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Introduction

Classification And Regression Trees, Breiman et al. (1984)
Variants and extensions of the original CART to the spatial domain

▶ Ortho-CART Donoho et al. (1997), in image processing, dyadic
splits + pruning using the algorithm used for the wavelet packets
best basis

▶ Dyadic-CART, ideas generalized in Blanchard et al. (2007)
▶ Extension to spatial data with kriging type ideas see Bel et al.

(2009)

Our variant: Spatial CART
▶ For spatial data, extend CART for bivariate marked point processes
▶ New splitting criterion in Spatial CART, taking into account the

spatial information, to propose a segmentation of the window into
homogeneous areas for interaction between marks
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Classification Trees
Predict the unknown binary label Y ∈ {0;1} of an observation
X ∈ Rp via a classifier

f : Rp → {0;1}

Bayes classifier: minimizer of f 7→ Pf := P (Y ̸= f (X )) (with
(X ,Y ) ∼ P)

f ∗ = 1η(x)⩾1/2, with η(x) = P(Y = 1 | X = x)

f̂T =
∑

t∈T̃ Ŷt1t , T̃ : set of leaves of T , Ŷt :
majority vote in the node t

A. Bar Hen | S. Gey | J-M. Poggi Spatial CART Montevideo, Feb. 2025 4 / 24



CART Algorithm

Classification And Regression Trees, Breiman et al. (1984)

Growing step
recursive partitioning
by maximizing a local
decreasing of
heterogeneity often
based on Gini index or
Shannon entropy
do not split a pure node
or a node containing
few data
⇒ maximal tree Tmax

Tmax overfits the data

Pruning step
Optimal tree: subtree pruned
from Tmax

Reduce the number of tree
candidates: minimize

critα(T ) =
1
n

n∑
i=1

1f̂T (Xi )̸=Yi
+α

|T̃ |
n

,

|T̃ | = number of leaves of T
⇒ sequence (Tk )1⩽k⩽K
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CART Algorithm (2)
Classification And Regression Trees, Breiman et al. (1984)

Theorem (Breiman et al. 84)
For all α ⩾ 0, argminT⪯Tmax

critα(T ) belongs to the sequence of nested
pruned subtrees (Tk )1⩽k⩽K .

Selection step (Cross-validation or Hold Out)
Data split into a training set L of size n, and a test set T of size nt

Build (Tk )1⩽k⩽K on L and select

k̂ = argmin
1⩽k⩽K

1
nt

∑
(Xi ,Yi )∈T

1f̂Tk
(Xi )̸=Yi

⇒ Final CART tree is given by f̂Tk̂

A. Bar Hen | S. Gey | J-M. Poggi Spatial CART Montevideo, Feb. 2025 6 / 24



Outline

1 Classical CART classification trees
Binary classification
CART Algorithm

2 Spatial CART Classification Trees
Motivation
Spatial CART Algorithm

3 CART and Spatial CART in action: Rain-forest in Paracou
Initial resolution
Results

A. Bar Hen | S. Gey | J-M. Poggi Spatial CART Montevideo, Feb. 2025 7 / 24



Spatial CART Algorithm
General idea:

To build a tessellation of the window into homogeneous areas for
interaction between marks

To use the spatial information to build a classification tree on the
observed points of the bivariate point process

Spatial CART as a variant of CART:
Variant in growing: splitting criterion taking into account the spatial
characterization of the data, based on the intertype function Kij

Variant in pruning: penalized criterion based on least squares
criterion to estimate local mark intensities

Variant in final selection: optimal tree selected by a variant of the
slope heuristic (Massart et al.) to keep the spatial information
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Bivariate spatial point process
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Bivariate spatial point process:
(X ,M) ∈ W × {i ; j} ∼ P,
W ⊂ R2

Mark intensity: for ⋆ = i , j ,
λ⋆ intensity of the spatial point
process (X | M = ⋆)

Intertype function: at scale
r ⩾ 0,

Kij(r) = λ−1
j E

(
Nij(r)

)
,

where Nij(r) counts the
number of type j points at
distance at most r of a
randomly chosen type i point
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Interaction Examples

In black: Estimate of Kij on observed points and
In red: theoretical Kij for independent homogeneous

Poisson p.p. (with interval bounds)

But we will use the intertype function from a different perspective
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Splitting criterion
At each node t define

node area: At

estimates of mark intensities: (λ̂t
i , λ̂

t
j )

estimate of Kij(r): K̂ t
ij (r) = (λ̂t

i λ̂
t
j A

t)−1 ∑
{ik ,jl∈t}

1dik ,jl
<r

dik ,jl Distance between individuals ik of mark i and jl of mark j

Impurity function: for a node t , a splitting s of t into tL and tR, and r > 0

∆Iij(s, t , r) := K̂ t
ij (r)− αs

λ̂tL
i λ̂

tL
j

λ̂t
i λ̂

t
j

K̂ tL
ij (r)− (1 − αs)

λ̂tR
i λ̂tR

j

λ̂t
i λ̂

t
j

K̂ tR
ij (r) ⩾ 0

with αs = AtL/At the area proportion of tL ⊂ t

Splitting rule of node t at fixed scale r > 0

ŝ(t , r) = argmax
s

∆Iij(s, t , r)
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Growing maximal tree Tmax

Input Bivariate spatial point process,
scale r0,

Initialize node t = t1 the root of the tree,
rt = r0 the scale value at node t ,
argmax{λ̂t

i , λ̂
t
j} the label of node t .

Recursion at node t Compute
i0 = argmax

⋆∈{i;j}
λ̂t
⋆, j0 = argmin

⋆∈{i;j}
λ̂t
⋆,

ŝ = argmax
s

∆Ii0 j0(s, t , rt),

Set
tL = {points in t | answer "yes" to ŝ},
tR = {points in t | answer "no" to ŝ}.
rt = argmax

r
∆Ii0 j0(ŝ, t , r),

left: t = tL,
right: t = tR .

Output Maximal tree Tmax .
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CART (left) and Spatial CART (right) maximal trees
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Penalized criterion
Class Probability Trees Breiman et al. 84

If X is locally stationary, estimating local mark intensities amounts
to estimating local mark rates

Use penalized criterion derived from Gini index to prune Tmax

critGα (T ) =
1
n

∑
t∈T̃

nt

1 −
∑
⋆=i,j

p̂(⋆|t)2

+ α
|T̃ |
n

,

where n = number of observed points; nt = number of points
falling in node t ; p̂(⋆|t) proportion of points of type ⋆ in node t

⇒ sequence of nested pruned subtrees (Tk )1⩽k⩽K
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Final tree selection

Identifying the "largest complexity plateau" (red circle) or the
modified "largest dimension jump" (blue triangle), more agressive
over-penalizing
Related to the slope heuristic proposed by Birge, Massart in the
2000s (see Baudry et al. (2012) for a recent survey)
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Data description (Gourlet-Fleury et al. 2004, Traissac 2003)
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Rain-forest in Paracou: focus on two species

Two tree species: Vouacapoua americana and Oxandra asbeckii
Elevation is the environmental factor that drives their spatial
distribution and this creates a strong interaction between both
repartitions
Competition is high for the hill at the bottom of the plot and very
low at the top left of the plot
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Choice of initial scale r0
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Figure: Difference between estimated and theoretical Kij ; blue: r = 6, red: r = 24.

r = 6: species begin to interact
r = 24: the interaction between species increases rapidly
Initial median scale value r = 15 for SpatCART is sufficiently large
to capture interaction, and not too large to avoid deeper maximal
trees
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Spatial CART partition

SpatCART (with r = 15) recovers the spatial structure and the
interaction-based (on the Kij(rt) for all the nodes t) colormap is
meaningful
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CART partition (the largest plateau variant)

CART results are not informative from the spatial viewpoint: it
highlights the regions according to the specie distribution, not
w.r.t. the interaction
CART cannot catch the mixed structure of species
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Perspectives

1 Extension to spatial Bagging or spatial Random Forests to cope
with instability issue

2 Use the sensitivity of CART with respect to rotation to generate
several tessellations

3 Extension to multi-marked point processes by combining
one-versus-rest classifiers and then obtain several tessellations
and select the partition maximizing some global measure of
heterogeneity between cells

4 Incorporate covariables:
▶ in the example, elevation could be introduced as a third spatial

coordinate,
▶ more generally, we could imagine to first perform a classical CART

using additional covariables and then, in each leaf, to perform a
SpatCART and finally select the best one
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Paper and Reproducible research

A. Bar-Hen, S. Gey and J-M. Poggi, "Spatial CART Classification
Trees" Computational Statistics, 36, 2591-2613, 2021
An R package spatcart, and the R codes to reproduce
experiments of the paper, are available on https://github.com/

Servane-Gey/Spatial-classification-trees.

Package spatcart may also be directly installed with R package
devtools from the github repository Servane-Gey/spatcart.
Package spatcart requires the following R packages to
implement the results:

– spatstat to deal with point processes, and in particular to
compute ∆Iij in the construction of the maximal tree,

– tree to deal with tree structures.
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Thank you!
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