BLUETOOTH LOW ENERGY

Bluetooth LE, BLE

Objectives

- Describe the main characteristics of Bluetooth LE
- Understand the role of its different layers
- Understand the connection process in Bluetooth LE
- Learn data is exchanged in Bluetooth LE connections

Agenda

- Introduction
 - Protocol stack
 - Main concepts
- Advertising
- Connections
- Data exchange
- Security

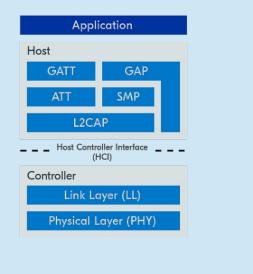
Introduction

- Bluetooth (SIG) standards organization
- Bluetooth LE
 - introduced in version 4.0
 - for low-power IoT applications.

https://www.bluetooth.com/

Operating band	2400 MHz — 2483.5 MHz ~ 2.4 GHz
Channel bandwidth	2 MHz
Number of RF channels	40
Maximum transmit power	20 dBm 0.1 W
Maximum application data throughput	1.4 Mbps
Maximum range at reduced data rates (125 & 500 kbps)	~1000 m

🛞 : hagall (¥) y berkana (₿)

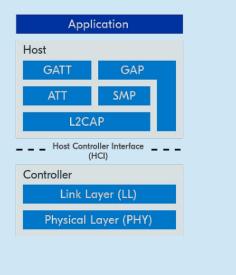

Iniciales rey Harald Blåtand

Introduction

- Bluetooth LE differs from Bluetooth Classic
 - low energy consumption by sacrificing data rate
 - data packets are made smaller (ranging from 27 to 251 bytes)
 - data is being sent as seldom as possible (avoid long radio-on times)
 - more suitable for battery-operated devices that need to operate on minimal power and only send small bursts of data
 - different use cases than Bluetooth classic

Bluetooth LE protocol stack

- Controller
 - PHY: Physical Layer
 - LL: Link Layer:
 - manages the **state of the radio**
 - standby, advertising, scanning, initiating, connection.

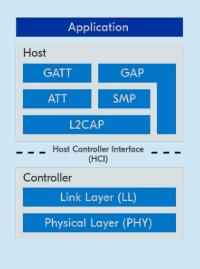

• Host

- The Bluetooth LE host consists of the following layers:
- Logical Link Control & Adaptation Protocol (L2CAP): provides data encapsulation services to the upper layers.
- Security Manager Protocol (SMP): defines and provides methods for secure communication.
- Attribute Protocol (ATT): allows a device to expose certain pieces of data to another device.
- Generic Attribute Profile (GATT): defines the necessary sub-procedures for using the ATT layer.
- Generic Access Profile (GAP): interfaces directly with the application to handle device discovery and connection-related services.

- The Bluetooth LE controller is comprised of the following layers:
- Physical Layer (PHY): determines how the actual data is modulated onto the radio waves, and how it is transmitted and received.
- Link Layer (LL): manages the state of the radio, defined as one of the following standby, advertising, scanning, initiating, connection.

Bluetooth LE protocol stack

- Host
 - L2CAP: Logical Link Control & Adaptation Protocol
 - SMP: Security Manager Protocol
 - ATT: Attribute Protocol
 - GATT: Generic Attribute Profile
 - GAP: Generic Access Profile (GAP)


• Host

- The Bluetooth LE host consists of the following layers:
- Logical Link Control & Adaptation Protocol (L2CAP): provides data encapsulation services to the upper layers.
- Security Manager Protocol (SMP): defines and provides methods for secure communication.
- Attribute Protocol (ATT): allows a device to expose certain pieces of data to another device.
- Generic Attribute Profile (GATT): defines the necessary sub-procedures for using the ATT layer.
- Generic Access Profile (GAP): interfaces directly with the application to handle device discovery and connection-related services.

- The Bluetooth LE controller is comprised of the following layers:
- Physical Layer (PHY): determines how the actual data is modulated onto the radio waves, and how it is transmitted and received.
- Link Layer (LL): manages the state of the radio, defined as one of the following standby, advertising, scanning, initiating, connection.

GAP: Generic Access Profile (GAP)

- GAP: connection functionality
- Two different communication styles:
 - Connection-oriented communication:
 - forming **bi-directional communication**
 - Broadcast communication:
 - **broadcasting data packets** to all devices within range.

• Host

- The Bluetooth LE host consists of the following layers:
- Logical Link Control & Adaptation Protocol (L2CAP): provides data encapsulation services to the upper layers.
- Security Manager Protocol (SMP): defines and provides methods for secure communication.
- Attribute Protocol (ATT): allows a device to expose certain pieces of data to another device.
- Generic Attribute Profile (GATT): defines the necessary sub-procedures for using the ATT layer.
- Generic Access Profile (GAP): interfaces directly with the application to handle device discovery and connection-related services.

- The Bluetooth LE controller is comprised of the following layers:
- Physical Layer (PHY): determines how the actual data is modulated onto the radio waves, and how it is transmitted and received.
- Link Layer (LL): manages the state of the radio, defined as one of the following standby, advertising, scanning, initiating, connection.

GAP: Device roles

Connection-oriented comm.

- Central
 - scans and initiates connections
 with peripherals.

Peripheral

Device

- Peripheral
 - advertises and accepts connections from centrals.

https://docs.arduino.cc/learn/communication/bluetooth/

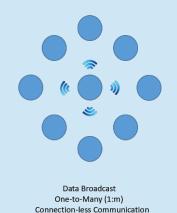
eriphera

Device

Central

Device

• Host


- The Bluetooth LE host consists of the following layers:
- Logical Link Control & Adaptation Protocol (L2CAP): provides data encapsulation services to the upper layers.
- Security Manager Protocol (SMP): defines and provides methods for secure communication.
- Attribute Protocol (ATT): allows a device to expose certain pieces of data to another device.
- Generic Attribute Profile (GATT): defines the necessary sub-procedures for using the ATT layer.
- Generic Access Profile (GAP): interfaces directly with the application to handle device discovery and connection-related services.

- The Bluetooth LE controller is comprised of the following layers:
- Physical Layer (PHY): determines how the actual data is modulated onto the radio waves, and how it is transmitted and received.
- Link Layer (LL): manages the state of the radio, defined as one of the following standby, advertising, scanning, initiating, connection.

GAP: Device roles

Broadcast communication

- Broadcaster
 - broadcasts advertisement packets without accepting any connection requests.
- Observer:
 - listens to advertising packets without initiating a connection.

• Host

- The Bluetooth LE host consists of the following layers:
- Logical Link Control & Adaptation Protocol (L2CAP): provides data encapsulation services to the upper layers.
- Security Manager Protocol (SMP): defines and provides methods for secure communication.
- Attribute Protocol (ATT): allows a device to expose certain pieces of data to another device.
- Generic Attribute Profile (GATT): defines the necessary sub-procedures for using the ATT layer.
- Generic Access Profile (GAP): interfaces directly with the application to handle device discovery and connection-related services.

- The Bluetooth LE controller is comprised of the following layers:
- Physical Layer (PHY): determines how the actual data is modulated onto the radio waves, and how it is transmitted and received.
- Link Layer (LL): manages the state of the radio, defined as one of the following standby, advertising, scanning, initiating, connection.

GAP: Network topologies

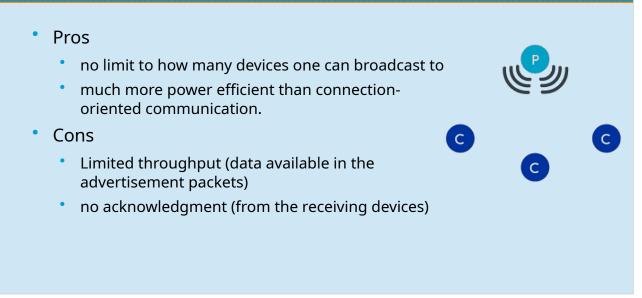
- Broadcast topology
- Connected topology
- Multi-role topology

• Host

- The Bluetooth LE host consists of the following layers:
- Logical Link Control & Adaptation Protocol (L2CAP): provides data encapsulation services to the upper layers.
- Security Manager Protocol (SMP): defines and provides methods for secure communication.
- Attribute Protocol (ATT): allows a device to expose certain pieces of data to another device.
- Generic Attribute Profile (GATT): defines the necessary sub-procedures for using the ATT layer.
- Generic Access Profile (GAP): interfaces directly with the application to handle device discovery and connection-related services.

- The Bluetooth LE controller is comprised of the following layers:
- Physical Layer (PHY): determines how the actual data is modulated onto the radio waves, and how it is transmitted and received.
- Link Layer (LL): manages the state of the radio, defined as one of the following standby, advertising, scanning, initiating, connection.

GAP: Broadcast topology


- Features
 - no connection
 - advertisement packets to any device
- Communication
 - broadcaster advertises the data
 - observer will scan and read the data from the advertisement packets.
- Applications
 - proximity beacons, in indoor navigation, and many other applications that require to transmit small amounts of data to several devices simultaneously.
- Broadcast topology
 - data transfer happens without the devices ever establishing a connection.
 - advertisement packets to broadcast the data to any device
 - peripheral (more specifically a broadcaster) advertises the data, and
 - central (more specifically an observer) will scan and read the data from the advertisement packets.

C

С

- Applications
 - proximity beacons, in indoor navigation, and many other applications that require a low-power device to transmit small amounts of data to several devices simultaneously.
- Pro and cons
 - Advantage
 - no limit to how many devices one can broadcast to.
 - much more power efficient than connection-oriented communication.
 - Disadvantages
 - Limited throughput (data available in the advertisement packets)
 - no acknowledgment (from the receiving devices)

GAP: Broadcast topology

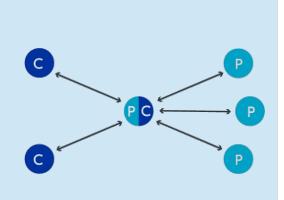
- Broadcast topology
 - data transfer happens without the devices ever establishing a connection.
 - advertisement packets to broadcast the data to any device
 - peripheral (more specifically a broadcaster) advertises the data, and
 - central (more specifically an observer) will scan and read the data from the advertisement packets.
- Applications
 - proximity beacons, in indoor navigation, and many other applications that require a low-

GAP: Connected topology

- Features
 - establishes a connection before data transfer
- Pros
 - increased throughput
 - communication is bi-directional
- Cons
 - Requires establishing a direct link before communication.

• Host

- The Bluetooth LE host consists of the following layers:
- Logical Link Control & Adaptation Protocol (L2CAP): provides data encapsulation services to the upper layers.

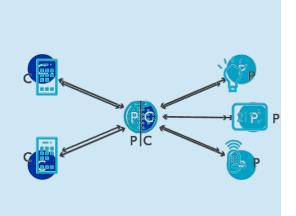

C

- Security Manager Protocol (SMP): defines and provides methods for secure communication.
- Attribute Protocol (ATT): allows a device to expose certain pieces of data to another device.
- Generic Attribute Profile (GATT): defines the necessary sub-procedures for using the ATT layer.
- Generic Access Profile (GAP): interfaces directly with the application to handle device discovery and connection-related services.

- The Bluetooth LE controller is comprised of the following layers:
- Physical Layer (PHY): determines how the actual data is modulated onto the radio waves, and how it is transmitted and received.
- Link Layer (LL): manages the state of the radio, defined as one of the following standby, advertising, scanning, initiating, connection.

GAP: Multi-role topology

- Device can also simultaneously act as
 - peripheral (in one setting), and
 - central (in another)
- Applications
 - hub device is receiving sensor data from multiple sensors and forward this data to mobile phones

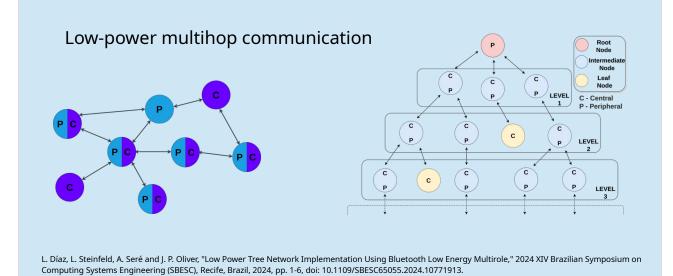

• Host

- The Bluetooth LE host consists of the following layers:
- Logical Link Control & Adaptation Protocol (L2CAP): provides data encapsulation services to the upper layers.
- Security Manager Protocol (SMP): defines and provides methods for secure communication.
- Attribute Protocol (ATT): allows a device to expose certain pieces of data to another device.
- Generic Attribute Profile (GATT): defines the necessary sub-procedures for using the ATT layer.
- Generic Access Profile (GAP): interfaces directly with the application to handle device discovery and connection-related services.

- The Bluetooth LE controller is comprised of the following layers:
- Physical Layer (PHY): determines how the actual data is modulated onto the radio waves, and how it is transmitted and received.
- Link Layer (LL): manages the state of the radio, defined as one of the following standby, advertising, scanning, initiating, connection.

GAP: Multi-role topology

- Device can also simultaneously act as
 - peripheral (in one setting), and
 - central (in another)
- Applications
 - hub device is receiving sensor data from multiple sensors and forward this data to mobile phones

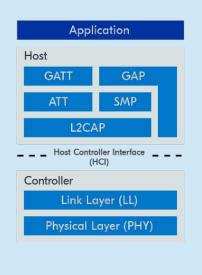


• Host

- The Bluetooth LE host consists of the following layers:
- Logical Link Control & Adaptation Protocol (L2CAP): provides data encapsulation services to the upper layers.
- Security Manager Protocol (SMP): defines and provides methods for secure communication.
- Attribute Protocol (ATT): allows a device to expose certain pieces of data to another device.
- Generic Attribute Profile (GATT): defines the necessary sub-procedures for using the ATT layer.
- Generic Access Profile (GAP): interfaces directly with the application to handle device discovery and connection-related services.

- The Bluetooth LE controller is comprised of the following layers:
- Physical Layer (PHY): determines how the actual data is modulated onto the radio waves, and how it is transmitted and received.
- Link Layer (LL): manages the state of the radio, defined as one of the following standby, advertising, scanning, initiating, connection.

GAP: Multi-role topology


• Host

- The Bluetooth LE host consists of the following layers:
- Logical Link Control & Adaptation Protocol (L2CAP): provides data encapsulation services to the upper layers.
- Security Manager Protocol (SMP): defines and provides methods for secure communication.
- Attribute Protocol (ATT): allows a device to expose certain pieces of data to another device.
- Generic Attribute Profile (GATT): defines the necessary sub-procedures for using the ATT layer.
- Generic Access Profile (GAP): interfaces directly with the application to handle device discovery and connection-related services.

- The Bluetooth LE controller is comprised of the following layers:
- Physical Layer (PHY): determines how the actual data is modulated onto the radio waves, and how it is transmitted and received.
- Link Layer (LL): manages the state of the radio, defined as one of the following standby, advertising, scanning, initiating, connection.

Data representation and exchange

- Bidirectional data exchange
 - requires specific data structures and protocols
 - after a connection has been established
- Attribute protocol (ATT) layer
 - define how data is represented
- Generic Attribute Profile (GATT) layer
 - define how data is exchanged
- GATT uses the ATT to exchange data

- The Bluetooth LE host consists of the following layers:
- Logical Link Control & Adaptation Protocol (L2CAP): provides data encapsulation services to the upper layers.
- Security Manager Protocol (SMP): defines and provides methods for secure communication.
- Attribute Protocol (ATT): allows a device to expose certain pieces of data to another device.
- Generic Attribute Profile (GATT): defines the necessary sub-procedures for using the ATT layer.
- Generic Access Profile (GAP): interfaces directly

Attribute Protocol (ATT)

Attribute

• A standardized data representation format defined by the ATT protocol.

Client-server architecture

- server holds the data
- can either
 - server send it directly to the client or
 - **client poll** the data from the server.
- ATT roles (client and server) <> GAP roles (peripheral and central)

- The Bluetooth LE host consists of the following layers:
- Logical Link Control & Adaptation Protocol (L2CAP): provides data encapsulation services to the upper layers.
- Security Manager Protocol (SMP): defines and provides methods for secure communication.
- Attribute Protocol (ATT): allows a device to expose certain pieces of data to another device.
- Generic Attribute Profile (GATT): defines the necessary sub-procedures for using the ATT layer.
- Generic Access Profile (GAP): interfaces directly

Generic Attribute Profile (GATT)

• GATT: organize data into a hierarchical stricture

Profiles

- Collections of services that address a specific use case (e.g., Heart Rate Profile).
- Services
 - Groups of related characteristics that provide specific functionality (e.g., Battery Service).
- Characteristics
 - Individual pieces of data or functionality within a service (e.g., Battery Level).

Attributes

The smallest unit of data, which can be a characteristic or a descriptor

Generic Attribute Profile (GATT)

Example

- Profile
 - Heart Rate Profile
- Services
 - Heart Rate Service
- Characteristics
 - Heart Rate Measurement Characteristic
 - Body Sensor Location Characteristic
- Attributes
 - Heart Rate Value (UINT8)
 - RR-Interval Value

https://www.bluetooth.com/specifications/specs/heart-rate-profile-1-0/

PHY

Defines different modulation and coding schemes

- Modes
 - 1M PHY
 - classic PHY
 - mode used initiationgraection
 - 2M PHY
 - introduced in Bluetooth v5.0

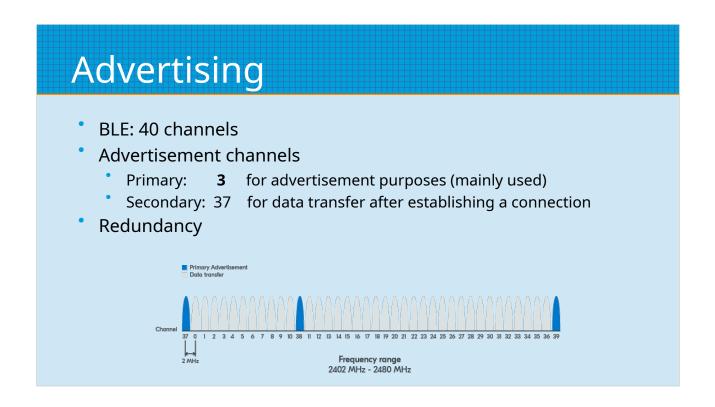
Coded PHY

- achieve longer communication range by sacrificing data rate
- coding schemes to correct packet errors
- S symbols represent a1 bit
 - S=2, data rate 500 kbps
 - S=8, data rate 125 kbps.

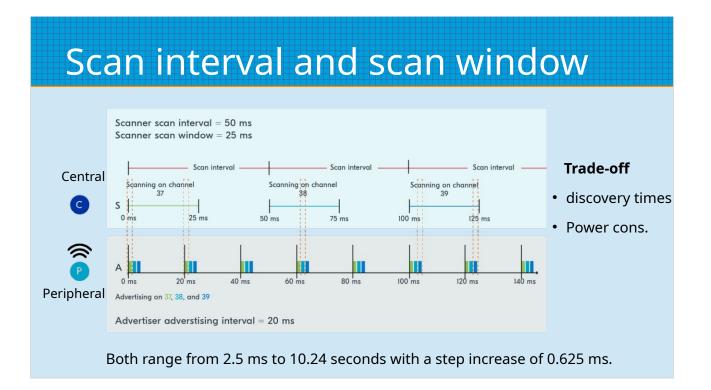
• Host

- The Bluetooth LE host consists of the following layers:
- Logical Link Control & Adaptation Protocol (L2CAP): provides data encapsulation services to the upper layers.
- Security Manager Protocol (SMP): defines and provides methods for secure communication.
- Attribute Protocol (ATT): allows a device to expose certain pieces of data to another device.
- Generic Attribute Profile (GATT): defines the necessary sub-procedures for using the ATT layer.
- Generic Access Profile (GAP): interfaces directly with the application to handle device discovery and connection-related services.

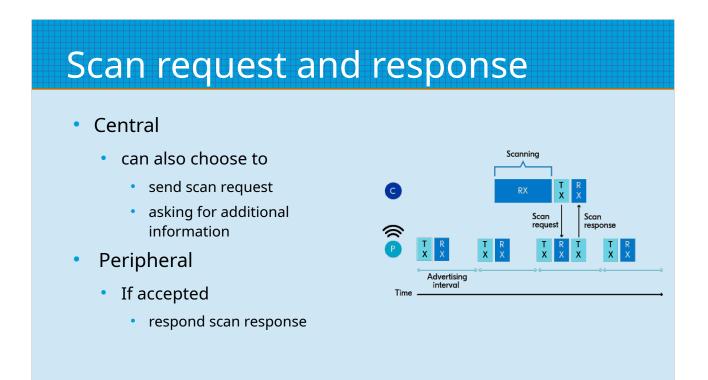
- The Bluetooth LE controller is comprised of the following layers:
- Physical Layer (PHY): determines how the actual data is modulated onto the radio waves, and how it is transmitted and received.
- Link Layer (LL): manages the state of the radio, defined as one of the following standby, advertising, scanning, initiating, connection.


Agenda

- Introduction
 - Protocol stack
 - Main concepts
- Advertising
- Connections
- Data exchange
- Security

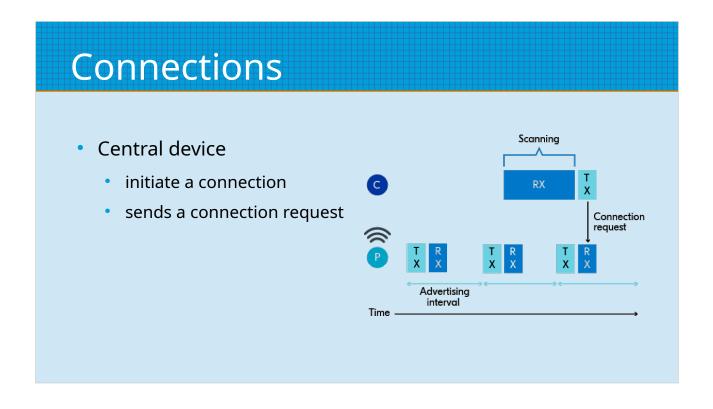

Advertising

- Two main purposes
 - to broadcast data to neighboring devices or
 - to advertise its presence for another device to connect to it


- The Bluetooth LE host consists of the following layers:
- Logical Link Control & Adaptation Protocol (L2CAP): provides data encapsulation services to the upper layers.
- Security Manager Protocol (SMP): defines and provides methods for secure communication.
- Attribute Protocol (ATT): allows a device to expose certain pieces of data to another device.
- Generic Attribute Profile (GATT): defines the necessary sub-procedures for using the ATT layer.
- Generic Access Profile (GAP): interfaces directly

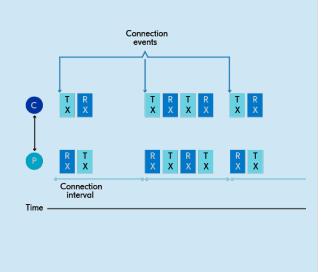
- Host
- The Bluetooth LE host consists of the following layers:
- Logical Link Control & Adaptation Protocol (L2CAP): provides data encapsulation services to the upper layers.
- Security Manager Protocol (SMP): defines and provides methods for secure communication.
- Attribute Protocol (ATT): allows a device to expose certain pieces of data to another device.
- Generic Attribute Profile (GATT): defines the necessary sub-procedures for using the ATT layer.
- Generic Access Profile (GAP): interfaces directly

- Host
- The Bluetooth LE host consists of the following layers:
- Logical Link Control & Adaptation Protocol (L2CAP): provides data encapsulation services to the upper layers.
- Security Manager Protocol (SMP): defines and provides methods for secure communication.
- Attribute Protocol (ATT): allows a device to expose certain pieces of data to another device.
- Generic Attribute Profile (GATT): defines the necessary sub-procedures for using the ATT layer.
- Generic Access Profile (GAP): interfaces directly

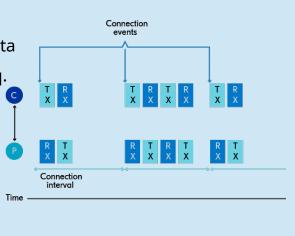

- The Bluetooth LE host consists of the following layers:
- Logical Link Control & Adaptation Protocol (L2CAP): provides data encapsulation services to the upper layers.
- Security Manager Protocol (SMP): defines and provides methods for secure communication.
- Attribute Protocol (ATT): allows a device to expose certain pieces of data to another device.
- Generic Attribute Profile (GATT): defines the necessary sub-procedures for using the ATT layer.
- Generic Access Profile (GAP): interfaces directly

Bluetooth address

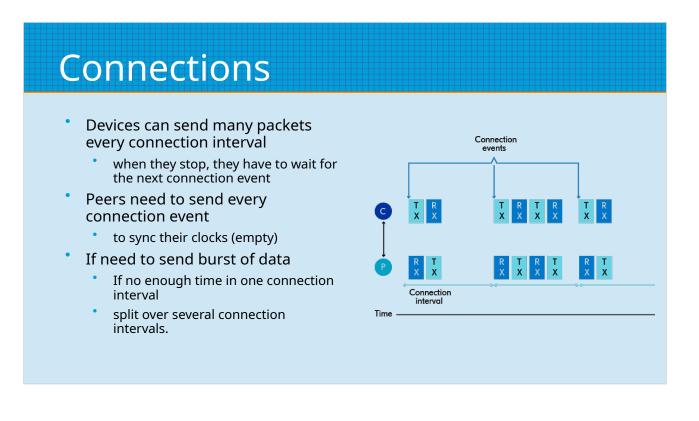
- Bluetooth LE device
 - identified by a unique 48-bit address.
- Four different types
 - Public address
 - programmed into the device by the manufacturer
 - registered with the IEEE
 - Random static address
 - fixed through the lifetime of the device (configurable at boot up)
 - not need to be registered with the IEEE
 - common alternative to a public address, more commonly used
- Host
- The Bluetooth LE host consists of the following layers:
- Logical Link Control & Adaptation Protocol (L2CAP): provides data encapsulation services to the upper layers.
- Security Manager Protocol (SMP): defines and provides methods for secure communication.
- Attribute Protocol (ATT): allows a device to expose certain pieces of data to another device.
- Generic Attribute Profile (GATT): defines the necessary sub-procedures for using the ATT layer.
- Generic Access Profile (GAP): interfaces directly


Agenda

- Introduction
 - Protocol stack
 - Main concepts
- Advertising
- Connections
- Data exchange
- Security

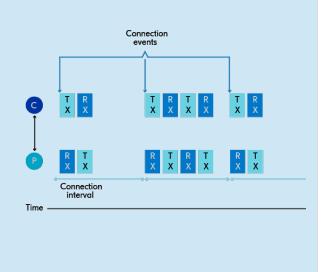

- The Bluetooth LE host consists of the following layers:
- Logical Link Control & Adaptation Protocol (L2CAP): provides data encapsulation services to the upper layers.
- Security Manager Protocol (SMP): defines and provides methods for secure communication.
- Attribute Protocol (ATT): allows a device to expose certain pieces of data to another device.
- Generic Attribute Profile (GATT): defines the necessary sub-procedures for using the ATT layer.
- Generic Access Profile (GAP): interfaces directly

- During the connection
 - data channels (0 to 36)
 - channel hopping
 - packets transmitted
 - until an ack is received or
 - connection is terminated.



- The Bluetooth LE host consists of the following layers:
- Logical Link Control & Adaptation Protocol (L2CAP): provides data encapsulation services to the upper layers.
- Security Manager Protocol (SMP): defines and provides methods for secure communication.
- Attribute Protocol (ATT): allows a device to expose certain pieces of data to another device.
- Generic Attribute Profile (GATT): defines the necessary sub-procedures for using the ATT layer.
- Generic Access Profile (GAP): interfaces directly

- Connection interval
 - devices wake up to exchange data
 - initially set in the connection req.
- Connection event:
 - every connection interval when the central sends a packet to the peripheral



- The Bluetooth LE host consists of the following layers:
- Logical Link Control & Adaptation Protocol (L2CAP): provides data encapsulation services to the upper layers.
- Security Manager Protocol (SMP): defines and provides methods for secure communication.
- Attribute Protocol (ATT): allows a device to expose certain pieces of data to another device.
- Generic Attribute Profile (GATT): defines the necessary sub-procedures for using the ATT layer.
- Generic Access Profile (GAP): interfaces directly

- Host
- The Bluetooth LE host consists of the following layers:
- Logical Link Control & Adaptation Protocol (L2CAP): provides data encapsulation services to the upper layers.
- Security Manager Protocol (SMP): defines and provides methods for secure communication.
- Attribute Protocol (ATT): allows a device to expose certain pieces of data to another device.
- Generic Attribute Profile (GATT): defines the necessary sub-procedures for using the ATT layer.
- Generic Access Profile (GAP): interfaces directly

- During the connection
 - data channels (0 to 36)
 - channel hopping
 - packets transmitted
 - until an ack is received or
 - connection is terminated.

- The Bluetooth LE host consists of the following layers:
- Logical Link Control & Adaptation Protocol (L2CAP): provides data encapsulation services to the upper layers.
- Security Manager Protocol (SMP): defines and provides methods for secure communication.
- Attribute Protocol (ATT): allows a device to expose certain pieces of data to another device.
- Generic Attribute Profile (GATT): defines the necessary sub-procedures for using the ATT layer.
- Generic Access Profile (GAP): interfaces directly

- Disconnecting
 - Disconnected by application
 - send a termination packet (either device)
 - no longer wishes to be connected
 - something wrong with the connection
 - Disconnected by supervision timeout
 - device stops responding to packets
 - application crashed and reset
 - ran out of battery
 - taken out of radio range
- Host
- The Bluetooth LE host consists of the following layers:
- Logical Link Control & Adaptation Protocol (L2CAP): provides data encapsulation services to the upper layers.
- Security Manager Protocol (SMP): defines and provides methods for secure communication.
- Attribute Protocol (ATT): allows a device to expose certain pieces of data to another device.
- Generic Attribute Profile (GATT): defines the necessary sub-procedures for using the ATT layer.
- Generic Access Profile (GAP): interfaces directly

Agenda

- Introduction
 - Protocol stack
 - Main concepts
- Advertising
- Connections
- Data exchange
- Security

Data exchange

- client-server architecture
 - server holds the data and can either send it directly to the client or the
 - client can poll the data from the server.

• Host

- The Bluetooth LE host consists of the following layers:
- Logical Link Control & Adaptation Protocol (L2CAP): provides data encapsulation services to the upper layers.
- Security Manager Protocol (SMP): defines and provides methods for secure communication.
- Attribute Protocol (ATT): allows a device to expose certain pieces of data to another device.
- Generic Attribute Profile (GATT): defines the necessary sub-procedures for using the ATT layer.
- Generic Access Profile (GAP): interfaces directly

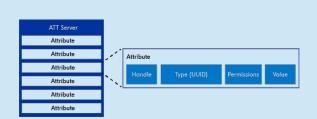
Data exchange

- Client-initiated operations
 - client requests data from the GATT server (attribute)
- Read
 - client sends a **read request** to the server
 - server responds by returning the **attribute valu**e.
- Write
 - client sends a **write request** and provides data that matches the same format of the target attribute.
 - * server responds with an **acknowledgment**, if accepts the write operation
 - Write without response (If this operation is enabled)
 - client can write data to an attribute without waiting for an acknowledgment from the server.
 - can be used when quick data exchange is needed.
- Host
- The Bluetooth LE host consists of the following layers:
- Logical Link Control & Adaptation Protocol (L2CAP): provides data encapsulation services to the upper layers.
- Security Manager Protocol (SMP): defines and provides methods for secure communication.
- Attribute Protocol (ATT): allows a device to expose certain pieces of data to another device.
- Generic Attribute Profile (GATT): defines the necessary sub-procedures for using the ATT layer.
- Generic Access Profile (GAP): interfaces directly

Data exchange

Server-initiated operations

- server sends information directly to the client
- client is **required to enable** by subscribing to the characteristic and enabling either notifications or indications.


Notify

- push the value of a certain attribute to the client
- can be used to update the client about a certain sensor reading
- Notifications require no acknowledgment back from the client.

Indicate

- push the attribute value directly to the client.
- an acknowledgment from the client is required.
- can only send one Indication per connection interval (slower than notifications)

Services and characteristics

- Handle:
 - A 16-bit unique index in the attribute table
- Type (UUID)
 - Universally unique ID (UUID)
 - attribute type.
- Permissions:
 - security level required (encryption and/or authorization)
 - indicating whether it's a readable and/or writeable attribute.
- Value:
 - actual user data (ex: sensor reading), any data type: integer even a string.
 - Metadata: information about another attribute

Universally unique ID (UUID)

- UUID: identify attributes
- two types.
 - SIG-defined 16-bit UUID
 - energy and memory efficient
 - 128-bit UUID: vendor-specific UUID.
 - to cover all vendors, users, and use cases
- Examples

•

- SIG-defined
 - Heart rate service, UUID 0x180D
 - Heart Rate Measurement characteristic, UUID 0x2A37
- 128-bit UUID
 - 4A98-xxxx-1CC4-E7C1-C757-F1267DD021E8

Attribute table

Service (my_lbs)	Handle	UUID Attribute Permissions		Attribute Value	
my_Ibs Service Declaration	0×0001	0×2800 Read		00001523-1212-ef de-1523-785feabcd123	
Button Characteristic Declaration	0×0002	0×2803	Read	Properties: Read or Indicate Handle of value: 0×0003 UUID: 00001524-1212-ef- de-1523-785feabcd123	
Button Characteristic Value Declaration	0×0003	00001524-1212-ef- de-1523-785feabcd123	Read	User data: 0×20002689	
Button Descriptor Declaration	0×0004	0×2902	Read & write	Indicate: 0×02	
LED Characteristic Declaration	0×0005	0×2803	Read	Properties: Write Handle of value: 0×0006 UUID: 00001525-1212-ef- de-1523-785feabcd123	
LED Characteristic Value Declaration	0×0006	00001525-1212-ef- de-1523-785feabcd123	Write	User data	
MySensor Characteristic Declaration	0×0007	0×2803	Read	Properties: Notify Handle of value: 0×0008 UUID: 00001526-1212-ef- de-1523-785feabcd123	
MySensor Characteristic Value Declaration	0×0008	00001526-1212-ef- de-1523-785feabcd123		User data	
MySensor Descriptor Declaration	0×0009	0×2902	Read & write	Notify: 0×01	

Security

- Four security levels (mode 1)
 - Level 1:
 - No security (open text, meaning no authentication and no encryption)
 - Level 2:
 - Encryption with unauthenticated pairing
 - Level 3:
 - Authenticated pairing with encryption
 - Level 4:
 - Authenticated LE Secure Connections pairing with encryption

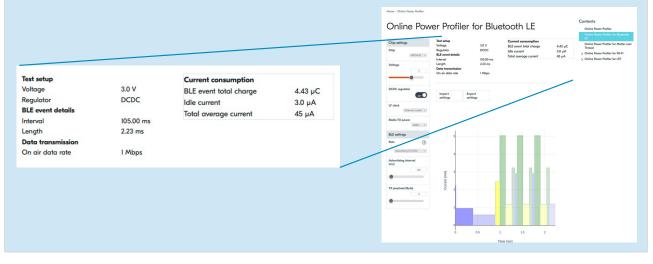
Security

- Pairing:
 - The process of generating, distributing, and authenticating keys for encryption purposes.
- Bonding:
 - The process of pairing followed by distribution of keys used to encrypt the link in future reconnections.

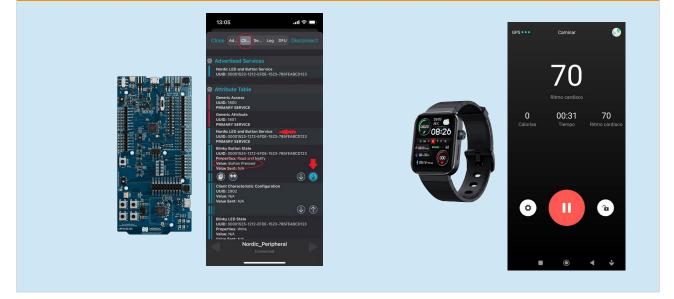
Security

	Established LL connection		
· · · · · ·	(optional) Security_Request		
	Pairing_Request		
Pairing_Response			
	Pairing over SMP:		
	Legacy pairing or LE Secure Connections	Phase 2	
Establis	hment of encrypted connection with key generated in phas	e 2	
	Key Distribution		
	Key Distribution		
	Key Distribution	Phase 3	

Phase 1: Initiate pairing


- peers exchange I/O capabilities
 - DisplayOnly •
 - . DisplayYesNo
 - KeyboardOnly :
 - NoInputNoOutput KeyboardDisplay
- Phase 2: Perform pairing
- generate a public-private key pair •
- verify the authenticity of the peer device (method depends I/O capabilities) and generate the LTK •

Phase 3: Key distribution


LTK is is not directly distributed, but rather derived (in LE Secure Connections) •

Tools

• Online Power Profiler for Bluetooth LE

Examples

References

- Bluetooth Low Energy Fundamentals
 - Nordic Developer Academy
 - https://academy.nordicsemi.com/courses/bluetooth-low-energy-fundamentals
- Woolley, Martin. "The bluetooth low energy primer." Bluetooth Blog 15 (2022): 2022