Universidad de la República - Facultad de Ingeniería - IMERL: Matemática Discreta 1

- Examen 3 de febrero de 2025 -

N° de examen	Cédula	Nombre y apellido	Salón

IMPORTANTE

- La duración del examen es de 3 horas 30 minutos.
- El examen es individual, cualquier copia será denunciada en el Consejo de Facultad.
- No se permite utilizar calculadora ni material de consulta.
- En cada ejercicio de múltiple opción hay una sola opción correcta.
- La comprensión de la letra de los ejercicios es parte de la prueba.

Respuestas Falso o Verdadero: rellenar con ${f F}$ o ${f V}$								
FV2	FV3	FV4	FV5	FV6				
_								

Correcta: 5 puntos. Incorrecta: -3 puntos. Sin responder: 0 puntos.

Respuestas múltiple opción: rellenar con ${\bf A},{\bf E},{\bf O}$ o ${\bf U}$							
MO1	MO2	MO3	MO4	MO5	MO6		

Correcta: 12 puntos. Incorrecta: -4 puntos. Sin responder: 0 puntos.

Falso o Verdadero

1. Si en un supermercado compro m productos distintos y en la caja pido n bolsas para poder cargar todos los productos, entonces la cantidad de formas de embolsar los productos es Sob(m, n).

Asúmase que todas las bolsas son iguales, y que no pedimos bolsas de más, o sea, no quedan bolsas vacías.

- **2**. El coeficiente de x^5 en el desarrollo de $(1+2x+3x^2+4x^3)^4$ es 648.
- **3**. Los siguientes grafos son isomorfos:

4. Hay más de 100 funciones estrictamente crecientes $f: \{1,2,3,4\} \rightarrow \{1,2,3,4,5,6\}$.

Recordar que una función es estrictamente creciente si para todo par de puntos en el dominio x < y, se tiene que f(x) < f(y).

- **5**. Aunque $D_3 < P_3 D_3$ y $D_4 < P_4 D_4$, para todo $n \ge 5$ se verifica que $D_n \ge P_n D_n$. Recordar que $P_n = n!$ es el número de permutaciones de n elementos y D_n son los desórdenes de n elementos.
- **6**. El recorrido más largo en K_8 tiene longitud 27.

Múltiple Opción

1. La cantidad de relaciones R sobre el conjunto $A = \{1, 2, 3, 4\}$ que verifica la propiedad $(i, j) \in R \Leftrightarrow (i+1, j+1) \in R$ para todo $1 \le i < 4$ y $1 \le j < 4$ viene dada por:

A) 64

E) 100

O) 256

U) 128

- 2. Sea $A = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$. En este conjunto planteamos posibles relaciones de equivalencia según los siguientes datos:
 - $[10] = \{10\}; [3] = [5]; \#[9] = 2; \#[5] = 5.$
 - Hay una clase que contiene al menos 3 elementos pares de A.
 - Existe un único $x \in A$ tal que $[x] = \{x, x + 1\}$.
 - 1 y 2 no están relacionados.
 - A) En todas las relaciones de equivalencia que verifican esos datos se cumple que: [2] = [4].
 - E) Hay exactamente 4 relaciones de equivalencia que verifican los datos y en todas la única clase de equivalencia con un solo elemento es $[10] = \{10\}$.
 - O) Hay exactamente 4 relaciones de equivalencia que verifican los datos y todas tienen 4 clases.
 - U) En todas las relaciones de equivalencia que verifican esos datos se cumple que: $6 \in [3]$.
- 3. La cantidad de soluciones a la inecuación $x_1 + x_2 + x_3 \le 8$ con $x_i \in \mathbb{Z}$, $2 \le x_1 \le 6$, $0 \le x_2 \le 6$ y $0 \le x_3 \le 6$ es:

A) 25

E) 36

O) 80

U) 153

4. Se desean escribir claves de seguridad de 4 caracteres usando las vocales a, e, i, o, u, las cifras 1, 2 y los caracteres especiales #, *, @. ¿Cuántas de estas claves es posible definir de modo que todas contengan al menos una cifra, al menos un caracter especial y al menos una vocal? (Se permiten repetir caracteres).

A) 2878

E) 2520

O) 10000

U) 3600

- **5**. Considere las siguientes afirmaciones, para $n \geq 3$:
 - I) El grafo K_n tiene al menos un circuito euleriano para todo n impar.
 - II) El grafo C_n tiene al menos un circuito euleriano y un camino hamiltoniano para todo n.
 - III) Cualquier subgrafo inducido por vértices de K_n es isomorfo a K_m para algún $m \leq n$.
 - IV) Existen grafos con n vértices que no son isomorfos a ningún subgrafo de K_n .

Seleccione la opción correcta:

- **A)** I v II son verdaderas, III v IV son falsas.
- **E**) I, II y III son verdaderas, IV es falsa.
- O) II v IV son verdaderas, I v III son falsas.
- **U**) I, III y IV son verdaderas, II es falsa.
- 6. Se considera el grafo:

- A) El grafo es plano.
- **E**) El grafo no es plano porque contiene un subgrafo homeomorfo a $K_{3,3}$, pero no contiene un subgrafo homeomorfo a K_5 .
- O) El grafo no es plano porque contiene un subgrafo homeomorfo a K_5 , pero no contiene un subgrafo homeomorfo a $K_{3,3}$.
- **U**) El grafo no es plano, contiene un subgrafo isomorfo a K_5 y otro homeomorfo a $K_{3,3}$.