Introducción a la Teoría de la Información Tasa de Entropía de un Proceso Estocástico.

Facultad de Ingeniería, UdelaR

Agenda

Procesos Estocásticos

Tasa de Entropía

Procesos Estocásticos

Definición (Proceso estocástico)

Un *proceso estocástico* (discreto) es una secuencia indexada de variables aleatorias caracterizado por una distribución conjunta $p(x_1 \dots x_n)$, $n = 1, 2 \dots$

Definición (Proceso estacionario)

Un proceso estocástico es *estacionario* si las distribuciones conjuntas no cambian en el tiempo, es decir

$$P(X_1 = x_1, ... X_n = x_n) = P(X_{1+r} = x_1, ... X_{n+r} = x_n),$$

para todo r, n y todo $x_1 \dots x_n \in \mathcal{X}$.

Proceso de Markov

Definición (Proceso de Markov)

Un proceso o cadena de Markov es un proceso estocástico en el cual para todo n>0 se cumple

$$P(X_{n+1} = x_{n+1} | X_n = x_n, \dots X_1 = x_1) = P(X_{n+1} = x_{n+1} | X_n = x_n).$$

En ese caso, podemos escribir $p(x_1 \dots x_n) = p(x_1)p(x_2|x_1) \dots p(x_n|x_{n-1})$.

Definición (Estado)

Al valor que toma X_n se le llama *estado* de la cadena en el tiempo n.

Definición (Invariancia en el tiempo)

Asumiremos que las probabilidades condicionales no dependen de n, es decir, para todo n>0 se cumple

$$P(X_{n+1} = b | X_n = a) = P(X_2 = b | X_1 = a).$$

En este caso decimos que el proceso de Markov es invariante en el tiempo.

Proceso de Markov

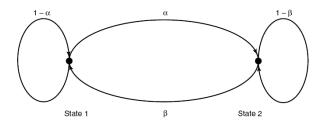
Definición (Matriz de probabilidades de transición)

Definimos la matriz de probabilidades de transición como

$$\mathbf{P}_{ij} = P(X_{n+1} = j | X_n = i).$$

Observación

Sea $\mathbf{p}^{(n)}$ el vector de probabilidades definido como $\mathbf{p}_i^{(n)} = P(X_n = i)$. Entonces, $\mathbf{p}^{(n+1)} = \mathbf{p}^{(n)} \times \mathbf{P} = \mathbf{p}^{(0)} \times \mathbf{P}^n$



Proceso de Markov Estacionario

Definición (Distribución estacionaria)

Una distribución estacionaria para los estados de una cadena de Markov es una distribución que se mantiene en el tiempo. Si π es una distribución estacionaria, entonces debe cumplirse

$$\pi = \pi \times \mathbf{P}$$
.

Observación

Si el estado inicial se elige con distribución estacionaria, el proceso de Markov resulta estacionario.

Proceso de Markov Irreducible/Aperiódico

Definición (Cadena de Markov irreducible)

Una cadena de Markov es irreducible si es posible llegar a cualquier estado desde cualquier estado en una cantidad finita de pasos. Es decir, para todo i,j existe k tal que se verifica

$$P(X_{n+k} = j | X_n = i) > 0.$$

Definición (Cadena de Markov aperiódica)

Una cadena de Markov es *aperiódica* si para cada estado i existe una constante M_i tal que, para todo $n>M_i$, existe una trayectoria de probabilidad positiva que conduce de i a i en n pasos.

Distribución Límite de un Proceso de Markov

Teorema

Una cadena de Markov irreducible y aperiódica tiene una única distribución estacionaria que aparece como distribución límite cualquiera sea la distribución del estado inicial. Es decir

$$\lim_{n \to \infty} \mathbf{p}^{(0)} \times \mathbf{P}^n = \pi$$
, para cualquier $\mathbf{p}^{(0)}$,

donde π es la única distribución estacionaria del proceso y puede encontrarse resolviendo el sistema de ecuaciones dado por

$$\pi \times (\mathbf{I} - \mathbf{P}) = 0,$$

 $\sum \pi_i = 1.$

Tasa de Entropía

Definición (Tasa de entropía: $H(\mathcal{X})$)

La tasa de entropía de un proceso $\{X_i\}$ es el límite

$$H(\mathcal{X}) = \lim_{n \to \infty} \frac{1}{n} H(X_1, \dots X_n).$$

Ejemplo

Si $\{X_i\}$ son i.i.d,

$$H(\mathcal{X}) = \lim_{n \to \infty} \frac{1}{n} H(X_1, \dots X_n) = \lim_{n \to \infty} \frac{1}{n} n H(X_1) = H(X_1).$$

Tasa de Entropía (alternativa)

Definición (Tasa de entropía: $H'(\mathcal{X})$)

Una definición alternativa de tasa de entropía, que intenta capturar un concepto similar es

$$H'(\mathcal{X}) = \lim_{n \to \infty} H(X_n | X_{n-1}, \dots X_1).$$

En general $H'(\mathcal{X})$ y $H(\mathcal{X})$ no tienen por qué coincidir.

Teorema

Si $\{X_i\}$ es un proceso estocástico estacionario, $H'(\mathcal{X})$ y $H(\mathcal{X})$ existen y son iguales.

Tasa de Entropía de Procesos Estacionarios

Teorema

Si $\{X_i\}$ es un proceso estocástico estacionario, $H(X_n|X_{n-1},\ldots X_1) \searrow H'(\mathcal{X})$.

Demostración.

$$H(X_{n+1}|X_n,...X_2,X_1) \le H(X_{n+1}|X_n,...X_2)$$

= $H(X_n|X_{n-1},...X_1)$

Tasa de Entropía de Procesos Estacionarios

Teorema

Si $\{X_i\}$ es un proceso estocástico estacionario, $H'(\mathcal{X})$ y $H(\mathcal{X})$ existen y son iguales.

Demostración.

$$\lim_{n \to \infty} \frac{1}{n} H(X_n, \dots X_1) \quad = \quad \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^n H(X_i | X_{i-1}, \dots X_1)$$

$$\rightarrow \quad H'(\mathcal{X}) \quad \text{(Cesáro)}.$$

Teorema (Promedio a la Cesáro)

Si $a_n o a$, entonces $\bar{a}_n = \frac{1}{n} \sum_{i=1}^n a_n o a$.

Tasa de Entropía de Procesos de Markov

Teorema

Si $\{X_i\}$ es un proceso de Markov estacionario con distribución estacionaria π ,

$$H(\mathcal{X}) = H'(\mathcal{X}) = -\sum_{ij} \pi_i \mathbf{P}_{ij} \log \mathbf{P}_{ij}.$$

Demostración.

$$\lim_{n \to \infty} H(X_n | X_{n-1}, \dots X_1) = \lim_{n \to \infty} H(X_n | X_{n-1})$$

$$= H(X_2 | X_1)$$

$$= \sum_i \pi_i H(X_2 | X_1 = i)$$

$$= \sum_i \pi_i \sum_j \mathbf{P}_{ij} \log \frac{1}{\mathbf{P}_{ij}}.$$