Segundo parcial - 26 de noviembre de 2024 - Versión 1

N° de parcial	Cédula	Nombre y apellido	Salón

LEA CON ATENCIÓN ANTES DE COMENZAR

- La duración del parcial es de 3 horas y 20 minutos.
- No está permitido salir del salón durante la primer hora de duración del parcial.
- El número de parcial es el número de lista, no puede hacer el parcial si no se encuentra en la lista de inscriptos.
- No se permite utilizar calculadora ni material de consulta.
- Deben completar esta hoja con todos los datos personales y la tabla de abajo con sus respuestas.
- Recuerde completar también la hoja de escáner con todos los datos personales y con las respuestas correctas.
- Deben firmar el control de asistencia antes de entregar, caso contrario no pueden reclamar en caso de extravío.

TABLA PARA COMPLETAR

Verdadero o Falso: rellenar con ${f V}$ o ${f F}$							Múltiple opción: rellenar con $\mathbf{A},\mathbf{B},\mathbf{C}$ o \mathbf{D}						
VF1	VF2	VF3	VF4	VF5	VF6		MO1	MO2	MO3	MO4	MO5	MO6	
										l			

Correcta: 3 puntos. Incorrecta: -2 puntos. Sin responder: 0 puntos.

Correcta: 7 puntos. Incorrecta: -2 puntos. Sin responder: 0 puntos.

ALGUNAS NOTACIONES:

- Si R y S son relaciones sobre A entonces $RS = \{(x, z) \in A \times A : (x, y) \in R, (y, z) \in S \text{ para algún } y \in A\}.$
- Si R es una relación de equivalencia sobre A entonces [a] denota la clase de equivalencia de $a \in A$.
- Un grafo simple es un grafo sin loops ni aristas múltiples. Un recorrido es un camino abierto que no repite aristas.
- Un k-ciclo es un ciclo de largo k. Al polinomio cromático de G lo denotamos $p(G, \lambda)$.

Verdadero o Falso

- 1. Si R y S son dos relaciones transitivas sobre un conjunto finito A entonces RS también lo será.
- **2**. El grafo completo K_{21} tiene 210 aristas y diámetro 1.
- 3. El grafo bipartito completo $K_{3.5}$ no admite un camino hamiltoniano.
- 4. Todo grafo simple, conexo, con 7 vértices, 10 aristas y sin 3-ciclos es plano.
- **5**. Sea G un grafo que es unión disjunta de C_4 y C_5 , entonces su número cromático $\chi(G)=3$.
- **6**. Existe un árbol T con 6 vértices tal que p(T,3) = 192.

- 1. La cantidad de relaciones de equivalencia R sobre $A = \{1, 2, \dots, 8\}$ con $\#[1] = 3, \#[2] = 2, (a, 3) \notin R$ si a < 3 es:
 - **A**) 65

B) 90

C) 120

D) 150

- **2**. La longitud del recorrido más largo en K_{20} es:
 - **A**) 20

B) 180

C) 181

- **D**) 190
- 3. Sea G un grafo plano con v vértices y e aristas, tal que existe una inmersión plana que determina exactamente 4 regiones de grados 4, 4, 7 y 9, respectivamente. Si se sabe que G tiene exactamente 9 vértices de grado 2 y los restantes de grado 3 entonces la cantidad de componentes conexas de G es:
 - $\mathbf{A}) 1$

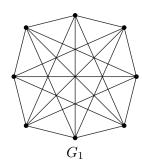
B) 2

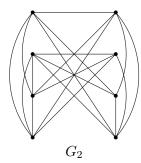
C) 3

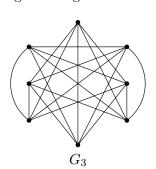
- **D**) 4
- 4. Se consideran las afirmaciones sobre el grafo de Petersen dada por la figura:

Grafo de Petersen

- **A**) Es un grafo plano.
- **B**) No es un grafo plano, contiene un subgrafo homeomorfo a $K_{3,3}$ pero no uno homeomorfo a K_5 .
- \mathbf{C}) No es un grafo plano, contiene un subgrafo homeomorfo a K_5 pero no uno homeomorfo a $K_{3,3}$.
- **D**) No es un grafo plano, contiene un subgrafo homeomorfo a $K_{3,3}$ y otro homeomorfo a K_5 .
- **5.** Sean $I = \{1, 2, 3, 4\}$ y $A = \{X \subseteq I : X \neq \emptyset\}$. Se considera en A el orden parcial R dado por $XRY \Leftrightarrow X \subseteq Y$. Entonces, el orden parcial:
 - A) Tiene máximo y tiene mínimo.
 - B) Es un retículo, tiene máximo, no tiene mínimo y la anticadena más grande tiene 6 elementos.
 - C) No es un retículo, tiene máximo, no tiene mínimo y la anticadena más grande tiene 6 elementos.
 - **D**) Tiene máximo, no tiene mínimo y la cadena más larga tiene largo 5.
- 6. Se consideran las afirmaciones sobre los grafos G_1, G_2, G_3 dados por la siguiente figura:







- A) Los tres grafos son isomorfos entre sí o ninguno de ellos son isomorfos entre sí.
- **B**) Sólo los grafos G_1, G_2 son isomorfos.
- C) Sólo los grafos G_1, G_3 son isomorfos.
- **D**) Sólo los grafos G_2, G_3 son isomorfos.

Solución del Segundo Examen Parcial

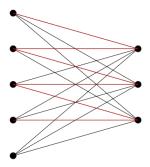
Curso de MD1 2S 2024

Noviembre 2024

Ejercicios con opciones verdadero/falso

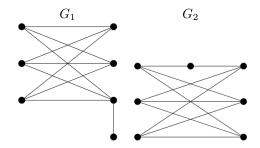
1

- 1 Si R y S son dos relaciones transitivas, entonces RS también lo será: FALSO. Contraejemplo: Sea $A := \{0, 1, 2, 3, 4\}$ (dominio de las relaciones), $R := \{(0, 1), (2, 3)\}$, $S := \{(1, 2), (3, 4)\}$ (ambas trivialmente transitivas). Entonces $RS := \{(0, 2), (2, 4)\}$, pero RS no es transitiva, ya que $(0, 4) \notin RS$.
- 2 El grafo completo K_{20} tiene 210 aristas y diámetro 1. FALSO. La cantidad de aristas es la cantidad de conjuntos de 2 vértices que se pueden formar con 20 vértices, es decir, $\binom{20}{2} = \frac{20 \times 19}{2} = 190$. Dado que todo par de vértices está conectado por una arista, el diámetro es 1.
- 3 $K_{3,5}$ no admite caminos hamiltonianos. VERDADERO: Un grafo bipartito es un grafo con número cromático 2. En efecto, las coloraciones con menos colores consisten en pintar los vértices de un lado de un color (1) y los del otro de otro de otro color (2). Eso significa que cualquier camino alterna entre los vértices de un lado y del otro. Un camino hamiltoniano debe pasar por todos los vértices exactamente una vez (es un camino simple), entonces alternando entre los colores (1) y (2). Siguiendo estas reglas, los caminos simples más largos, con extremos del lado de 5 vértices, pasan a lo sumo por 4 vértices de ese lado y los 3 del otro (ver figura).



Si el camino tiene extremos del lado de 3 vértices, pasa a lo sumo por 3 vértices de cada lado. Es fácil generalizar este razonamiento para probar que los grafos bipartitos que admiten caminos hamiltonianos son los que tienen a lo sumo un vértice más de un lado que del otro.

4 Todo grafo simple conexo con 7 vértices, 10 aristas y sin 3-ciclos es plano. FALSO: Los grafos G_1 , G_2 de la figura no son planos, G_1 porque contiene un $K_{3,3}$ y G_2 porque es homeomorfo a un $K_{3,3}$. Además ambos no tienen 3-ciclos, tienen 7 vértices y 10 aristas, por lo que ambos son contraejemplos:



- 5 El número cromático de la unión disjunta de C_4 y C_5 es 3. VERDADERO: El número cromático de un grafo disconexo es el máximo de los números cromátricos de sus componentes conexas. Por otra parte, $\chi(C_4) = 2$ y $\chi(C_5) = 3$, lo que prueba el resultado.
- 6 Existe un árbol T con 6 vértices tal que p(T,3) = 192. FALSO: En el ejercicio 10 del práctico 10 de la presente edición del curso se pide calcular el polinomio cromático de un aíbol de n vértices, con $n \ge 2$. La respuesta es que para un árbol T de n vértices, $p(T,\lambda) = \lambda(\lambda-1)^{n-1}$, es decir, el polinomio cromático del path P_{n-1} -que es un ejemplo de árbol de n vértices¹. Entonces, en nuestro caso, $p(T,3) = 3 \times 2^5 = 96 \ne 192$.

Ejercicios con 4 opciones

 $\mathbf{2}$

- 1 Contar las relaciones de equivalencia es lo mismo que contar las particiones en clases de equivalencia que estas inducen. Como las clases del 1 y del 2 tienen diferente cardinal, son diferentes. Además el 3 no es equivalente ni al 1, ni al 2. Entonces, podemos considerar estas particiones como construídas en 3 pasos sucesivos:
 - 1. Definir la clase del 1, eligiendo los otros dos elementos e_1, e_2 de entre $\{4, 5, 6, 7, 8\}$. Esto se puede hacer de $\binom{5}{2} = 10$ formas posibles.
 - 2. Definir la clase del 2, eligiendo un elemento e_3 de entre los que van quedando, es decir, $\{4, 5, 6, 7, 8\} \setminus \{e_1, e_2\}$. Esto se puede hacer de 3 formas posibles.
 - 3. Los elementos que quedan para repartir son 2, que junto al 4 se pueden particionar de la forma que se quiera (en una clase de 3 elementos, en una clase de 2 y otra de 1 o en 3 clases de 1 elemento cada una). Hay 5 formas de particionar esos 3 elementos.

Aplicando la regla del producto, tenemos $10 \times 3 \times 5 = 150$ particiones que inducen equivalencias que satisfacen las condiciones del problema.

- 2 Los caminos más largos se obtienen quitando la menor cantidad de aristas hasta obtener un grafo que admita un recorrido euleriano. El grafo K_{20} tiene 20 vértices de grado 19 y para que un tal camino exista, se deben tener exactamente 2 vértices impares (condición necesaria y suficiente vista en el curso). Esto se logra bajando a grado 18 a 18 vértices y esto último quitando exactamente 9 aristas (cada arista que quitamos le baja el grado en 1 a sus dos extremos). El grafo original tiene 190 aristas, de modo que al quitarle 9, un recorrido euleriano en el grafo obtenido recorre 181 aristas.
- 3 Usaremos dos relaciones vistas en el curso para las inmersiones planas y otra relación que vale en cualquier grafo (o incluso multigrafo):
 - En toda inmersión plana, $v e + r = \kappa + 1$.

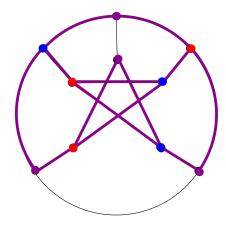
¹Esta igualdad se prueba por inducción en la cantidad de vértices del árbol, recordando que además todo árbol de al menos dos vértices tiene hojas y que si l es una hoja de un árbol T, entonces T-l es un árbol con un vértice menos

- En toda inmersión plana, $\sum_{i=1}^{r} \deg(R_i) = 2e$.
- En todo (multi)grafo $\sum_{i=1}^{v} \deg(v_i) = 2e$

Siendo v la cantidad de vértices, e la cantidad de aristas, r la cantidad de regiones delimitadas por la inmersión, κ la cantidad de componentes conexas del grafo, las R_i las r regiones delimitadas por la inmersión y v_i los v vértices del grafo.

Por hipótesis tenemos que $\sum_{i=1}^{r} \deg(R_i) = 4+4+7+9=24$, de donde e=12. Además $\sum_{j=1}^{v} \deg(v_i) = 9\times 2+(v-9)\times 3=2e=24$, de donde v-9=2 y v=11. Finalmente, sustituyendo en la primera identidad, tenemos que $11-12+4=3=\kappa+1$, de donde $\kappa=2$.

4 En la figura se muestra en colores un subgrafo homeomorfo a un $K_{3,3}$, razón por la cual el grafo no es plano. Los vértices de un lado están pintados en rojo, los del otro lado en azul y las aristas y los vértices de las subdivisiones elementales en magenta. Por otra parte, un K_5 tiene 5 vértices de grado 4 y este grafo es 3-regular, por lo que no contiene ningún subgrafo homeomorfo a un K_5 .



- 5 En un orden dado por la inclusión en un conjunto de partes, los ínfimos con las intersecciones y los supremos son las uniones. Al haber quitado del conjunto A al conjunto vacío, este orden no tiene mínimo, aunque sí tiene máximo, que es todo I. Como el ínfimo de $\{1\}$ y $\{2\}$ es $\{1\} \cap \{2\} = \emptyset$, que no pertenece al conjunto, este orden no tiene todos los ínfimos de dos elementos y entonces no es un retículo. La anticadena más larga viene dada por los 6 conjuntos de 2 elementos: $\{1,2\},\{1,3\},\{1,4\},\{2,3\},\{2,4\},\{3,4\}$.
- 6 El grafo G_2 tiene vértices de grado 4, mientras que los otros dos son 5-regulares. Entonces los únicos que pueden ser isomorfos son G_1 y G_3 . Pasando a los complementarios, se pasa a grafos 2-regulares, que es mucho más simple ver si son isomorfos. En la figura se observa que el complementario de G_1 es una unión disjunta de dos C_4 (en rojo y azul respectivamente), mientras que el complemento de G_3 es un G_3 (ambos en rojo). Entonces, los 3 grafos son dos a dos no isomorfos.

