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ABSTRACT

Polarization is capable of probing microstructures and has unique sensitivity to fibrous anisotropic structure.
Polarimetric imaging has demonstrated promising potential in diverse applications ranging from biomedicine,
material science, and atmospheric remote sensing. The polarization properties of samples can be comprehensively
described by a Mueller matrix (MM). However, the relationship between individual MM elements and properties
of the sample is often not clear. There have been consistent efforts to derive polarization parameters from MM
based on certain assumptions for better description of the samples, e.g., MM polar decomposition (MMPD),
MM transformation (MMT) and MM differential decomposition. Usually, the MM imaging requires sequential
measurements with different polarization states of incident light and the imaging process is time consuming.
In addition, for movable samples, we cannot guarantee the consistency during the imaging. This may cause
precision issues since the images cannot be well-registered. In this work, we built a statistical translation model
to generate polarization parameters from a single Stokes vector which can be obtained by one-shot imaging.
This will improve the imaging efficiency, simplify the optical system and avoid introducing errors by the image
registration. In the model design, we adopted the generative adversarial network (GAN) where the generator
is based on a U-net architecture. We demonstrated the effectiveness of our approach on liver tissue, blood
smear and porous anodic alumina (PAA) film, and quantitatively evaluated the results by similarity assessment
methods. The model can generate a parameter image within 0.1 second on a desktop computer, which shows
the potential to achieve real-time performance.

Keywords: Polarimetric imaging, Deep learning, Mueller matrix, Stokes vector

1. INTRODUCTION

Mueller matrix (MM) is a comprehensive representation of the polarization transformation properties of turbid
media. It can provide rich information about the microstructure of biomedical samples.! However, the acquisition
of a MM requires multiple exposures, which makes the quality of measurements very sensitive to small changes
in the light source, and sample and optical alignments among different exposures.

The experimental setup of MM polarimetry can be designed by adding the polarization states generator
(PSG) and analyzer (PSA) to the non-polarization optical path.? Traditionally, to resolve the 16 elements of
the MM, at least 16 independent intensity images must be measured under different polarization modulations.?
Considering the precision and efficacy, there are various MM polarimetry methods have been proposed. For
example, by rotating both the polarizers and retarders in PSG and PSA, all six polarization components (linear
0°, 45°, 90°, 135°, right- and left-hand circular polarization states) corresponding to each incident and emerging
light state can be measured one by one. Another widely used MM polarimetry is the dual-rotating retarder
method where the polarizers are fixed in both PSG and PSA, and two retarders are rotated with a fixed ratio
of angles.* % Multi-exposure is time consuming while MM polarimetry can be easily affected to movement or
polarization property changes during the measurement. For rapidly changing or dynamic objects, it might be
some limitations for time-sequenced MM polarimeters above. To reduce the number of exposures, Chang et al.”
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and Huang et al.® used the division of the focal plane (DoFP) polarimeters in the microscope, which can capture
the Stokes vector images in a single shot. The full MM can be resolved through four times of exposure in this
method.® Furthermore, the concepts of snapshot MM polarimeters have been proposed. Piquero et al. used
the full Poincare beams and wavefront division to resolve the MM.? Dubreuil et al.'® and Hagen et al.!' used
wavelength-dependent birefringent media to take different measurements in parallel. However, these snapshot
techniques can only be used on homogeneous medium, and not suitable to the imaging of complex samples, e.g.,
tissue slices. This limits their usage in practice.

In this work, we take the advantage of DoFP to obtain the Stokes images in a single shot, and then feed
Stokes images to a well-designed deep learning network to generate MM-based polarization parameter images
(as shown in Figure 1). The Stokes polarimetry is simply configured, and there are no moving or active parts in
the imaging system when the pre-trained model is built. This will reduce the probability of unexpected errors
from mechanical movements.

Deep
Learning

0.0

Figure 1. Traditional (red arrow) and deep learning-based (blue arrow) workflows of MM-derived parameter generation.
(a) Stokes image of S1,S52 and S3 channels. (b) Experimental MM element images. (c¢) The MMPD-4 image of a liver
fibrosis tissue sample.

2. STOKES AND MUELLER MATRIX POLARIMETRY

Deep learning models usually require huge amounts of data in the training stage. In the data collection procedure,
we used the MM microscope based on dual division of focal plane polarimeters (DoFPs-MMM).® As shown in
Figure. 2 (a) and (b), in DoFPs-MMM, the PSA is capable of detecting the full polarization states simultaneously
by adopting two DoFP polarimeters (DoFP CCD: PHX050S-PC, Lucid Vision Labs, Canada), one of which is
equipped with a fixed quarter-wave plate R2 (Daheng Optics, China). The PSG consists of a fixed-angle polarizer
P1 (Daheng Optics, China) and a rotatable quarter-wave plate R1 (Daheng Optics, China). The light emitted
from the LED (3W, 632 nm, A\ = 20 nm), undergoes the polarization modulation by the PSG, passes through
the sample and analyzed by the PSA. The PSA is calibrated by a standard polarization light source or a PSG,
and four independent polarization states will be detected and analyzed to reconstruct 8 x 4 instrument matrix
of PSA. The instrument matrix is calculated pixel by pixel. To calculate MM of the sample, the quarter-wave
plate R1 in the PSG rotates to four preset angles to generate 4 independent incident polarization states, as
shown in Figure 2 (c), which compose the instrument matrix [Si,] of the PSG. After the light interacted with
sample, 4 corresponding Stokes vectors [Sout] of outgoing light are measured by the PSA consisting of dual DoFP
polarimeters. Finally, the MM of the sample can be reconstructed according to M = [Sout] [.S’in]_l.8

The polarization properties of samples can be comprehensively described by a MM. However, the relationship
between individual MM elements and properties of the sample is often not clear. MM polar decomposition
(MMPD)!? describes tissue-like media appropriately, and has been validated in many biomedical applications.’?
MMPD assumes the optical effects is serial following the order as diattenuation (Mp), retardation (Mp) and
general depolarization (M), and is decomposed in a product form as M = MaMprMp. In this work, we train
the deep learning model to translate Stokes images to MMPD parameter images directly. Especially, we focus
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on the linear retardance parameter 6 = arccos (\/(MRQQ + MR33)2 + (MR32 — MR23)2 — 1) and diattenuation

parameter D = /M3, + M2, + M3,. Before feeding into the model, the Stokes image of S1, S5 and S3 channels
are normalized by the Sy component pixel by pixel.
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Figure 2. The experimental setup. (a) Diagram of DoFPs MM microscope. (b) Photograph of DoFPs-MM microscope.
(c) Incident polarization states on Poincare sphere.

LED

3. GENERATIVE ADVERSARIAL NETWORKS

We use conditional generative adversarial networks (GAN)!® to generate MM-derived parameter images from
Stokes images. We define the data domains of Stokes vector and MM-derived parameter as X and Y respectively,
and define the generator network as G and the discriminator as D. In the training phase, Stokes image = € X
is fed into the generator model to generate realistic parameter images, while the discriminator model tries to
classify whether the parameter image is real or synthetic. These two models are trained together in a zero-sum
game adversarially, until the whole architecture converges. The flowchart of the architecture is illustrated in
Figure 3. Besides the GAN loss function, in this image-to-image translation, we use L1 and structural similarity
index (SSIM)'* losses to measure the similarity between generated and real images in the pixel and image levels
respective. Furthermore, to reduce noise, total variance (TV) loss is introduced to improve the image quality
of generated parameters. In this work, we use a U-net-based encoder-decoder network'® as the generator and a
PatchGAN discriminator.'® The details of the neural networks are discussed in our previous work.!” In both
training and testing stage, the patch size is fixed as 256 x 256.

H N Al L
Generator i Discriminator

Figure 3. Flowchart of conditional generative adversarial network in the training and testing stages.

4. EXPERIMENTAL RESULTS

We conducted the experiments on three types of samples, i.e., sectioned liver tissues, blood smears and porous
anodic alumina (PAA). The liver samples were prepared by the Mengchao Hepatobiliary Hospital of Fujian
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Medical University. The blood smear samples were prepared by University of Chinese Academy of Science
Shenzhen Hospital. All works were approved by the Ethics Committee of these two hospitals. PAA is a photonic
crystal with a porous structure with obvious optical anisotropy caused by birefringence, which is widely used to
fabricate the nanostructure arrays or microfilters. Our previous works show that the optical axis orientation of
regions is related to various factors in the production process.!® We deployed the model on a desktop computer
with Intel Core-i9-9900K and a Geforce GTX 2080Ti card. When the model is well built in the training, the
prediction time of one patch is less than 0.1 second.

Figure 4 illustrates the generated results of three samples. For liver fibrosis tissue and PAA, we predicted
the linear retardance parameter MMPD-4, while we focused on the diattenuation parameter of blood smear. We
used normalized root mean square error (NRMSE) and peak signal-to-noise (PSNR) to quantitatively evaluate
the performance of our model. NRMSE and PSNR measure the similarity between the generated and ground
truth images in the pixel and image level respectively. As we can see, the structures of the output are clear and
the pixel values are close to the ground truth.
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Figure 4. Experimental results of liver tissue MMPD-§ image (first row), blood smear MMPD-D image (second row) and
PAA MMPD-6 image (third row). (a), (b) and (c) are normalized Stokes images of S1, .Sz and Ss channels illuminated by
right-hand circular polarized light. (d) Generated parameter images based on the deep learning model. (e) Corresponding
ground truth parameter images.

5. CONCLUSIONS

In this work, we propose a deep learning-based method to generate Mueller matrix polar decomposition parameter
images from a single Stokes image. We adopted the conditional generative adversarial network to learn the
statistical translation from Stokes to parameter images. We demonstrated the efficacy of our approach on liver
tissues, blood smears and porous anodic alumina samples. This method will effectively suppress errors due

Proc. of SPIE Vol. 11963 1196307-4

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 25 Sep 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



to system instability and sample variation during the data acquisition process, and reduces the challenges in
hardware design.
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