
GAN Training Pathologies



Summary

Diminished gradient: the discriminator gets too successful 

that the generator gradient vanishes and learns nothing.

Mode collapse: the generator collapses which produces 

limited varieties of samples.

Non-convergence: the model parameters oscillate, 

destabilize, and never converge.



Summary

Most of this lecture is motivated by:

● From GAN to WGAN
○ https://arxiv.org/abs/1904.08994

● Improved Techniques for Training GANs
○ https://arxiv.org/abs/1606.03498

https://arxiv.org/abs/1904.08994
https://arxiv.org/abs/1606.03498


Generative models training

Many generative models create a model θ that maximizes the Maximum Likelihood

Estimation MLE. i.e. finding the best model parameters that fit the training data the most.

Likelihood function: It represents the joint 
probability of observing the entire dataset {x1, x2, …, xN}, 

assuming the data points are independent.

The probability of a single data point xi given the 
parameters θ

Find the parameters θ that maximize the likelihood of the observed data.



Generative models training

Many generative models create a model θ that maximizes the Maximum Likelihood

Estimation MLE. i.e. finding the best model parameters that fit the training data the most.

MLE is a statistical method used for estimating the parameters of a model. In the case of 

generative models, MLE aims to find the set of parameters (θ) that maximizes the 

likelihood of observing the training data.

• Likelihood refers to the probability of observing the given training data under the 

current model.

• MLE seeks to find the parameters θ that make the observed data most probable. 



Generative models training

Maximizing MLE is the same as minimizing the KL-divergence KL(p,q) which measures 

how the probability distribution q (estimated distribution from the trained model) 

diverges from the expected probability distribution p (the real-life distribution).

Imagine we have two shapes—p (the real-life distribution) and q (estimated distribution). 
The goal is to adjust the shape  of the estimated distribution (q) to match the true shape 

(p) as closely as possible.

Logarithmic difference between the 
probabilities assigned by p(x) and q(x) for each 

possible value of x.



Generative models training

Maximizing MLE is the same as minimizing the KL-divergence KL(p,q) which measures 

how the probability distribution q (estimated distribution from the trained model) 

diverges from the expected probability distribution p (the real-life distribution).

KL-divergence (Kullback-Leibler Divergence) is a mathematical measure that quantifies the 

difference between two probability distributions. 

• KL(p, q): p true probability distribution and q is the estimated probability distribution.

The process of minimizing KL-divergence involves adjusting the θ parameters of a model to 

make its estimated distribution, q, as close as possible to the true p.



Kullback-Leibler divergence. Main issues

The KL-divergence DL(p, q) penalizes the generator if it misses some modes of images: 

• The penalty is high where p(x) > 0 but q(x) → 0. 

Nevertheless, it is acceptable that some images do not look real. (Poorer quality but more diverse samples)

• The penalty is low when p(x) → 0 but q(x)>0.

This makes DL(p, q) suitable for tasks where ensuring coverage of the real data is critical.

Issue: If q completely misses p in some areas (e.g., mode collapse), DL(p, q)  becomes very large. This 
can make training unstable or ineffective.



Kullback-Leibler divergence. Main issues

KL(x) drops to 0 for area where p(x)→ 0. For example, in the figure on the right below, the red curve corresponds to

D(p, q). It drops to zero when x>2 where p approaches 0.

The reverse KL-divergence DL(q, p) penalizes the generator if the images do not look real:
• The penality is high penalty if p(x) → 0 but q(x) > 0. 
But it explores less variety:
• The penality is low penalty if q(x) → 0 but p(x) > 0. (Better quality but less diverse samples)

Issue: DL(q, p)  may encourage the generator to avoid generating “fake” data but might not ensure it 
covers all modes of p. This can lead to mode dropping (where some parts of the real data distribution 
are ignored).



Kullback-Leibler divergence. Main issues

Mode collapse vs. Mode dropping

• Mode collapse occurs when the generator outputs highly similar (or identical) samples 

regardless of the input noise vector z.

• The generator ignores the diversity of the noise input z and only produces samples from a 

single mode (or a small number of modes) in the real data distribution p(x).

• Essentially, the generator “collapses” to one part of the real data distribution and fails to cover 

other parts.

• Mode dropping happens when the generator captures only a subset of the modes in the real 

data distribution but still produces some diversity.

• The generator captures multiple modes of the real data distribution but ignores some modes 

entirely.

• Unlike mode collapse, there is still some diversity in the generator’s output, but it is 

incomplete.



Jensen-Shannon divergence

Jensen-Shannon divergence is another measure of the difference between two probability 
distributions, and it's defined in terms of the KL divergence. Specifically, JS divergence is 
a symmetrized and smoothed version of the KL divergence.

Training GANs has treated as optimizing the generator model is treated as minimizing the 
JS-divergence. Average distribution (a.k.a., mixture distribution) 

between p and q

JS divergence combines the KL-divergences of p and 
q with respect to the average distribution, weighting 
each by 0.5 (i.e., ½).



Jensen-Shannon divergence

Peaks occur where p and q differ the most.

JS divergence smoothly handles areas where p or q 
assigns low probability.

Generator-Discriminator Training: 

• The discriminator implicitly estimates the JS divergence between pdata (real data) and pg (generated 
data).

• As the generator improves, pg aligns with pdata, minimizing the JS divergence.

Advantages of JS Divergence:

• It gives meaningful gradients even when pg and pdata do not overlap significantly, helping stabilize 
GAN training.

• Encourages the generator to reduce discrepancies in all regions of the distribution.



Jensen-Shannon divergence

Jensen-Shannon divergence is another measure of the difference between two probability 
distributions, and it's defined in terms of the KL divergence. Specifically, JS divergence is 
a symmetrized and smoothed version of the KL divergence.

Training GANs has treated as optimizing the generator model is treated as minimizing the 
JS-divergence.

JS-divergence is symmetrical. It will penalize poor 
images badly. (when p(x)→ 0 and q(x) > 0)

If the discriminator is optimal (performing well in 
distinguishing images), the generator’s objective 
function becomes



Jensen-Shannon divergence

Global optima → pr = pg

The log 2 comes from 
normalizing the mixture 
distribution.



The discriminator's loss is calculated as the sum of the cross-entropy 
losses for real and generated samples:

The generator's loss is calculated as the negative of the 
discriminator's loss for generated samples:

GAN Training

Generator is trained to minimize JS-Divergence and Discrinimator to maximize it.

The optimization problem is described as:

where the first term corresponds to the expectation over real data, and the second term 
corresponds to the expectation over generated data. 



Vanishing gradient

The gradient for the JS-divergence vanishes from q1 to q3. The GAN generator will learn extremely 
slow to nothing when the cost is saturated in those regions. In particular, in early training, p and q 
are very different and the generator learns very slow.

What happens to the JS-divergence gradient when the data distribution q of the generator’s images 
does not match with the ground truth p for the real images?

Let’s consider an example in which p and q are Gaussian distributed and the mean of p is zero. Let’s 
consider q with different means to study the gradient of JS(p, q).

JS-divergence JS(p, q) 

between p and q with 

means of q ranging from 0 

to 30.



Vanishing gradient

Attempts to remedy:

● Wasserstein loss: The Wasserstein loss is designed to prevent vanishing 

gradients even when you train the discriminator to optimality.

● Modified minimax loss: The original GAN paper proposed a modification to 

minimax loss to deal with vanishing gradients.

● Adding noise to the discriminator input 



Vanishing gradient

Attempts to remedy:

● Wasserstein loss: The Wasserstein loss is designed to prevent vanishing 

gradients even when you train the discriminator to optimality.

● Modified minimax loss: The original GAN paper proposed a modification to 

minimax loss to deal with vanishing gradients.



Mode collapse

Mode collapse happens when the generator in a GAN learns to produce only a limited range 

of outputs or, in the extreme case, a single output, no matter the input noise z. This 

happens because the generator focuses on “fooling” the discriminator by creating one 

specific image or set of images that the discriminator finds realistic, ignoring the rest of the 

real data distribution.

The generator’s goal is to maximize its chances of fooling the discriminator. This 

means:

The generator updates its parameters (θg) to make the discriminator D think its generated 

outputs (G(z)) are real.



Mode collapse

Extreme case: G is trained extensively without updates to D. The generated images will 

converge to find the optimal image x* that deceives D the most, the most realistic image 

from the discriminator perspective. In this extreme, x* will be independent of z.

The generator essentially ignores the noise z because it has found an “optimal” solution 

to deceive the discriminator with one specific output.



Mode collapse

This is bad news. The mode collapses to a single point. The gradient associated with z

approaches zero.

• Restart the training in the discriminator: the most effective way to detect generated

images is to detect this single mode. 

• Since the generator has minimized the impact of z already in the generated samples, the

gradient from the discriminator will likely push the single point around for the next most 

vulnerable mode.

• This is not hard to find. The generator produces such an imbalance of modes in 

training that it deteriorates its capability to detect others.

• Now, both networks are overfitted to exploit short-term opponent weakness.



Mode collapse

• Restart the training in the discriminator: the most effective way to detect generated

images is to detect this single mode. 

• Since the generator has minimized the impact of z already in the generated samples, the

gradient from the discriminator will likely push the single point around for the next most 

vulnerable mode.

• This is not hard to find. The generator produces such an imbalance of modes in 

training that it deteriorates its capability to detect others.



Mode collapse

Attempts to remedy:

● Wasserstein loss: The Wasserstein loss alleviates mode collapse by letting you train 

the discriminator to optimality without worrying about vanishing gradients. If the 

discriminator doesn't get stuck in local minima, it learns to reject the outputs that the 

generator stabilizes on. So the generator has to try something new.

● Unrolled GANs: Unrolled GANs use a generator loss function that incorporates not 

only the current discriminator's classifications, but also the outputs of future 

discriminator versions. So the generator can't over-optimize for a single discriminator.



Mode collapse

Attempts to remedy:

● Regularization Techniques: Techniques such as dropout or weight regularization 

can be employed to prevent the model from becoming too specialized in certain 

patterns.

● Balancing Training Dynamics: Carefully tuning the learning rates of the 

generator and discriminator or employing techniques like curriculum learning can 

help balance the adversarial training dynamics.

● Curriculum learning is a training strategy where the learning algorithm is exposed to a 

curriculum, or a sequence of samples, in a specific order of increasing complexity or 

difficulty.



Oscillation

In GAN training, oscillation occurs when the generator and discriminator are constantly 

chasing each other without ever reaching a stable point (equilibrium). Instead of 

improving, their outputs keep swinging back and forth, leading to instability.

GAN is based on the zero-sum non-cooperative game (if one wins the other loses) also called 

minimax. Your opponent wants to maximize its actions and your actions are to minimize 

them.

In game theory, the GAN model converges when the discriminator and the generator reach a 

Nash equilibrium. Nash equilibrium happens when one player will not change its action 

regardless of what the opponent may do.



Oscillation

Consider two player A and B which control the value of x and y, respectively. Player A 

wants to maximize the value xy while B wants to minimize it.

The Nash equilibrium is x=y=0.



Let’s see whether we can find the Nash equilibrium easily using the gradient descent. We 

update the parameter x and y based on the gradient of the value function V, V(x,y) = xy

              where α is the learning rate

When we plot x, y, and xy against the training iterations, we realize our solution does not 

converge.

It is an excellent showcase that some cost 

functions will not converge with gradient 

descent, in particular for a non-convex 

game.

Oscillation



• GAN training is like a non-convex optimization problem (like a bumpy hill), 

where the generator and discriminator are playing a “game” instead of working 

towards a single shared goal.

• Gradient descent works poorly in these settings, as it doesn’t guide the system to a 

stable solution.

Oscillation

Attempts to remedy:

Researchers have tried to use various forms of regularization to improve GAN convergence, 

including:

● Adding noise to discriminator inputs

● Penalizing discriminator weights



Improving GAN training

https://towardsdatascience.com/gan-ways-to-improve-gan-performance-acf37f9f59b 

https://lilianweng.github.io/lil-log/2017/08/20/from-GAN-to-WGAN.html

https://towardsdatascience.com/gan-ways-to-improve-gan-performance-acf37f9f59b
https://lilianweng.github.io/lil-log/2017/08/20/from-GAN-to-WGAN.html
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