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Analysis of pedestrian second 
crossing behavior based 
on physics‑informed neural 
networks
Yongqing Guo 1, Hai Zou 1, Fulu Wei 1*, Qingyin Li 1, Dong Guo 1 & Jahongir Pirov 2

Pedestrian two-stage crossings are common at large, busy signalized intersections with long 
crosswalks and high traffic volumes. This design aims to address pedestrian operation and safety 
by allowing navigation in two stages, negotiating each traffic direction separately. Understanding 
crosswalk behavior, especially during bidirectional interactions, is essential. This paper presents a two-
stage pedestrian crossing model based on Physics-Informed Neural Networks (PINNs), incorporating 
fluid dynamics equations to determine characteristics such as speed, density, acceleration, and 
Reynolds number during crossings. The study shows that PINNs outperform traditional deep learning 
methods in calculating and predicting pedestrian fluid properties, achieving a mean squared error 
as low as 10–8. The model effectively captures dynamic pedestrian flow characteristics and provides 
insights into pedestrian behavior impacts. The results are significant for designing pedestrian facilities 
to ensure comfort and optimizing signal timing to enhance mobility and safety. Additionally, these 
findings can aid autonomous vehicles in better understanding pedestrian intentions in intelligent 
transportation systems.

Keywords  Physics-informed neural networks, Pedestrian second crossing, Pedestrian fluid dynamics, 
Navier–Stokes equations

With the increase in lane numbers and widths, pedestrian second crossing has gradually become an integral 
part of urban traffic systems at large signalized intersections. This traffic method divides pedestrian crossings 
into two stages, where pedestrians wait on a safety island after crossing one traffic direction until they receive 
signals to proceed further. In such scenarios, pedestrians exhibit unique behavioral characteristics during the 
two-stage crossing due to distinct signal timings and pedestrian facilities. However, in such complex environ-
ments, pedestrians need to process a large amount of information simultaneously, especially challenging under 
crowded interaction conditions. Therefore, a thorough understanding of pedestrian interaction behaviors and 
walking strategies is crucial in this context. This helps identify which information is useful for the design of 
pedestrian facilities and the patterns of pedestrian signals.

Since Jennie first proposed the concept of safety islands in 1903, ‘safety islands’ have gradually been promoted 
and applied1. Tarawneh2 collected data from nearly 3,500 pedestrian street-crossing maneuvers and conducted 
statistical analysis to identify factors that significantly affect pedestrian speed. King et al.3 quantitatively analyzed 
pedestrian speeds, flows, and travel times in New Jersey, using methods such as pedestrian tracking and video 
photography for qualitative analysis of pedestrian behavior. The study found that properly designed pedestrian 
facilities can effectively improve traffic conditions: reducing vehicle speeds by 2 km/h and reducing pedestrian 
risks by 28%. Wang et al.4 studied pedestrian crossing behaviors using detailed design concepts. Song et al.5 re-
adjusted signal sequences to develop a new pedestrian second crossing pattern.

Currently, many scholars have integrated mechanical theories into pedestrian behavior research. They assume 
a certain average arrival rate of pedestrians based on pedestrian signal light restrictions and further use fluid 
dynamics theory to study pedestrian crossing times theoretically6. Additionally, gas dynamics models7 and social 
force models8 have been created to describe macro and micro behaviors of pedestrians, respectively. In social 
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force models9, pedestrian movements are influenced by ’social forces’ that measure intrinsic motivations for indi-
viduals to perform certain actions (movements), not directly exerted by the individual’s personal environment.

Compared to micro pedestrian models, macro pedestrian models offer significant advantages in large-scale 
simulation, real-time state estimation, and crowd management. For example, Hoogendoorn et al.10 and Jiang 
et al.11 view crowds as continuous media, describing their characteristics through parameters such as flow, 
density, and speed, using the conservation laws of fluid dynamics to describe pedestrian movements. These 
models not only reduce computation time but also accurately predict crowd dynamics in large-scale simulations. 
Recent studies have shown that such macro pedestrian models can replicate various self-organizing phenomena 
observed in real crowds10. Furthermore, phenomena that cannot be modeled by simple summarization of indi-
vidual influences (as in micro models) can be captured and described in this modeling paradigm. Compared 
to mathematical models, fluid dynamics models have significant advantages in explaining interactions between 
human psychological intentions and physical movement characteristics12, demonstrating traffic instability in 
pedestrian flows13, and simulating pedestrian movements in complex scenarios14.

Artificial Neural Networks (ANNs) have become an inevitable research topic in fields such as pattern 
recognition15, image processing16, classification17, segmentation18, and engineering sciences. However, tradi-
tional ANNs often lack physical constraints, cannot guarantee that their output complies with physical laws, and 
require a large amount of labeled data for training to achieve good performance. This can lead to inaccurate or 
unreliable results in applications involving physical phenomena. Physics-Informed Neural Networks (PINNs), by 
embedding physical laws (such as partial differential equations) directly into the network, can enforce physical 
constraints during the training process, addressing the problem of insufficient data by utilizing physical laws. In 
recent years, PINNs have gained increasing attention in various scientific and engineering fields, with new PINN 
architectures such as conservative19 and non-local20 being proposed to enhance their robustness and efficiency. So 
far, PINNs have successfully been applied to solve problems in fluid mechanics21, solid mechanics22, and materials 
science23. When functions are represented by partial differential equations, repeated solving of partial differential 
equations is required for reliable assessment. This leads to computational difficulties and inefficiencies. PINN is 
an effective black-box solution tool that avoids direct computation of different types of partial differential equa-
tions, ensuring effectiveness and efficiency. Therefore, the application of PINN in solving reliability assessment 
problems can expand the application scope and improve the performance of reliability calculation methods, 
especially for implicit partial differential equations. If PINNs are used, reliability assessment problems and partial 
differential equations can be integrated into a single training process, achieving high efficiency and accuracy.

In summary, this paper addresses pedestrian second crossing behavior using a fluid dynamics model, develop-
ing a pedestrian fluid dynamics model based on the Navier–Stokes (N-S) equations to describe pedestrian group 
flow behavior during second crossings, and analyzing it using Physics-Informed Neural Networks to determine 
pedestrian fluid characteristics at signalized intersections during two-stage crossings.

Methods
Fluid dynamics equations and principles
Navïer‑Stokes equations
The primary attributes analyzed in fluid flow are velocity, pressure, density, and viscosity. The Navier–Stokes 
(N-S) equations can be used to describe the relationships between these properties. In fluid flow, the equations 
can inform us about which forces dominate the flow field by examining the changes in properties during dynamic 
interactions. For compressible Newtonian fluids, Eq. (1) can be expressed as:

Here, V  represents the fluid velocity, p represents the fluid pressure, ρ represents the fluid density, I repre-
sents the identity tensor (or identity matrix), and µ represents the fluid dynamic viscosity. Each term in the 
equation corresponds to different forces: inertial force 
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where the velocity divergence is zero, the term can be removed. Therefore, the Navier–Stokes (N-S) equation 
for incompressible Newtonian fluids is defined as Eq. (2):

The Navier–Stokes equations must be solved simultaneously with the continuity equation (Eq. 3):

The Navier–Stokes equations represent the conservation of momentum, while the continuity equation rep-
resents the conservation of mass.

Reynolds number
In the field of fluid dynamics, the Reynolds number is commonly used to classify different flow regimes. The 
Reynolds number is defined as the ratio of inertial forces to viscous forces within a fluid and is used to describe 
the transport characteristics of particles moving in the fluid. It helps determine whether the fluid flow is laminar 
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or turbulent. Low Reynolds number flows are laminar, while high Reynolds number flows are turbulent. The Re 
(Reynolds number) is defined as in Eq. (4):

Here, ρ is the fluid density; V  is the flow velocity; d is a characteristic linear dimension; µ is the fluid dynamic 
viscosity; and v is the fluid kinematic viscosity.

Bernoulli’s equation with friction losses
The original Bernoulli equation with friction losses states that the total energy upstream is always equal to the 
total energy downstream plus the energy loss between two points in the fluid flow. The total energy at a location 
primarily includes kinetic energy, pressure energy, and elevation energy. The Bernoulli equation with friction 
losses can be written in the form of Eq. (5):

Here, gz represents the elevation, and ε1−2 is the friction loss between position 1 and position 2. In pipe flow, 
the Darcy-Weisbach equation (Eq. 6) can be used to calculate friction losses:

Here, f  is the Darcy friction factor, L is the length of the pipe between the two positions, u is the average 
flow velocity, and D is the pipe diameter. The Darcy friction factor is a coefficient required to estimate frictional 
pressure drops. The friction factor is a function of the Reynolds number of the flow and the characteristics of 
the pipe. There are several methods to determine it, such as the Moody chart and the Colebrook equation. In 
the case of laminar flow, the friction factor can be obtained using Eq. (7):

Pedestrian second crossing model based on fluid dynamics
Large intersections with multiple lanes often include pedestrian safety islands to ensure the safety of pedestrians 
crossing the street. Pedestrians cross the intersection in two stages, and the pedestrian traffic signals for opposing 
directions are generally designed not to be paired. As shown in Fig. 1, this is an example of a pedestrian second 
crossing design with unpaired traffic signals.

During this process, we constructed a pedestrian second crossing model based on fluid dynamics, treating 
pedestrians as particles in a fluid (described using quantities such as flow rate, density, and velocity) and using 
the conservation laws of fluid dynamics to characterize pedestrian movement. We consider the movement of 
pedestrians as that of particles in a fluid, where at any point in the fluid, the mass conservation equation must 
be satisfied. This second crossing process is divided into two stages:

In the first stage, the pedestrian on Side A remains stationary, while the pedestrian on Side C crosses from C 
to B (see Fig. 2) and pauses at the safety island, waiting for the signal to change. In this phase, pedestrian flow is 
in a uniform fluid state, and the changes in speed, acceleration, and density can be neglected.

In the second stage, the pedestrian continues crossing from the central safety island (Section B) to the opposite 
side of the road (from B to A). Meanwhile, the pedestrian on Side A begins moving toward Side B. At this point, 
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Fig. 1.   Pedestrian second crossing design.
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pedestrians from both sides interact between Points A and B. This stage can be further divided into periods before 
and after their interaction (see Fig. 3). Figure 3a represents the state before the interaction of pedestrians from 
both sides, while Fig. 3b represents the state when pedestrians from side B and side A interact.

In the second phase, the interaction between pedestrians from both sides is the main focus of this study. 
Considering the large number of pedestrians continuously crossing the pedestrian crossing, the mass conser-
vation equation (Eq. 8) must be satisfied at any point in the pedestrian flow. Reference11 utilized a Lagrangian 
coordinate system to solve a continuous crowd flow model.

Here, ρ and t  respectively represent pedestrian density and time, while x and y represent the positional 
components of pedestrians in two-dimensional space. u and v denote the velocity components of pedestrians 
in two-dimensional space.

Generally, pedestrian density ρ is determined by counting the total number of other pedestrians within the 
study area around a specific pedestrian (see Fig. 4a). However, our observations indicate that pedestrians gen-
erally pay less attention to those directly behind them. Additionally, the maximum horizontal field of view for 
humans is about 188°, rendering pressure from pedestrians directly behind as negligible. Therefore, in this study, 
we calculate pedestrian density ρ by assessing pedestrian influence within a 180° area directly in front of each 
pedestrian, as shown in Fig. 4b. We define the semicircular area with a 4-m diameter in front of a pedestrian as 
the region influenced by other pedestrians, denoted Sj (see Fig. 4c). The pedestrian is modeled as a circular par-
ticle with a 0.5-m diameter, with an influence range defined as a 2-m diameter circle centered on the pedestrian, 
denoted Pi . We further define Sij as the intersection of Sj and Pi , representing the cumulative influence of other 
pedestrians on the studied pedestrian, with this influence being additive within the affected area.
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Fig. 2.   Pedestrian movement between Side B and Side C.

A B

BA

(a) before

(b) after

Fig. 3.   Pedestrian interaction between Side A and Side B.
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The formula for pedestrian density is expressed as Eq. (9), with units of Ped/m2 (pedestrian influence per 
square meter)

In physics, static pressure is defined as the force exerted per unit area on fluid particles from all directions. 
In this pedestrian model, we apply this concept by defining pressure as the psychological discomfort caused by 
other pedestrians approaching. The proximity of surrounding pedestrians causes changes in pedestrian density, 
and pressure P is positively correlated with pedestrian density. Therefore, we define pressure P as a function of 
density (i.e., P = P(ρ) ), with dP/dρ > 0 for all ρ ). This leads to the modified continuity equation (Eq. 10):

The updated Bernoulli equation (Eq. 11) with friction losses for pedestrian fluid flow situations, adapted to 
conditions where there is minimal elevation change along the pedestrian crosswalk, thus excluding the gravita-
tional potential energy term gz, is expressed as:

In the equation, u , p , ρ , εp(1−2) and hA represent the velocity, pressure, density, friction loss, and energy input 
of the pedestrian flow on side B, respectively. This equation can be used to describe the total energy along a 
streamline of the pedestrian fluid (applied between any two points on the same streamline). The energy loss is 
based on the Darcy-Weisbach equation (Eq. 12), considering the characteristics of pedestrian flow measurements.

In this context, f  represents the friction coefficient, s1−2 and u denote the distance and average velocity 
between two locations. α signifies a coefficient used to adjust the terms of energy loss to accommodate pedestrian 
flow. Therefore, by integrating the updated Bernoulli equation with the Navier–Stokes equation, one can deter-
mine the pressure of pedestrian flow at any point. It is assumed that pedestrian flow exists within a homogeneous 
fluid phase before interactions occur between individuals.

Physics informed neural networks
Definition of physics informed neural networks
PINN was initially proposed by Raissi et al.24 as a novel numerical solver applicable to various types of partial 
differential equations and an effective data-driven approach for solving inverse problems. From a mathematical 
perspective of function approximation, neural networks can be seen as universal nonlinear function approxi-
mators. Similarly, the modeling process of partial differential equations involves finding nonlinear functions 
that satisfy certain constraints. There is a similarity between these two concepts. Automatic differentiation 
techniques25 are widely used in deep neural networks, allowing us to incorporate differential constraints from 
partial differential equations into the design of neural network loss functions. Thus, using this approach, we 
can design neural networks that adhere to constraints imposed by physical models. This forms the fundamental 
design principle of Physics-Informed Neural Networks (PINNs).

The neural networks trained using this design philosophy can not only approximate observational data but 
also automatically satisfy the physical properties governed by partial differential equations (PDEs), such as sym-
metry, invariance, and conservation. This approach’s strength lies in simultaneously considering observational 
data and physical constraints, thereby enhancing the accuracy and reliability of the model. In summary, by inte-
grating the constraints from PDEs into the design of the neural network’s loss function and utilizing automatic 
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differentiation techniques for training, we can obtain neural networks that adhere to physical model constraints. 
This method can better approximate the data and satisfy the physical properties of partial differential equations. 
The general form of a nonlinear PDE is described as in Eq. (13):

Here, N(u, �) is a functional that depends on the parameter � and involves the differential operation of u , x 
is a spatial variable, t  is a temporal variable, where � is a subset of the Euclidean space R , and T is the terminal 
time. Traditional physics models typically predict u(t, x) at arbitrary spatiotemporal points by solving partial 
differential equations given initial and boundary conditions of N(u, �) and physical parameter � . When ana-
lytical solutions are unavailable, numerical methods such as finite differences or finite elements are used for 
solving. PINNs approximate solutions of partial differential equations by constructing a neural network. After 
inputting spatial and temporal data, they first approximate the function using fully connected neural networks. 
Subsequently, leveraging automatic differentiation techniques, they compute residuals of the partial differential 
equations and initial-boundary value constraints, incorporating them as regularization terms in the loss function. 
Finally, optimization algorithms like gradient descent are used to adjust the neural network’s weight parameters 
and the physical parameters of the partial differential equations.

Physics Informed Neural Networks based on fluid dynamics
From the above text, the network architecture and loss function of Physics Informed Neural Networks (PINNs) 
need to be tailored according to the form of partial differential equations. This differs from existing work in 
computational physics that directly applies machine learning algorithms. In this paper, a fluid dynamics-based 
PINN model is developed using the PyTorch deep learning framework to analyze pedestrian crossing behaviors.

The pedestrian model in this paper takes the positional information 
(

x, y
)

 of pedestrian trajectories and time 
t  as inputs to the Physics Informed Neural Network (PINN). After fitting, the network utilizes a loss function 
composed of partial differential equations from fluid mechanics to output the desired features (See Fig. 5).

As shown in Fig. 5, the solution to the differential equation is obtained through a fully connected network. 
When the input variables approach the function, automatic differentiation is used to calculate the residuals of 
the partial differential equations and initial-boundary value constraints, which are then included as regulari-
zation terms in the loss function. In this study, the Navier–Stokes (N-S) equation (Eq. 14) and the continuity 
equation (Eq. 10) are used as loss functions in the neural network. In Eq. (14), �2 is related to ρ and is expressed 
as �2 = f (Re, ρ).

(12)ut + N(u, �) = 0, x ∈ �, t ∈ [0,T]

Fig. 5.   Physics Informed Neural Networks model based on fluid mechanics.
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Data collection and processing
This study employed a video recording method to collect pedestrian characteristic data under real traffic condi-
tions. The chosen experimental location was the intersection of Nanjing Road and Gongqingtuan West Road in 
Zibo, China, focusing on the pedestrian crossings in the east–west directions in two areas, as shown in Fig. 6a. 
The pedestrian crosswalk is 32 m long with a 4-m-wide safety island in the middle. The study specifically investi-
gates the pedestrian behaviors in the congested interaction zones (AB zones) of the crosswalk, where pedestrians 
from side A cross for the first time and pedestrians from side B cross for the second time.

As shown in Fig. 6b, the selected intersection’s pedestrian signal cycle length is 169 s, encompassing phases for 
two crossings. Within this signal cycle, the pedestrian signals exhibit a bi-directionally asymmetric distribution. 
Specifically, during phase bc, the green light first illuminates for pedestrians from side B. After some time, the 
green light then lights up for pedestrians in phase ab, serving both directions. This signal timing allows pedes-
trians from side B to cross the central zone when the green light is on, then wait on the safety island for a period 
before proceeding. Conversely, pedestrians from side A do not need to wait on the safety island during phase ab.

During weekday peak hours, a drone was used to collect and record pedestrian data when a large number of 
pedestrians were crossing. In total, 244 signal cycles were recorded, including 4102 pedestrians from side A and 
3356 pedestrians from side B. The pedestrian movement characteristics were measured using the yolov5_deepsort 
algorithm, primarily by extracting pedestrian speeds and trajectories.

The selected signalized intersection is located near the gate of a university campus, so most pedestrians cross-
ing this intersection are young adults and middle-aged individuals. Based on the characteristics of bidirectional 
pedestrians, the AB zone is divided into five sections using four lines, S1, S2, S3, and S4, as shown in Fig. 7.

At cross-section S1, when the first row of pedestrians from direction B has just passed the edge of the safety 
island, the first row of pedestrians from direction A arrives at this point. Most pedestrians face forward, main-
taining a relatively consistent direction.

At cross-section S2, pedestrians from both sides begin to converge bidirectionally. From this position 
onwards, pedestrians from side A gradually slow down and increase their variation in walking direction. From 
this moment, pedestrian particles from side A start flowing within the pedestrian fluid from side B. This change 
is mainly influenced by the pedestrians from side B.

At cross-section S3, pedestrians from both sides undergo the longest interaction at this stage. After passing 
this point, both sides increase their crossing speed.

(14)
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Fig. 6.   Selected pedestrian two-stage crossing road geometry and signal cycle.
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At cross-section S4, the interacting pedestrians from both sides completely separate. All pedestrian particles 
from side A have disengaged from the pedestrian flow of side B.

The partial pedestrian flow data from side B is shown in Tables 1, and 2 displays the partial data of pedestrian 
particles from side A. Each data entry is extracted from pedestrian particles along the streamline and includes 
elements such as position, velocity, acceleration, and pressure. (The starting point for pedestrians on side A is 
0m, and the starting point for pedestrians on side B is 14 m).

Results
Model training
This study, the PINN is built on the PyTorch deep learning framework. This model consists of two parts: a fully 
connected neural network and a partial differential equation part containing physical functions. Neural networks 

S4

B

S1

BA

(a) Crossing section 1

(c) Crossing section 3

(b) Crossing section 2

A

(d) Crossing section 4

S2

BA

S3

BA

Pedestrian on side A Pedestrian on side B

Fig. 7.   Walking directions and interaction behaviors on four crossing sections.

Table 1.   Partial pedestrian data from side A.

Pedestrian No.

Section

Position (m)
Velocity 
(m/s) Density (Ped/m2)

x y u v ρ

1 1.61 2.38 1.72 0.43 0.51

2 3.12 1.65 1.87 0.36 0.47

3 0.78 0.96 1.92 0.18 0.13

… … … … … …

n 5.45 4.65 1.22 0.11 1.35

Table 2.   Partial pedestrian data from side B.

Pedestrian No.

Section

Position (m)
Velocity 
(m/s) Density (Ped/m2)

x y u v ρ

1 11.78 3.92 1.41 0.31 0.52

2 13.87 1.13 1.71 0.02 0.08

3 11.22 4.42 1.62 0.12 0.38

… … … … … …

n 10.36 5.48 1.12 0.94 1.15
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are powerful machine learning models that have achieved significant success in various tasks. However, the design 
of neural networks must carefully consider the impact of depth and breadth on model performance. Too many 
layers and neurons can lead to overfitting, where the model learns noise in the data. Conversely, too few layers 
and neurons may fail to capture the complex structures in the data, resulting in underfitting.

Therefore, determining the appropriate depth and breadth of the network is crucial for designing high-perfor-
mance neural networks. To ensure that the PINN network has an optimal structure, it is necessary to empirically 
test the number of layers and neurons per layer in the fully connected neural network using data. This ensures 
that the model neither overfits nor underfits during the learning process, thereby achieving optimal performance.

To determine the optimal structure of the fully connected neural network in this study, a learning rate 
Lr = 0.01 was set, ReLU function was used as the activation function, and the Adam algorithm was employed as 
the optimization algorithm. The MSE under different hidden layers and neurons per layer are shown in Table 3. 
It can be demonstrated that the optimal structure for the FCNN (fully connected neural network) is 6 hidden 
layers with 40 neurons per layer.

To demonstrate the superiority of PINNs over traditional deep learning methods, we will utilize the fully 
connected neural network obtained from the above steps. It will be split into two networks: one incorporating a 
physics-informed loss function and another without. Both networks will be trained using the same dataset and 
other network parameters.

In Fig. 8, it can be observed that as the number of epochs increases, both the fully connected neural network 
and the Physics Informed Neural Network (PINN) exhibit a decreasing trend in Mean Square Error (MSE). 
However, compared to the optimal training performance of the fully connected neural network with an MSE of 
7.561 × 10–7, the Physics Informed Neural Network, which incorporates the physical equations as a loss function, 
achieves a much lower MSE of 9.35 × 10–8. This indicates that the predictions of the Physics Informed Neural 
Network are more accurate than those of the fully connected neural network. Additionally, we also compared 
the MAE, RMSE, and MSE of other models, as shown in Table 4.

Pedestrian fluid analysis
Through the previous section of model training, we have obtained a physically informed neural network with 
excellent performance. In this section, we will analyze pedestrian fluid dynamics during a two-stage crossing 
using the trained model, exploring changes in fluid properties such as velocity, acceleration, density, and others.

Table 3.   MSE between predicted and actual values on validation set for different layers and neurons.

Layers

Neurons

10 20 30 40 50

2 3.64 × 10–3 8.35 × 10–4 1.56 × 10–4 6.95 × 10–5 2.37 × 10–4

4 6.98 × 10–4 3.78 × 10–4 8.52 × 10–5 1.36 × 10–6 2.55 × 10–5

6 1.14 × 10–4 7.24 × 10–5 1.24 × 10–6 7.56 × 10–7 8.24 × 10–6

8 3.61 × 10–5 2.38 × 10–5 6.34 × 10–5 3.78 × 10–6 3.82 × 10–5

10 4.63 × 10–5 1.44 × 10–5 9.75 × 10–5 3.21 × 10–4 5.64 × 10–4

Fig. 8.   MSE comparison between the FCNN and the PINN.
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It is noted that the flow pattern is related to four main variables: speed, pedestrian group length, density, and 
viscosity. For pedestrian flow, laminar flow occurs when Re < 2.4. Figure 9a–d show the correlation between 
the four variables and the Reynolds number. It is observed that for this laminar pedestrian flow, the Reynolds 
number ranges from 0.5 to 1.7.

In Fig. 9a, it can be observed that Reynolds numbers increase with increasing velocity. This suggests that 
higher speeds of pedestrian particle movement create larger disturbances in the pedestrian fluid. Specifically, as 
velocity increases, the influence area around pedestrian particles expands, potentially unsettling the pedestrian 
fluid more significantly. In Fig. 9b, Reynolds numbers are noted to increase with the length of pedestrian groups. 
This reflects that longer groups of pedestrians take more time for the pedestrian fluid to return to its original state 
after being separated. Figure 9c highlights that an increase in pedestrian fluid density leads to a corresponding 
linear increase in Reynolds numbers. Density evidently generates inertial forces (and notably does not invoke 
viscous forces), thus increasing the Reynolds number. In Fig. 9d, it is observed that Reynolds numbers decrease 
with increasing viscosity and nonlinearly decrease with increased viscosity. Higher fluid viscosity results in 
greater resistance to particles, requiring more energy from pedestrian particles to alter the state of pedestrian 
fluid under these conditions.

Figure 9e shows the variation of the Reynolds number for pedestrian flow along the study section. The 
model’s output for the Reynolds number of pedestrian flow closely matches the actual Reynolds numbers we 
calculated. The trend of Reynolds number changes in the previously divided stages is consistent with the real 
situation. This indicates that the model fits the pedestrian data well and accurately reflects the trend of Reynolds 
number changes.

Table 4.   Comparison of errors between models.

Model

Evaluation index

MAE RMSE MSE

FCNN 7.22 × 10–4 8.69 × 10–4 7.56 × 10–7

CNN 6.08 × 10–4 7.33 × 10–4 5.37 × 10–7

LSTM 6.85 × 10–4 8.26 × 10–4 6.82 × 10–7

GRU​ 6.82 × 10–4 8.32 × 10–4 6.93 × 10–7

PINN 2.54 × 10–4 3.06 × 10–4 9.35 × 10–8
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Fig. 9.   Correlation between four variables and reynolds number, and changes in reynolds number along the 
study section.



11

Vol.:(0123456789)

Scientific Reports |        (2024) 14:21278  | https://doi.org/10.1038/s41598-024-72155-y

www.nature.com/scientificreports/

In the study section, the changes in pedestrian Reynolds number are mainly influenced by pedestrian speed 
and density. In the 2 m to 8 m section, the Reynolds number generally shows a decreasing trend. This is because 
pedestrians gradually observe oncoming pedestrians approaching, causing them to slow down, which results 
in a decrease in the Reynolds number. However, during the initial deceleration process, pedestrian density 
increases, causing the Reynolds number to decrease slowly and sometimes even increase. Eventually, when 
pedestrian density reaches its maximum, the Reynolds number decreases further with the continued reduction 
in pedestrian speed.

In the 8–11 m section, the Reynolds number exhibits a trend of sudden increase followed by a decrease. This 
is due to the convergence of pedestrians from both sides, where pedestrian speed remains almost constant, but 
density suddenly increases, leading to a rise in the Reynolds number. Subsequently, as pedestrians disperse, the 
density decreases, causing the Reynolds number to fall.

Finally, in the 8–14 m section, after the pedestrians from both sides separate, their speed gradually increases, 
resulting in a rise in the Reynolds number.

In addition, the outputs of real pedestrian fluid from the Physically Informed Neural Network are shown in 
Figs. 10 and 11 (where pedestrians from point A start at 0m, and from point B at 14 m). These images respectively 
depict the changes in pedestrian velocity, acceleration, and density after being processed by the neural network.

From Figs. 10 and 11, it can be observed that the outputs of the Physically Informed Neural Network for 
pedestrians at points A and B align with the attributes (velocity, acceleration, and density) of the fluid-based 
pedestrian crossing model described in sections “Pedestrian second crossing model based on fluid dynamics” 
and “Physics informed neural networks”. In the first stage, as pedestrians from the first row on side B just pass the 
boundary of the safety island, pedestrians from the first row on side A arrive at this point. As most pedestrians 
face forward and move in relatively consistent directions, the velocity of the pedestrian fluid continues to increase, 
and pedestrians adjust their paths in advance to avoid collisions. In the second stage, pedestrians from both 
sides begin to converge bidirectionally. From this point on, pedestrians from both sides gradually slow down as 
they notice pedestrians approaching from the opposite direction. In the third stage, pedestrians from both sides 
experience the longest interaction, resulting in the lowest speeds. In the fourth stage, pedestrians from both sides 
completely separate: pedestrians from side A continue to cross the remaining pedestrian crosswalk after reaching 
the safety island, while pedestrians from side B reach their destination after this stage.

Fig. 10.   Velocity and acceleration variation of pedestrians on the road longitudinal section.
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We analyzed the speeds of pedestrians on both sides (see Fig. 10a). Pedestrians on side A start at 0 m, while 
those on side B start at 14 m. It can be observed that the speed range of the pedestrian fluid on both sides is 
between 1 and 1.9 m/s. Since pedestrians on side B stop at the safety island, mainly comprising stationary pedes-
trian particles, while pedestrians on side A include both moving and stationary particles, the initial speed of the 
pedestrian fluid on side A is higher than that on side B.

By the time the pedestrian fluid on side A reaches 4.5 m, the speeds of both pedestrian fluids reach their maxi-
mum. Referring to the pedestrian fluid acceleration graph (see Fig. 10b), at this point, the acceleration of both 
pedestrian fluids is 0 m/s2, and it gradually decreases, resulting in a decline in the pedestrian fluid speed. This is 
because pedestrians on both sides have noticed the approach of pedestrians from the opposite direction, increas-
ing the pressure within the pedestrian fluid, and pedestrians are preemptively choosing paths to avoid collisions.

When the pedestrian fluid on side A reaches 7.1 m, interactions between pedestrians from both sides begin, 
causing the speed of the pedestrian fluid to continue decreasing to a minimum, at which point the density of the 
pedestrian fluid reaches its maximum. From the pedestrian fluid density map (see Fig. 11), it can be observed 
that after interactions begin, the density of the pedestrian fluid gradually increases from its initial range of 0.5–1.5 
Ped/m2 to 1.5–2.5 Ped/m2.

By the time the pedestrian fluid on side A reaches 10.4 m, pedestrians from both sides have completely 
separated, and the speed of the pedestrian fluid gradually increases. Initially, the speed of pedestrians on side B 
increases and then gradually decreases as they approach their destination. Due to pedestrians on side A needing 
to cross the entire intersection within the same signal cycle, the average speed of the pedestrian fluid on side A 
is greater than that on side B.

Conclusion
This study established a model for pedestrians crossing intersections bidirectionally, exploring the main char-
acteristics of pedestrian flow using a Physically Informed Neural Network. The model integrates equations for 
Reynolds number calculation, Navier–Stokes equations, and Bernoulli’s equation. The main findings of this 
study are summarized as follows.

1.	 Comparison between Physically Informed Neural Network (PINN) and traditional deep learning in pedes-
trian crossing models showed that PINN exhibits better performance in calculating and predicting pedestrian 
fluid properties, with a mean square error as small as 10–8.

2.	 This study demonstrated the accuracy and applicability of analyzing pedestrian fluid through Physically 
Informed Neural Network simulations. The model shows consistency with real-world conditions in simulat-
ing changes in pedestrian velocity, acceleration, density, and Reynolds number, particularly in pedestrian 

Fig. 11.   Heat map of pedestrian density across four stages.
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interaction and segment analysis. These results indicate that the proposed model not only effectively captures 
dynamic characteristics of pedestrian fluid but also provides insights into the impact of pedestrian behavior 
on pedestrian flow.

3.	 During bidirectional interaction processes, the velocity of pedestrian fluid varies as pedestrians approach 
each other, while fluctuations in density and Reynolds number reflect the interaction effects among pedes-
trians. Specifically, near safety islands and intersections, pedestrian fluid behavior shows a noticeable trend 
of decreasing velocity and increasing density. The speed range of pedestrian fluids on both sides is from 1 to 
1.9 m/s, with side A exhibiting higher speeds than side B.

The findings of this study contribute to a profound and accurate understanding of the interaction charac-
teristics of pedestrian crossings for transportation researchers and scholars. These results are instrumental in 
optimizing pedestrian signal timing and upgrading pedestrian facilities at signalized intersections, aiming to 
enhance pedestrian mobility and safety, particularly in busy urban areas. Furthermore, by integrating physi-
cal equations into neural networks through Physically Informed Neural Networks (PINN), where data holds 
physical significance, these discoveries can aid in enhancing the capability of autonomous vehicles to interpret 
pedestrian intentions within the context of smart traffic and connected vehicles. Future research should focus 
on pedestrian crossing behaviors during non-peak hours and utilize dynamic fluid density and resistance coef-
ficients to predict resistance more accurately.

Data availability
The datasets generated and analysed during the current study are available from the corresponding author on 
reasonable request.
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