Selected Astronomical Constants

The IAU 2009 System of Astronomical Constants (1) as published in the Report of the IAU Working Group on Numerical Standards for Fundamental Astronomy (NSFA, 2011), (2) planetary equatorial radii, taken from the report of the IAU WG on Cartographic Coordinates and Rotational Elements: 2009 (2011), and lastly (3) other useful constants. For each quantity the list tabulates its description, symbol and value, and to the right, as appropriate, its uncertainty in units that the quantity is given in. Further information is given at foot of the table on the next page.

1 IAU 2009 System of Astronomical Constants

1.1 Natural Defining Constant:

Speed of light $\quad c=299792458 \mathrm{~m} \mathrm{~s}^{-1}$

1.2 Auxiliary Defining Constants:

Gaussian gravitational constant

$$
\begin{aligned}
k & =0.01720209895 \\
L_{\mathrm{G}} & =6.969290134 \times 10^{-10} \\
L_{\mathrm{B}} & =1.550519768 \times 10^{-8} \\
\mathrm{TDB}_{0} & =-6.55 \times 10^{-5} \mathrm{~s} \\
\theta_{0} & =0.7790572732640 \text { revolutions } \\
\dot{\theta} & =1.00273781191135448 \text { revolutions UT1-day }{ }^{-1}
\end{aligned}
$$

$1-\mathrm{d}(\mathrm{TT}) / \mathrm{d}(\mathrm{TCG})$
$1-\mathrm{d}(\mathrm{TDB}) / \mathrm{d}(\mathrm{TCB})$
TDB - TCB at $\mathrm{T}_{0}=2443144.5003725$
Earth rotation angle (ERA) at J2000.0 UT1
Rate of advance of ERA

1.3 Natural Measurable Constant:

Constant of gravitation

$$
G=6.67428 \times 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2} \quad \pm 6.7 \times 10^{-15}
$$

1.4 Other Constants:

Astronomical unit (unit distance) ${ }^{\dagger}$

$$
\begin{aligned}
a u=A & =149597870700 \mathrm{~m} & & \pm 3 \\
L_{\mathrm{C}} & =1.48082686741 \times 10^{-8} & & \pm 2
\end{aligned}
$$

Average value of $1-\mathrm{d}(\mathrm{TCG}) / \mathrm{d}(\mathrm{TCB})$

$$
\begin{aligned}
G M_{\mathrm{S}} & =1.32712442099 \times 10^{20} \mathrm{~m}^{3} \mathrm{~s}^{-2}(\mathrm{TCB}) & & \pm 1 \times 10^{10} \\
& =1.32712440041 \times 10^{20} \mathrm{~m}^{3} \mathrm{~s}^{-2}(\mathrm{TDB}) & & \pm 1 \times 10^{10} \\
a_{\mathrm{E}}=a_{\mathrm{e}} & =6378136.6 \mathrm{~m}(\mathrm{TT}) & & \pm 0.1 \\
J_{2} & =0.0010826359 & & \pm 1 \times 10^{-10} \\
\dot{J}_{2} & =-3.0 \times 10^{-9} \mathrm{cy}^{-1} & & \pm 6 \times 10^{-10} \\
G M_{\mathrm{E}} & =3.986004418 \times 10^{14} \mathrm{~m}^{3} \mathrm{~s}^{-2} \text { (TCB) } & & \pm 8 \times 10^{5} \\
& =3.986004415 \times 10^{14} \mathrm{~m}^{3} \mathrm{~s}^{-2} \text { (TT) } & & \pm 8 \times 10^{5} \\
& =3.986004356 \times 10^{14} \mathrm{~m}^{3} \mathrm{~s}^{-2} \text { (TDB) } & & \pm 8 \times 10^{5} \\
W_{0} & =6.26368560 \times 10^{7} \mathrm{~m}^{2} \mathrm{~s}^{-2} & & \pm 0.5 \\
\omega & =7.292115 \times 10^{-5} \mathrm{rad} \mathrm{~s}^{-1}(\mathrm{TT}) & &
\end{aligned}
$$

Potential of the geoid
Nominal mean angular velocity of the Earth
Mass Ratio: Moon to Earth
Ratio of the mass of the Sun to the mass of the Body

Mass Ratio: Sun to Mercury	$M_{\mathrm{S}} / M_{\mathrm{Me}}=6.0236 \times 10^{6}$	$\pm 3 \times 10^{2}$
Mass Ratio: Sun to Venus	$M_{\mathrm{S}} / M_{\mathrm{Ve}}=4.08523719 \times 10^{5}$	$\pm 8 \times 10^{-3}$
Mass Ratio: Sun to Mars	$M_{\mathrm{S}} / M_{\mathrm{Ma}}=3.09870359 \times 10^{6}$	$\pm 2 \times 10^{-2}$
Mass Ratio: Sun to Jupiter	$M_{\mathrm{S}} / M_{\mathrm{J}}=1.047348644 \times 10^{3}$	$\pm 1.7 \times 10^{-5}$
Mass Ratio: Sun to Saturn	$M_{\mathrm{S}} / M_{\mathrm{Sa}}=3.4979018 \times 10^{3}$	$\pm 1 \times 10^{-4}$
Mass Ratio: Sun to Uranus	$M_{\mathrm{S}} / M_{\mathrm{U}}=2.290298 \times 10^{4}$	$\pm 3 \times 10^{-2}$
Mass Ratio: Sun to Neptune	$M_{\mathrm{S}} / M_{\mathrm{N}}=1.941226 \times 10^{4}$	$\pm 3 \times 10^{-2}$
Mass Ratio: Sun to (134340) Pluto	$M_{\mathrm{S}} / M_{\mathrm{P}}=1.36566 \times 10^{8}$	$\pm 2.8 \times 10^{4}$
Mass Ratio: Sun to (136199) Eris	$M_{\mathrm{S}} / M_{\text {Eris }}=1.191 \times 10^{8}$	$\pm 1.4 \times 10^{6}$

Ration of the mass of the Body to the mass of the Sun

Mass Ratio: (1) Ceres to Sun	$M_{\text {Ceres }} / M_{\mathrm{S}}=4.72 \times 10^{-10}$	$\pm 3 \times 10^{-12}$
Mass Ratio: (2) Pallas to Sun	$M_{\text {Pallas }} / M_{\mathrm{S}}=1.03 \times 10^{-10}$	$\pm 3 \times 10^{-12}$
Mass Ratio: (4) Vesta to Sun	$M_{\text {Vesta }} / M_{\mathrm{S}}=1.35 \times 10^{-10}$	$\pm 3 \times 10^{-12}$

All values of the masses from Mars to Eris are the sum of the masses of the celestial body and its satellites.

Selected Astronomical Constants (continued)

1.6 Initial Values at J2000.0:

Mean obliquity of the ecliptic

$$
\epsilon_{\mathrm{J} 2000 \cdot 0}=\epsilon_{0}=23^{\circ} 26^{\prime} 21^{\prime \prime} 406=84381^{\prime \prime} 406 \quad \pm 0^{\prime \prime} 001
$$

2 Constants from IAU WG on Cartographic Coordinates and Rotational Elements 2009

Equatorial radii in km:

| Mercury | 2439.7 | $\pm 1 \cdot 0$ | Jupiter | 71492 ± 4 | (134340) Pluto | 1195 | ± 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Venus | $6051 \cdot 8$ | $\pm 1 \cdot 0$ | Saturn | 60268 ± 4 | | | |
| Earth | $6378 \cdot 1366 \pm 0.0001$ | Uranus | 25559 ± 4 | Moon (mean) | $1737 \cdot 4 \pm 1$ | | |
| Mars | $3396 \cdot 19$ | $\pm 0 \cdot 1$ | Neptune | 24764 ± 15 | Sun | 696000 | |

3 Other Constants

Light-time for unit distance ${ }^{\dagger}$
Mass Ratio: Earth to Moon
Mass Ratio: Sun to Earth
Mass of the Sun
Mass of the Earth
Mass Ratio: Sun to Earth + Moon
Earth, reciprocal of flattening (IERS 2010
Rates of precession at J2000.0 (IAU 2006)
General precession in longitude
Rate of change in obliquity
Precession of the equator in longitude
Precession of the equator in obliquity
Constant of nutation at epoch J2000.0
Solar parallax
Constant of aberration at epoch J2000.0

$$
\begin{aligned}
\tau_{\mathrm{A}}=A / c & =499900478384 & & \pm 1 \times 10^{-8} \\
1 / \tau_{\mathrm{A}} & =173.144632674 \mathrm{au} / \mathrm{d} & & \pm 3 \times 10^{-9} \\
M_{\mathrm{E}} / M_{\mathrm{M}}=1 / \mu & =81.300568 & & \pm 3 \times 10^{-6} \\
G M_{\mathrm{S}} / G M_{\mathrm{E}} & =332946.0487 & & \pm 0.0007 \\
M_{\mathrm{S}}=S & =G M_{\mathrm{S}} / G=1.9884 \times 10^{30} \mathrm{~kg} & & \pm 2 \times 10^{26} \\
M_{\mathrm{E}}=E & =G M_{\mathrm{E}} / G=5.9722 \times 10^{24} \mathrm{~kg} & & \pm 6 \times 10^{20} \\
(S / E) /(1+\mu) & =328900.5596 & & \pm 7 \times 10^{-4} \\
2010) \quad 1 / f & =298.25642 & & \pm 1 \times 10^{-5}
\end{aligned}
$$

Masses of the larger natural satellites: mass satellite/mass of the planet (see pages F3, F5)

| JupiterIo 4.704×10^{-5} Saturn | Titan | 2.366×10^{-4} | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Europa | 2.528×10^{-5} | Uranus | Titania | 4.06×10^{-5} |
| Ganymede | 7.805×10^{-5} | | Oberon | 3.47×10^{-5} |
| Callisto | 5.667×10^{-5} | Neptune | Triton | 2.089×10^{-4} |

Users are advised to check the NSFA's website at at http://maia.usno.navy.mil/NSFA for the latest list of 'Current Best Estimates'. This website also has detailed information about the constants, and all the relevant references.

This almanac, in certain circumstances, may not use constants from this list. The reasons and those constants used are given at the end of Section L Notes and References.

Units
The units meter (m), kilogram (kg), and SI second (s) are the units of length, mass and time in the International System of Units (SI).

The astronomical unit of time is a time interval of one day (D) of 86400 seconds. An interval of 36525 days is one Julian century. Some constants that involve time, either directly or indirectly need to be compatible with the underlying time-scales. In order to specify this (TDB) or (TCB) or (TT), as appropriate, is included after the unit to indicate that the value of the constant is compatible with the specified time-scale, for example, TDB-compatible.

The astronomical unit of mass is the mass of the Sun $\left(M_{\mathrm{S}}\right)$. The dimensions of k^{2} are those of the constant of gravitation (G), which are $A^{3} M_{\mathrm{S}}^{-1} D^{-2}$, i.e. $\mathrm{m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}$.
 the Gaussian gravitational constant and $G M_{\mathrm{S}}$, the heliocentric gravitational constant (TDB-compatible value), are tabulated on the previous page. Note that at present (2011 September) the $a u$ is considered to be TDB-compatible and no TCB-compatible value has been agreed.

