NtEnumerateDriverEntries
ZwEnumerateKey NtEnumerateKey
ZwEnumerateValueKey NtEnumerateValueKey
ZwModifyBootEntry NtModifyDriverEntry
ZwOpenKey NtOpenKey
ZwOpenSession NtOpenSession
ZwQueryBootEntryOrder NtQueryDriverEntryOrder
ZwQueryKey NtQueryKey
ZwQueryValueKey NtQueryValueKey
ZwSetBootEntryOrder (from) NtSetDriverEntryOrder

H. Added System Calls (between Windows XP SP2 and Windows Vista)

NtAlpcAcceptConnectPort NtDereferenceEnlistmentKey NtRecoverTransactionManager

NtAlpcCancelMessage NtFlushProcessWriteBuffers NtReferenceEnlistmentKey

NtAlpcConnectPort NtFreezeRegistry NtRegisterProtocolAddressInformation

NtAlpcCreatePort NtFreezeTransactions NtReleaseWorkerFactoryWorker

NtAlpcCreateResourceReserve NtGetCurrentProcessorNumber NtRenameTransactionManager

NtAlpcCreateSectionView NtGetNextProcess NtRollbackComplete

NtAlpcCreateSecurityContext NtGetNextThread NtRollbackEnlistment

NtAlpcDeletePortSection NtGetNlsSectionPtr NtRollbackTransaction

NtAlpcDeleteResourceReserve NtGetNotificationResourceManager NtRollforwardTransactionManager

NtAlpcDeleteSectionView NtInitializeNlsFiles NtSavepointComplete

NtAlpcDeleteSecurityContext NtListTransactions NtSavepointTransaction

NtAlpcDisconnectPort NtMapCMFModule NtSetInformationEnlistment

NtAlpcImpersonateClientOfPort NtMarshallTransaction NtSetInformationResourceManager

NtAlpcQueryInformation NtOpenEnlistment NtSetInformationTransaction

NtAlpcReceiveBatchMessages NtOpenResourceManager NtSetInformationWorkerFactory

NtAlpcSendBatchMessage NtOpenTransaction NtSetSystemPowerState

NtAlpcSendWaitReceivePort NtPrePrepareComplete NtShutdownWorkerFactory

NtAlpcSetInformation NtPrePrepareEnlistment NtSinglePhaseReject

NtApphelpCacheControl NtPrepareComplete NtStartTm

NtCancelSynchronousIoFile NtPrepareEnlistment NtThawRegistry

NtClearAllSavepointsTransaction NtPropagationComplete NtThawTransactions

NtClearSavepointTransaction NtPropagationFailed NtTraceControl

NtCommitComplete NtPullTransaction NtWaitForWorkViaWorkerFactory

NtCommitEnlistment NtQueryInformationEnlistment NtWorkerFactoryWorkerReady

SYMANTEC ADVANCED THREAT RESEARCH

18

NtCommitTransaction NtQueryInformationResourceManager

NtCreateEnlistment NtQueryInformationTransaction

NtCreateResourceManager NtQueryInformationWorkerFactory

 NtCreateTransaction NtQueryLicenseValue

 NtCreateUserProcess NtReadOnlyEnlistment

 NtCreateWorkerFactory NtRecoverResourceManager

I. Removed System Calls (between Windows XP SP2 and Windows Vista)

NtCloseObjectAuditAlarm
NtCreateKeyedEvent
NtOpenKeyedEvent
NtSetSystemEnvironmentValueEx

	I. INTRODUCTION
	A. What’s Covered
	B. What’s Not Covered
	C. Prerequisites
	II. User Account Protection (UAP)
	A. Introduction
	B. Mandatory Integrity Control (MIC)
	
	C. UI Privilege Isolation (UIPI)
	D. Restricted Process

	III. Unrestricted Processes (Elevation)
	A. Introduction
	B. The Legacy Shell Trick
	C. Consent Prompts and Admin Brokers

	IV. Service Isolation (“Isolated Session 0”)
	V. File and Registry Virtualization
	A. Introduction
	B. Registry Virtualization
	C. File Virtualization
	D. Low Rights Internet Explorer Virtualization

	VI. Windows Resource Protection (WRP)
	VII. Attacks
	A. Introduction
	B. UNIX Security Model
	C. Windows Visa Security Model
	D. From Low Integrity Level
	E. From Medium Integrity Level - Introduction
	F. From Medium Integrity Level – Method 1
	G. From Medium Integrity Level – Method 2
	H. From Medium Integrity Level – Method 3
	I. From High Integrity Level, LUA Process
	J. Against Windows Resource Protection
	K. Failed Attacks

	VIII. Conclusion
	A. Protected Administrator, Low Rights Internet Explorer
	
	B. Protected Administrator, LUA (Medium Integrity)
	
	C. Protected Administrator, Unrestricted (High Integrity)
	
	D. LocalSytsem
	E. RunAsAdmin privileged COM Objects
	F. File Extensions Excluded from Virtualization
	G. Renamed System Calls (between XP SP2 and Vista)
	H. Added System Calls (between Windows XP SP2 and Windows Vista)
	I. Removed System Calls (between Windows XP SP2 and Windows Vista)

