

Topografía Planimétrica

Sistema de coordenadas Planas

Docentes del curso: Gracia Micaela; Mamrut Alberto;

Martinez Magali; Wainstein Martin.

Definición de métodos topográficos

Se entiende por **métodos topográficos** a las distintas técnicas que se utilizan en la toma de medidas distanciométricas y angulares, así como al tratamiento de esos datos para la realización de un trabajo topográfico, tanto en lo que concierne a la planimetría como a la altimetría. (ManuelChuecaPazos,JoséHerráez,JoséLuisBerné)

Todo trabajo topográfico deberá contemplar en general los siguientes aspectos:

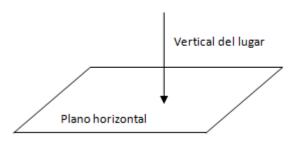
- Determinación de los errores máximos a esperar (tolerancias).
- Elección del instrumental y metodologías a emplear.
- •Planificación de las tareas.
- Determinación de costos.

Clasificación

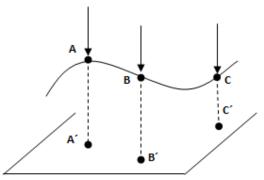
Los métodos topográficos se pueden clasificar en:

- Métodos Planimétricos
- MétodosAltimétricos
- Métodosplanialtimétricos

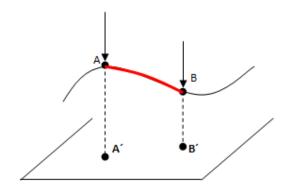
PLANIMETRÍA:


La planimetría es la parte de la topografía que estudia el conjunto de métodos y procedimientos que tienden a conseguir la representación a escala de todos los detalles de interés del terreno sobre una superficie plana, prescindiendo de su relieve y se representa en una proyección horizontal.

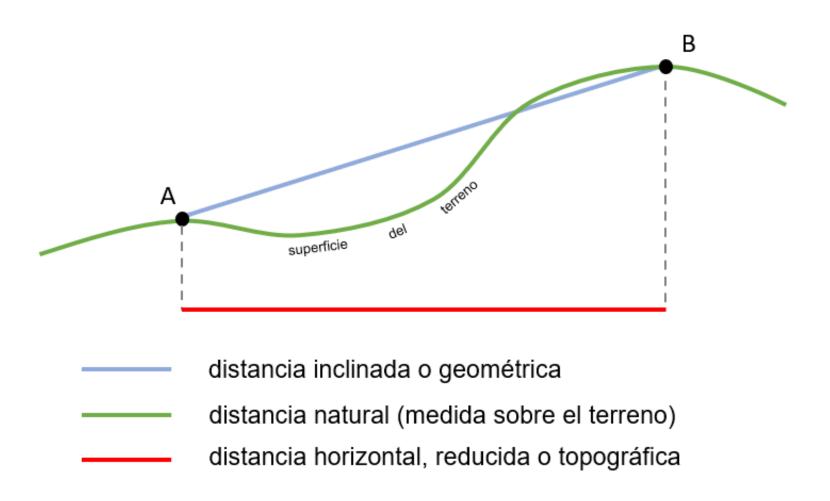
ALTIMETRÍA:


La altimetría es la rama de la topografía que estudia el conjunto de métodos y procedimientos para determinar y representar la altura o "cota" de cada punto respecto de un plano de referencia.

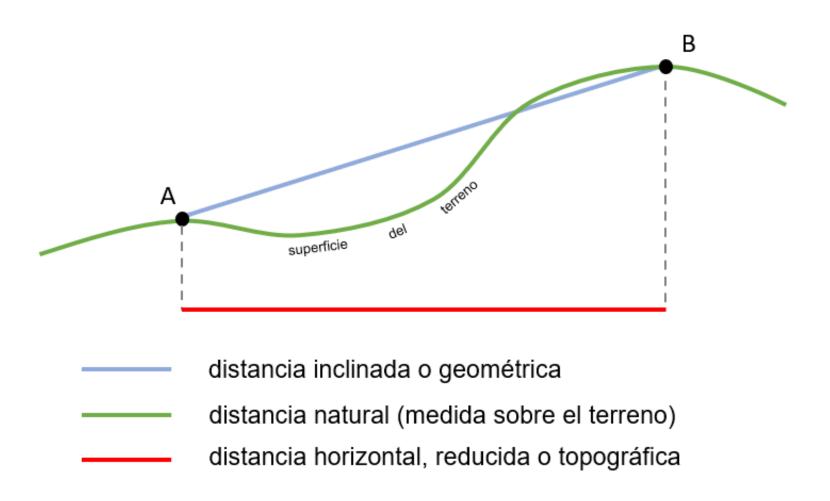
Vertical del lugar: es la normal a la superficie de referencia.


En topografía, la superficie de referencia la consideramos como un plano horizontal.

Punto Topográfico: Es la intersección de la vertical del lugar con la superficie del terreno (A,B,C). Con la proyección ortogonal de esos puntos en el plano horizontal se obtiene A´, B´y C´.

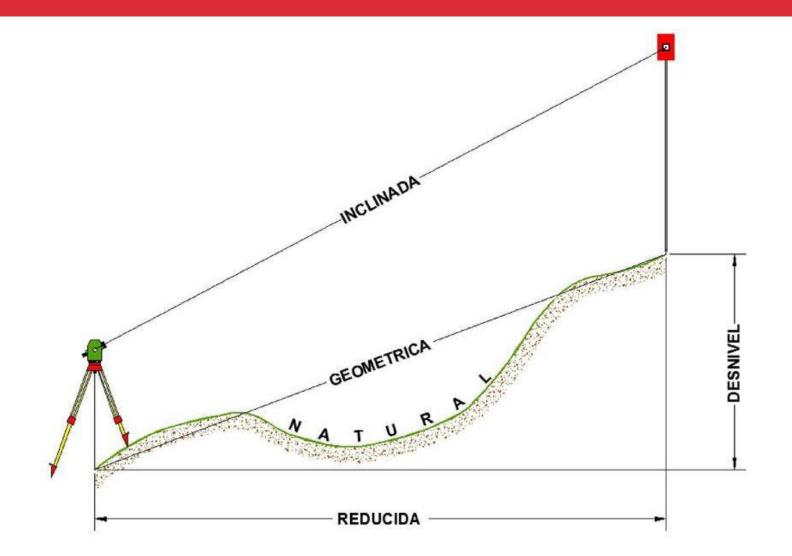


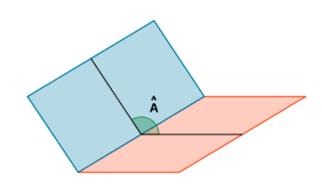
Alineación: Intersección del plano que contiene las verticales en los puntos A y B con la superficie del terreno.

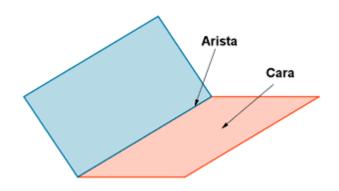

Tipos de distancias:

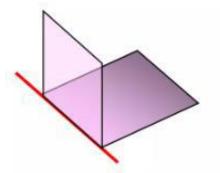
Consideremos dos puntos A y B sobre la superficie de la Tierra:

Tipos de distancias:

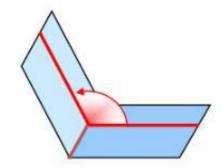

Consideremos dos puntos A y B sobre la superficie de la Tierra:


Tipos de distancias:


Consideremos dos puntos A y B sobre la superficie de la Tierra:

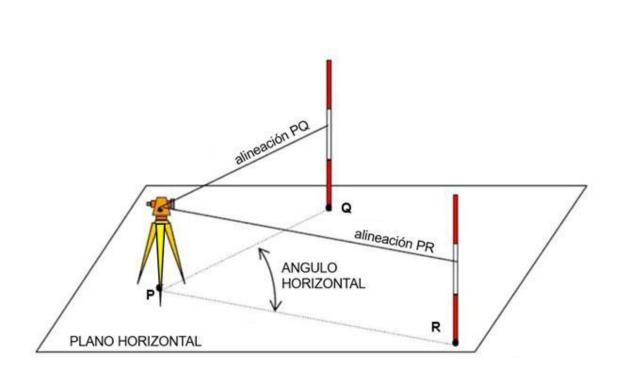

Podemos hacer una diferenciación entre distancia INCLINADA y distancia GEOMETRICA para el caso que grafica la imagen adjunta.

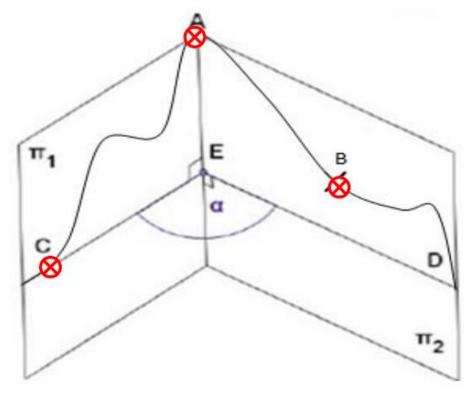
Ángulos diedros:


Ángulo diedro, o diedro, es la región del espacio comprendida entre dos semiplanos determinados por la misma recta.

Caras del diedro son los semiplanos que lo forman.

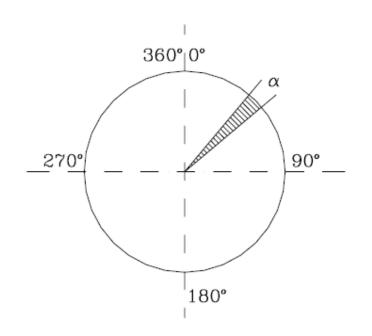
Arista del diedro es la recta común a las dos caras.


La abertura del ángulo diedro es igual a la abertura del ángulo rectilíneo.


La medida del ángulo diedro es la medida del ángulo rectilíneo.

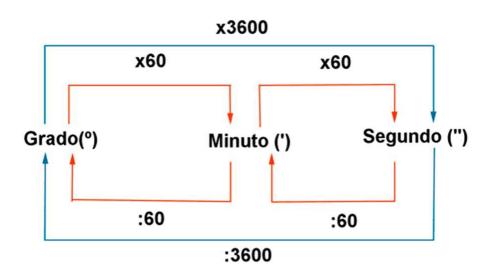
Ángulo horizontal:

Se define como el rectilíneo del diedro formado por los planos que contienen las verticales en los puntos A, B y C, siendo el plano definido por las rectas CE y DE horizontal.



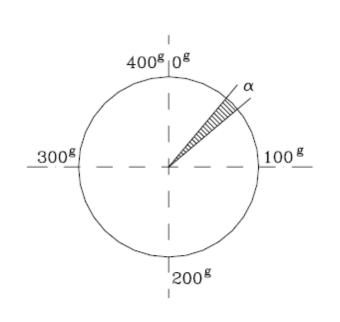
Sistema de medidas (Distancias, Ángulos, Áreas)

SISTEMA SEXAGESIMAL


El sistema divide la circunferencia en 360 partes iguales o GRADOS SEXAGESIMALES (°). Cada grado esta dividido en 60 partes iguales o MINUTOS SEXAGESIMALES (°), Cada minuto esta dividido en 60 partes iguales o SEGUNDOS SEXAGESIMALES (°)

1° = 60' 1' = 60" 1° = 3600"

el ángulo α °=10°20'36" se lee:


10 grados, 20 minutos, 36 segundos.

Sistema de medidas (Distancias, Ángulos, Áreas)

SISTEMA CENTESIMAL

El sistema divide la circunferencia en 400 partes iguales o GRADOS CENTESIMALES (g). Cada grado centesimal esta dividido en 100 partes iguales o MINUTOS CENTESIMALES (c), Cada minuto centesimal esta dividido en 60 partes iguales o SEGUNDOS CENTESIMALES (cc)

$$\alpha = 25^{g},4533$$

$$1^{g} = 100^{c}$$

$$1^{c} = 100^{cc}$$

$$1^{g} = 10000^{cc}$$

el ángulo $\alpha = 25^{g}45^{c}33^{cc}$ se lee:

25 grados, 45 minutos, 33 segundos.

Sistema de medidas (Distancias, Ángulos, Áreas)

$$\frac{\alpha^{\text{o}}}{360} = \frac{\alpha^{\text{g}}}{400} = \frac{\alpha^{\text{A}}}{2\pi}$$

FACTORES DE CONVERSIÓN

DE GRADOS SEXAGESIMALES A RADIANES	πrad 180°
DE GRADOS SEXAGESIMALES A CENTESIMALES	10 ⁹
DE GRADOS CENTESIMALES A RADIANES	π rad 200 ⁹
DE GRADOS CENTESIMALES A SEXAGESIMALES	9° 10°
DE RADIANES A GRADOS SEXAGESIMALES	πrad = 180°
DE RADIANES A GRADOS CENTESIMALES	π rad = 200 g

Conversión de grados a radianes y

viceversa

Para convertir radianes a grados, se multiplica por

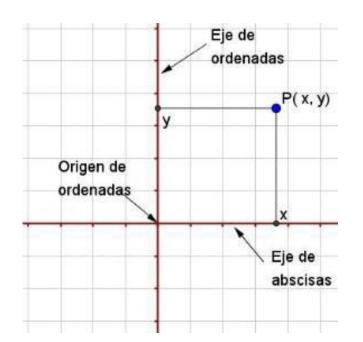
 $\frac{180^{\circ}}{\pi \text{ radianes}}$

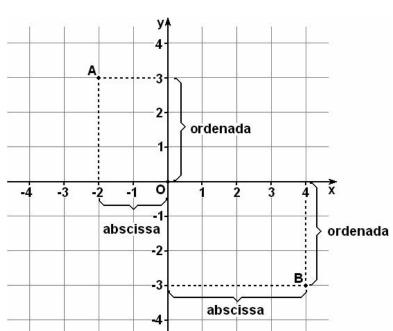
2. Para convertir grados a radianes, se multiplica por

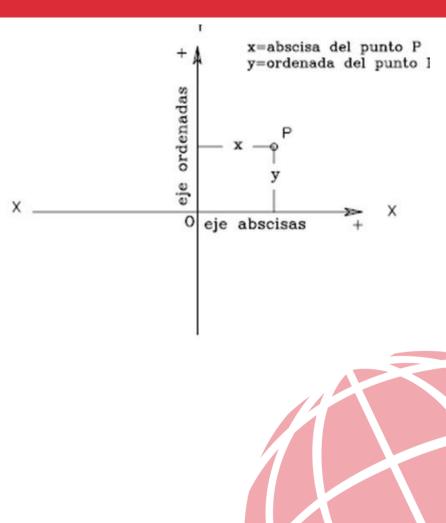
 $\frac{\pi \text{ radianes}}{180^{\circ}}$

3. Fórmula de la longitud de un arco (en radianes)

$$s = r\theta$$

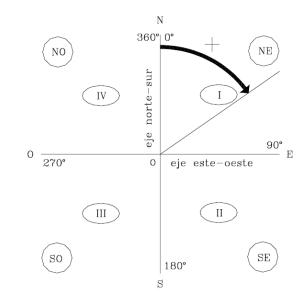

RELACION ENTRE LOS SISTEMAS					
SISTEMA SEXAGESIMAL (S) Y SISTEMA CENTESIMAL(C) $\frac{S}{9} = \frac{C}{10}$	$S = \frac{9C}{10}$	Convierte grados "C" a grados "S"			
	$C = \frac{10S}{9}$	Convierte grados "S" a grados "C"			
SISTEMA CENTESIMAL (C)	$_{\text{IMAL}(C)}$ $C = R$	$C = \frac{200R}{\pi Rad}$	Convierte Radianes a grados "C"		
Y SISTEMA RADIAL (R) 200 πRad	200 πRad	$R = \frac{\pi Rad.C}{200}$	Convierte grados "C" a radianes		
SISTEMA SEXAGESIMAL (S) Y SISTEMA RADIAL (R) $\frac{S}{180} = \frac{R}{\pi Rad}$	$S = \frac{180R}{\pi Rad}$	Convierte Radianes a grados "S"			
	180 πRad	$R = \frac{\pi Rad.S}{180}$	Convierte grados "S" a radianes		

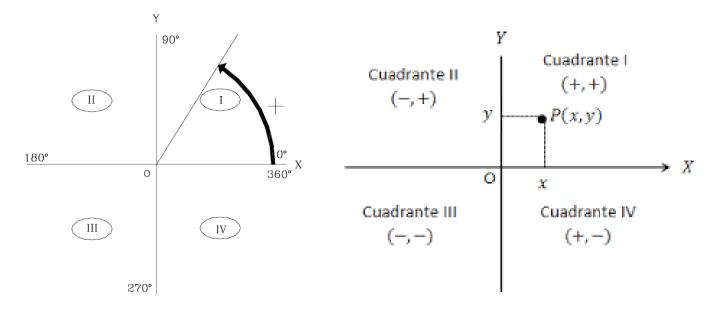

Coordenadas planas


COORDENADAS PLANAS

El eje de ordenadas se asume como eje NORTE-SUR y el de las abscisas como eje ESTE-OESTE.

La coordenada del punto P (x,y) para cualquier sistema de coordenadas cartesianas, en Topografía se expresa como P (N,E).

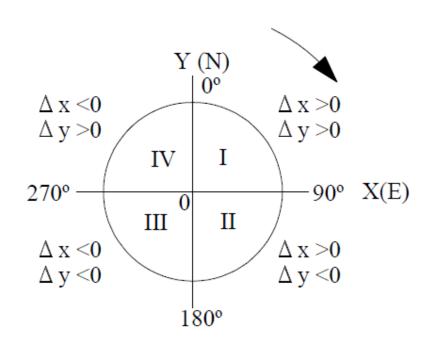


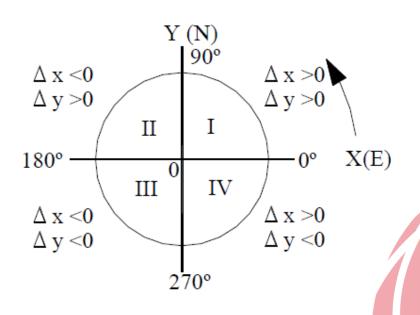


Círculo geométrico Vs. círculo topográfico

Cuadrantes, direcciones y sentidos del circulo trigonométrico.

Cuadrantes, direcciones y sentidos del circulo topográfico.

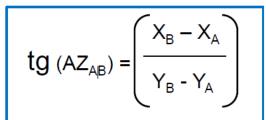

CUADRANTE	NOMBRE		SIGNOS
I	Norte - Este	NE	++
II	Sur - Este	SE	-+
III	Sur - Oeste	SO	
IV	Norte - Oeste	NO	+-

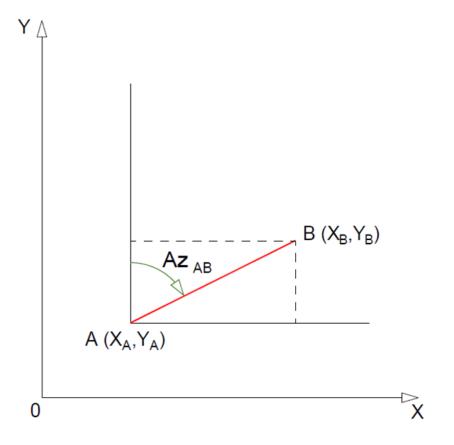


Círculo geométrico Vs. círculo topográfico

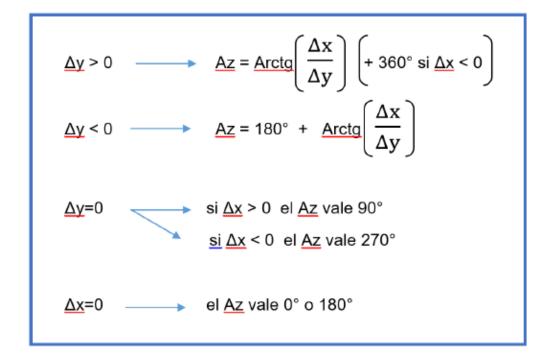
CÍRCULO TOPOGRÁFICO

CÍRCULO TRIGONOMÉTRICO



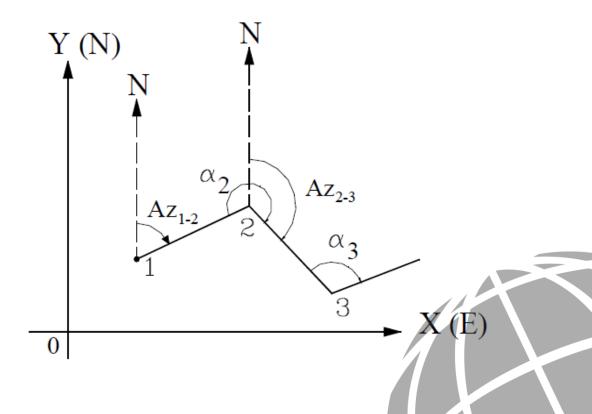


Cuadrantes, ángulos y orientaciones


CUADRANTES Y SENTIDOS ANGULARES EN TOPOGRAFÍA:

El sentido positivo de la rotación es HORARIO y el origen de la rotación coincide con la dirección NORTE.

DISCUSIÓN:



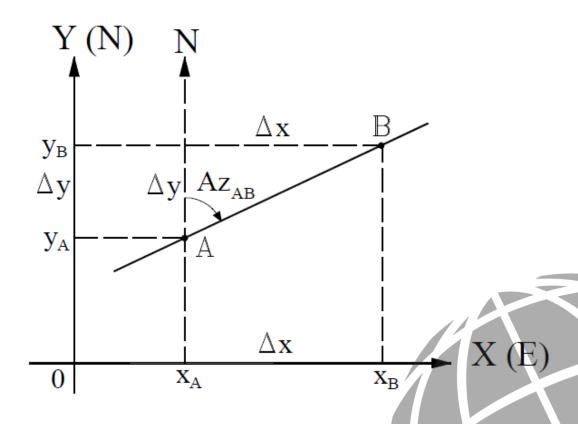
Generalización

$$Az_{23} = Az_{12} + \alpha_2 \pm 180^{\circ}$$

GENERALIZANDO

$$Az_{i\rightarrow i+1} = Az_{i-1\rightarrow i} + \alpha_i \pm 180^{\circ}$$

Cálculo de coordenadas


SISTEMA DE EJES CARTESIANOS

$$Az_{AB} = Arc \operatorname{tg}\left(\frac{\Delta x}{\Delta y}\right)$$

$$\Delta x_{AB} = D_{AB} * \sin Az_{AB}$$

$$\Delta y_{AB} = D_{AB} * \cos Az_{AB}$$
PROYECCIONES

$$\begin{cases} x_B = x_A + \Delta x_{AB} = x_A + D_{AB} * \operatorname{sen} A z_{AB} \\ y_B = y_A + \Delta y_{AB} = y_A + D_{AB} * \operatorname{cos} A z_{AB} \end{cases}$$

Ejercicios de aplicación

EJERCICIO 1

Calcular el acimut AB siendo las coordenadas del punto A (320,05;508,32) y las del punto B (2,54;10,05).

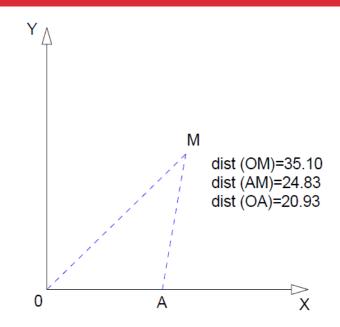
EJERCICIO 2

Conociendo las coordenadas del punto A (6,152;1;325), el AZAB=35°40' y la distancia AB=271,34m, calcular las coordenadas del punto B.

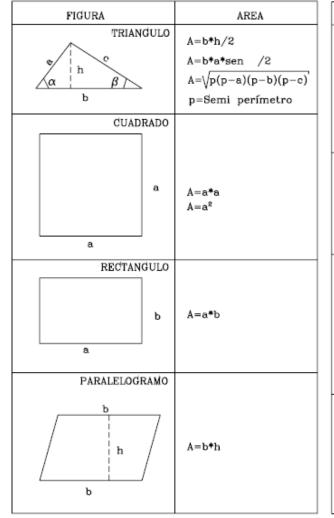
EJERCICIO 3

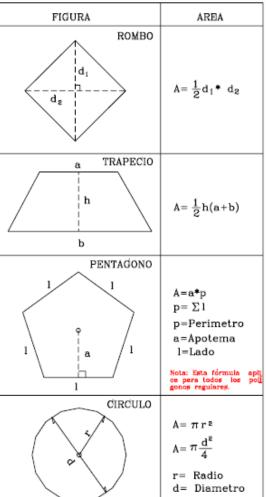
Con los siguientes datos:

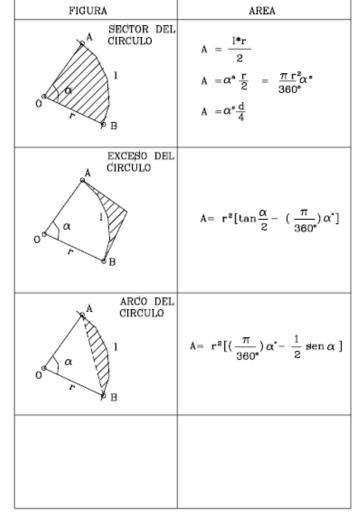
A (0,214;1,320)

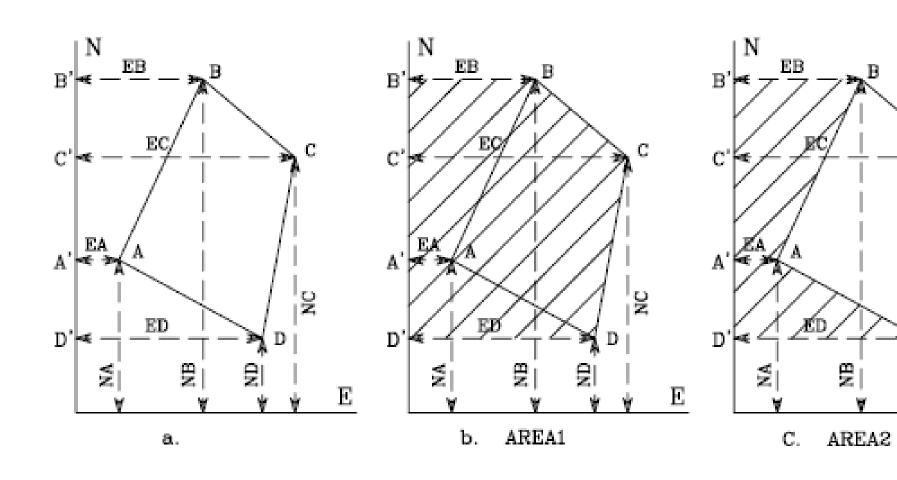

B (11,271;424,318)

distancia (AC)=225,50m


Calcular las coordenadas del punto C sabiendo que pertenece al segmento AB


EJERCICIO 4


Calcular las coordenadas del punto M en función de los datos adjuntos.



Cálculo de áreas de figuras geométricas

$$Area_{ABCD} = Area_1 - Area_2$$

$$Area_1 = Area_{B'BCC'} + Area_{C'CDD'}$$

$$Area_{B'BCC'} = \frac{1}{2}(E_C + E_B) \times (N_B - N_C)$$

$$Area_{C'CDD'} = \frac{1}{2}(E_C + E_D) \times (N_C - N_D)$$

$$Area_1 = \frac{1}{2} [(E_B + E_C) \times (N_B - N_C) + (E_C + E_D) \times (N_C - N_D)]$$

$$Area_2 = Area_{B'BAA'} + Area_{A'ADD'}$$

$$Area_{B'BAA'} = \frac{1}{2}(E_B + E_A) \times (N_B - N_A)$$

$$Area_{A'ADD'} = \frac{1}{2}(E_A + E_D) \times (N_A - N_D)$$

$$Area_2 = \frac{1}{2}[(E_B + E_A) \times (N_B - N_A) + (E_A + E_D) \times (N_A - N_D)]$$

$$Area_{ABCD} = Area_1 - Area_2$$

$$Area_1 = \frac{1}{2} [(E_B + E_C) \times (N_B - N_C) + (E_C + E_D) \times (N_C - N_D)]$$

$$Area_2 = \frac{1}{2}[(E_B + E_A) \times (N_B - N_A) + (E_A + E_D) \times (N_A - N_D)]$$

$$Area = \frac{1}{2} \left[\left[(E_B + E_C) \times (N_B - N_C) + (E_C + E_D) \times (N_C - N_D) \right] - \left((E_B + E_A) \times (N_B - N_A) + (E_A + E_D) \times (N_A - N_D) \right] \right]$$

Area =
$$\frac{1}{2}[N_A(E_B - E_D) + N_B(E_C - E_A) + N_C(E_D - E_B) + N_D(E_A - E_C)]$$

area =
$$\frac{1}{2} \sum_{i=1}^{i=n} N_i (E_{i+1} - E_{i-1})$$

¡Gracias!

Prof.Micaela Gracia

Prof. Alberto Mamrut

Prof. Magali Martinez Núñez

Prof. Martín Wainstein

micaelag@fing.edu.uy amamrut@fing.edu.uy magalim@fing.edu.uy martinw@fing.edu.uy

www.fing.edu.uy/es/ia

