
GAN Training Pathologies

Summary

Diminished gradient: the discriminator gets too successful

that the generator gradient vanishes and learns nothing.

Mode collapse: the generator collapses which produces

limited varieties of samples.

Non-convergence: the model parameters oscillate,

destabilize, and never converge.

Summary

Most of this lecture is motivated by:

● From GAN to WGAN
○ https://arxiv.org/abs/1904.08994

● Improved Techniques for Training GANs
○ https://arxiv.org/abs/1606.03498

https://arxiv.org/abs/1904.08994
https://arxiv.org/abs/1606.03498

Generative models training

Many generative models create a model θ that maximizes the Maximum Likelihood

Estimation MLE. i.e. finding the best model parameters that fit the training data the most.

Likelihood function: It represents the joint
probability of observing the entire dataset {x1, x2, …, xN},

assuming the data points are independent.

The probability of a single data point xi given the
parameters θ

Find the parameters θ that maximize the likelihood of the observed data.

Generative models training

Many generative models create a model θ that maximizes the Maximum Likelihood

Estimation MLE. i.e. finding the best model parameters that fit the training data the most.

MLE is a statistical method used for estimating the parameters of a model. In the case of

generative models, MLE aims to find the set of parameters (θ) that maximizes the

likelihood of observing the training data.

• Likelihood refers to the probability of observing the given training data under the

current model.

• MLE seeks to find the parameters θ that make the observed data most probable.

Generative models training

Maximizing MLE is the same as minimizing the KL-divergence KL(p,q) which measures

how the probability distribution q (estimated distribution from the trained model)

diverges from the expected probability distribution p (the real-life distribution).

Imagine we have two shapes—p (the real-life distribution) and q (estimated distribution).
The goal is to adjust the shape of the estimated distribution (q) to match the true shape

(p) as closely as possible.

Logarithmic difference between the
probabilities assigned by p(x) and q(x) for each

possible value of x.

Generative models training

Maximizing MLE is the same as minimizing the KL-divergence KL(p,q) which measures

how the probability distribution q (estimated distribution from the trained model)

diverges from the expected probability distribution p (the real-life distribution).

KL-divergence (Kullback-Leibler Divergence) is a mathematical measure that quantifies the

difference between two probability distributions.

• KL(p, q): p true probability distribution and q is the estimated probability distribution.

The process of minimizing KL-divergence involves adjusting the θ parameters of a model to

make its estimated distribution, q, as close as possible to the true p.

Kullback-Leibler divergence. Main issues

The KL-divergence DL(p, q) penalizes the generator if it misses some modes of images:

• The penalty is high where p(x) > 0 but q(x) → 0.

Nevertheless, it is acceptable that some images do not look real. (Poorer quality but more diverse samples)

• The penalty is low when p(x) → 0 but q(x)>0.

This makes DL(p, q) suitable for tasks where ensuring coverage of the real data is critical.

Issue: If q completely misses p in some areas (e.g., mode collapse), DL(p, q) becomes very large. This
can make training unstable or ineffective.

Kullback-Leibler divergence. Main issues

KL(x) drops to 0 for area where p(x)→ 0. For example, in the figure on the right below, the red curve corresponds to

D(p, q). It drops to zero when x>2 where p approaches 0.

The reverse KL-divergence DL(q, p) penalizes the generator if the images do not look real:
• The penality is high penalty if p(x) → 0 but q(x) > 0.
But it explores less variety:
• The penality is low penalty if q(x) → 0 but p(x) > 0. (Better quality but less diverse samples)

Issue: DL(q, p) may encourage the generator to avoid generating “fake” data but might not ensure it
covers all modes of p. This can lead to mode dropping (where some parts of the real data distribution
are ignored).

Kullback-Leibler divergence. Main issues

Mode collapse vs. Mode dropping

• Mode collapse occurs when the generator outputs highly similar (or identical) samples

regardless of the input noise vector z.

• The generator ignores the diversity of the noise input z and only produces samples from a

single mode (or a small number of modes) in the real data distribution p(x).

• Essentially, the generator “collapses” to one part of the real data distribution and fails to cover

other parts.

• Mode dropping happens when the generator captures only a subset of the modes in the real

data distribution but still produces some diversity.

• The generator captures multiple modes of the real data distribution but ignores some modes

entirely.

• Unlike mode collapse, there is still some diversity in the generator’s output, but it is

incomplete.

Jensen-Shannon divergence

Jensen-Shannon divergence is another measure of the difference between two probability
distributions, and it's defined in terms of the KL divergence. Specifically, JS divergence is
a symmetrized and smoothed version of the KL divergence.

Training GANs has treated as optimizing the generator model is treated as minimizing the
JS-divergence. Average distribution (a.k.a., mixture distribution)

between p and q

JS divergence combines the KL-divergences of p and
q with respect to the average distribution, weighting
each by 0.5 (i.e., ½).

Jensen-Shannon divergence

Peaks occur where p and q differ the most.

JS divergence smoothly handles areas where p or q
assigns low probability.

Generator-Discriminator Training:

• The discriminator implicitly estimates the JS divergence between pdata (real data) and pg (generated
data).

• As the generator improves, pg aligns with pdata, minimizing the JS divergence.

Advantages of JS Divergence:

• It gives meaningful gradients even when pg and pdata do not overlap significantly, helping stabilize
GAN training.

• Encourages the generator to reduce discrepancies in all regions of the distribution.

Jensen-Shannon divergence

Jensen-Shannon divergence is another measure of the difference between two probability
distributions, and it's defined in terms of the KL divergence. Specifically, JS divergence is
a symmetrized and smoothed version of the KL divergence.

Training GANs has treated as optimizing the generator model is treated as minimizing the
JS-divergence.

JS-divergence is symmetrical. It will penalize poor
images badly. (when p(x)→ 0 and q(x) > 0)

If the discriminator is optimal (performing well in
distinguishing images), the generator’s objective
function becomes

Jensen-Shannon divergence

Global optima → pr = pg

The log 2 comes from
normalizing the mixture
distribution.

The discriminator's loss is calculated as the sum of the cross-entropy
losses for real and generated samples:

The generator's loss is calculated as the negative of the
discriminator's loss for generated samples:

GAN Training

Generator is trained to minimize JS-Divergence and Discrinimator to maximize it.

The optimization problem is described as:

where the first term corresponds to the expectation over real data, and the second term
corresponds to the expectation over generated data.

Vanishing gradient

The gradient for the JS-divergence vanishes from q1 to q3. The GAN generator will learn extremely
slow to nothing when the cost is saturated in those regions. In particular, in early training, p and q
are very different and the generator learns very slow.

What happens to the JS-divergence gradient when the data distribution q of the generator’s images
does not match with the ground truth p for the real images?

Let’s consider an example in which p and q are Gaussian distributed and the mean of p is zero. Let’s
consider q with different means to study the gradient of JS(p, q).

JS-divergence JS(p, q)

between p and q with

means of q ranging from 0

to 30.

Vanishing gradient

Attempts to remedy:

● Wasserstein loss: The Wasserstein loss is designed to prevent vanishing

gradients even when you train the discriminator to optimality.

● Modified minimax loss: The original GAN paper proposed a modification to

minimax loss to deal with vanishing gradients.

● Adding noise to the discriminator input

Vanishing gradient

Attempts to remedy:

● Wasserstein loss: The Wasserstein loss is designed to prevent vanishing

gradients even when you train the discriminator to optimality.

● Modified minimax loss: The original GAN paper proposed a modification to

minimax loss to deal with vanishing gradients.

Mode collapse

Mode collapse happens when the generator in a GAN learns to produce only a limited range

of outputs or, in the extreme case, a single output, no matter the input noise z. This

happens because the generator focuses on “fooling” the discriminator by creating one

specific image or set of images that the discriminator finds realistic, ignoring the rest of the

real data distribution.

The generator’s goal is to maximize its chances of fooling the discriminator. This

means:

The generator updates its parameters (θg) to make the discriminator D think its generated

outputs (G(z)) are real.

Mode collapse

Extreme case: G is trained extensively without updates to D. The generated images will

converge to find the optimal image x* that deceives D the most, the most realistic image

from the discriminator perspective. In this extreme, x* will be independent of z.

The generator essentially ignores the noise z because it has found an “optimal” solution

to deceive the discriminator with one specific output.

Mode collapse

This is bad news. The mode collapses to a single point. The gradient associated with z

approaches zero.

• Restart the training in the discriminator: the most effective way to detect generated

images is to detect this single mode.

• Since the generator has minimized the impact of z already in the generated samples, the

gradient from the discriminator will likely push the single point around for the next most

vulnerable mode.

• This is not hard to find. The generator produces such an imbalance of modes in

training that it deteriorates its capability to detect others.

• Now, both networks are overfitted to exploit short-term opponent weakness.

Mode collapse

• Restart the training in the discriminator: the most effective way to detect generated

images is to detect this single mode.

• Since the generator has minimized the impact of z already in the generated samples, the

gradient from the discriminator will likely push the single point around for the next most

vulnerable mode.

• This is not hard to find. The generator produces such an imbalance of modes in

training that it deteriorates its capability to detect others.

Mode collapse

Attempts to remedy:

● Wasserstein loss: The Wasserstein loss alleviates mode collapse by letting you train

the discriminator to optimality without worrying about vanishing gradients. If the

discriminator doesn't get stuck in local minima, it learns to reject the outputs that the

generator stabilizes on. So the generator has to try something new.

● Unrolled GANs: Unrolled GANs use a generator loss function that incorporates not

only the current discriminator's classifications, but also the outputs of future

discriminator versions. So the generator can't over-optimize for a single discriminator.

Mode collapse

Attempts to remedy:

● Regularization Techniques: Techniques such as dropout or weight regularization

can be employed to prevent the model from becoming too specialized in certain

patterns.

● Balancing Training Dynamics: Carefully tuning the learning rates of the

generator and discriminator or employing techniques like curriculum learning can

help balance the adversarial training dynamics.

● Curriculum learning is a training strategy where the learning algorithm is exposed to a

curriculum, or a sequence of samples, in a specific order of increasing complexity or

difficulty.

Oscillation

In GAN training, oscillation occurs when the generator and discriminator are constantly

chasing each other without ever reaching a stable point (equilibrium). Instead of

improving, their outputs keep swinging back and forth, leading to instability.

GAN is based on the zero-sum non-cooperative game (if one wins the other loses) also called

minimax. Your opponent wants to maximize its actions and your actions are to minimize

them.

In game theory, the GAN model converges when the discriminator and the generator reach a

Nash equilibrium. Nash equilibrium happens when one player will not change its action

regardless of what the opponent may do.

Oscillation

Consider two player A and B which control the value of x and y, respectively. Player A

wants to maximize the value xy while B wants to minimize it.

The Nash equilibrium is x=y=0.

Let’s see whether we can find the Nash equilibrium easily using the gradient descent. We

update the parameter x and y based on the gradient of the value function V, V(x,y) = xy

 where α is the learning rate

When we plot x, y, and xy against the training iterations, we realize our solution does not

converge.

It is an excellent showcase that some cost

functions will not converge with gradient

descent, in particular for a non-convex

game.

Oscillation

• GAN training is like a non-convex optimization problem (like a bumpy hill),

where the generator and discriminator are playing a “game” instead of working

towards a single shared goal.

• Gradient descent works poorly in these settings, as it doesn’t guide the system to a

stable solution.

Oscillation

Attempts to remedy:

Researchers have tried to use various forms of regularization to improve GAN convergence,

including:

● Adding noise to discriminator inputs

● Penalizing discriminator weights

Improving GAN training

https://towardsdatascience.com/gan-ways-to-improve-gan-performance-acf37f9f59b

https://lilianweng.github.io/lil-log/2017/08/20/from-GAN-to-WGAN.html

https://towardsdatascience.com/gan-ways-to-improve-gan-performance-acf37f9f59b
https://lilianweng.github.io/lil-log/2017/08/20/from-GAN-to-WGAN.html

	Slide 1: GAN Training Pathologies
	Slide 2: Summary
	Slide 3: Summary
	Slide 5: Generative models training
	Slide 6: Generative models training
	Slide 7: Generative models training
	Slide 8: Generative models training
	Slide 9: Kullback-Leibler divergence. Main issues
	Slide 10: Kullback-Leibler divergence. Main issues
	Slide 11: Kullback-Leibler divergence. Main issues
	Slide 12: Jensen-Shannon divergence
	Slide 13: Jensen-Shannon divergence
	Slide 14: Jensen-Shannon divergence
	Slide 15: Jensen-Shannon divergence
	Slide 16: GAN Training
	Slide 17: Vanishing gradient
	Slide 18: Vanishing gradient
	Slide 19: Vanishing gradient
	Slide 20: Mode collapse
	Slide 21: Mode collapse
	Slide 22: Mode collapse
	Slide 23: Mode collapse
	Slide 24: Mode collapse
	Slide 25: Mode collapse
	Slide 26: Oscillation
	Slide 27: Oscillation
	Slide 28: Oscillation
	Slide 29: Oscillation
	Slide 30: Improving GAN training

