Generating Time Series with Conditional GANs

Time Series. Introduction

- Definition: A sequence of data points indexed in time order.
- Characteristics:
 - Observations are dependent on time.
 - Data can be univariate or multivariate.
- Examples:
 - Stock prices
 - Weather data
 - Sensor readings

Time Series. Introduction

- Components of Time Series
 - Trend: Long-term direction (e.g., increasing sales over years).
 - Seasonality: Regular, repeating patterns (e.g., daily, monthly).
 - Cyclicity: Non-fixed, repeating patterns (e.g., business cycles).
 - Noise: Random variations not explained by other components.

Time Series. Introduction

- Applications of Time Series
 - Finance: Predicting stock prices, interest rates.
 - Healthcare: Monitoring patient vitals over time.
 - Marketing: Forecasting sales or customer behavior.
 - Engineering: Predictive maintenance using sensor data.

Time Series. Challenges

- Handling missing data.
- Dealing with seasonality and trends.
- Non-stationarity and noise.
- Scalability for large datasets.

Time Series with GANs

A time series can be represented as collection of vectors that are defined according to a time window size and a selection procedure

For example:

- Time window size 8
- Overlapping sliding window procedure

5.0	6.0	5.0	5.0	5.0	11.0	13.0	7.0
6.0	5.0	5.0	5.0	11.0	13.0	7.0	6.0

date		measure	ID_estacion	geometry	poll
2019-01-02	08:00:00	5.0	Colon	POINT (570970 6149046)	N02
2019-01-02	09:00:00	6.0	Colon	POINT (570970 6149046)	N02
2019-01-02	10:00:00	5.0	Colon	POINT (570970 6149046)	N02
2019-01-02	13:00:00	5.0	Colon	POINT (570970 6149046)	N02
2019-01-02	14:00:00	5.0	Colon	POINT (570970 6149046)	N02
2019-01-02	15:00:00	11.0	Colon	POINT (570970 6149046)	N02
2019-01-02	16:00:00	13.0	Colon	POINT (570970 6149046)	N02
2019-01-02	17:00:00	7.0	Colon	POINT (570970 6149046)	N02
2019-01-02	18:00:00	6.0	Colon	POINT (570970 6149046)	N02
2019-01-02	19:00:00	0.0	Colon	POINT (570970 6149046)	N02
2019-01-02	23:00:00	5.0	Colon	POINT (570970 6149046)	N02
2019-01-03	20:00:00	18.0	Colon	POINT (570970 6149046)	N02
2019-01-03	21:00:00	7.0	Colon	POINT (570970 6149046)	N02
2019-01-04	21:00:00	72.0	Colon	POINT (570970 6149046)	N02
2019-01-04	22:00:00	38.0	Colon	POINT (570970 6149046)	N02
2019-01-04	23:00:00	9.0	Colon	POINT (570970 6149046)	N02
2019-01-05	22:00:00	7.0	Colon	POINT (570970 6149046)	N02
2019-02-03	00:00:00	5.0	Colon	POINT (570970 6149046)	N02
0010 00 00	04 00 00	F 0	0 1	BATUT (FRAATA ALLOALA)	1100

Time Series with GANs

A time series can be represented as collection of vectors that are defined according to a time window size and a selection procedure

2 0 -2 0 0 100 200 300

For example:

- Time window size 8
- Non-overlapping sliding window procedure

5.0	6.0	5.0	5.0	5.0	11.0	13.0	7.0
6.0	6.0	5.0	18.0	7.0	72.0	38.0	9.0

date		measure	ID_estacion	geometry			poll
2019-01-02	08:00:00	5.0	Colon	POINT	(570970	6149046)	N02
2019-01-02	09:00:00	6.0	Colon	POINT	(570970	6149046)	N02
2019-01-02	10:00:00	5.0	Colon	POINT	(570970	6149046)	N02
2019-01-02	13:00:00	5.0	Colon	POINT	(570970	6149046)	N02
2019-01-02	14:00:00	5.0	Colon	POINT	(570970	6149046)	N02
2019-01-02	15:00:00	11.0	Colon	POINT	(570970	6149046)	N02
2019-01-02	16:00:00	13.0	Colon	POINT	(570970	6149046)	N02
2019-01-02	17:00:00	70	colon	POINT	(570970	6149046)	N02
2019-01-02	18:00:00	6.0	Colon	POINT	(570970	6149046)	N02
2019-01-02	19:00:00	6.0	Colon	POINT	(570970	6149046)	N02
2019-01-02	23:00:00	5.0	Colon	POINT	(570970	6149046)	N02
2019-01-03	20:00:00	18.0	Colon	POINT	(570970	6149046)	N02
2019-01-03	21:00:00	7.0	Colon	POINT	(570970	6149046)	N02
2019-01-04	21:00:00	72.0	Colon	POINT	(570970	6149046)	N02
2019-01-04	22:00:00	38.0	Colon	POINT	(570970	6149046)	N02
2019-01-04	23:00:00	9.0	Colon	POINT	(570970	6149046)	N02
2019-01-05	22:00:00	1.0	colon	POINT	(570970	6149046)	N02
0040 00 00	00.00.00	F 0	0-1	DOTHT	1570070	C4 400 401	NOO

Non-supervised time series generation

The idea is to use GANs to create the vectors that represent the time series

Conditional GANs for time series generation

In order to improve the generation of the time series (i.e., vectors) **some feature/characteristic** of the window to be generated to control the generation

Two problems (papers):

Time series definition: Average NO_2 concentration in one hour during one day Data sample: Vector of 24 NO_2 concentration measures

Conditional generative adversarial networks to model urban outdoor air pollution.

• <u>https://arxiv.org/abs/2010.02244</u>

Generative adversarial networks to model air pollution under uncertainty.

http://ceur-ws.org/Vol-2858/short11.pdf

Conditional generative adversarial networks to model urban outdoor air pollution. <u>https://arxiv.org/abs/2010.02244</u>

Time series definition: Average NO₂ concentration in one hour during one day

Data sample: Vector of 24 NO₂ measures

The behaviour of the pollution is affected by the type of day (week-day/weekend) and the season

season	type of day	class	number of samples
winter	weekend	0	439
winter	working day	1	1082
spring	weekend	2	439
spring	working day	3	1119
summer	weekend	4	445
summer	working day	5	1116
autumn	weekend	6	420
autumn	working day	7	1045

Real data distribution

https://colab.research.google.com/drive/1kKpneBxuLyYRoEKDAVYgYYhUh3bdyCNK?usp=sharing

The quality of the generated data was evaluated according to the root mean squared error (RMSE) between the fake samples produced and the time series that represents the mean

Generated data

Generated data vs. Real data

Generated data vs. Real data

Generating Time Series with Conditional GANs

Questions?