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Abstract

Biologically-informed neural networks (BINNs), an extension of physics-informed neural net-

works [1], are introduced and used to discover the underlying dynamics of biological sys-

tems from sparse experimental data. In the present work, BINNs are trained in a supervised

learning framework to approximate in vitro cell biology assay experiments while respecting

a generalized form of the governing reaction-diffusion partial differential equation (PDE). By

allowing the diffusion and reaction terms to be multilayer perceptrons (MLPs), the nonlinear

forms of these terms can be learned while simultaneously converging to the solution of the

governing PDE. Further, the trained MLPs are used to guide the selection of biologically

interpretable mechanistic forms of the PDE terms which provides new insights into the bio-

logical and physical mechanisms that govern the dynamics of the observed system. The

method is evaluated on sparse real-world data from wound healing assays with varying ini-

tial cell densities [2].

Author summary

In this work we extend equation learning methods to be feasible for biological applications

with nonlinear dynamics and where data are often sparse and noisy. Physics-informed

neural networks have recently been shown to approximate solutions of PDEs from simu-

lated noisy data while simultaneously optimizing the PDE parameters. However, the suc-

cess of this method requires the correct specification of the governing PDE, which may

not be known in practice. Here, we present an extension of the algorithm that allows neu-

ral networks to learn the nonlinear terms of the governing system without the need to

specify the mechanistic form of the PDE. Our method is demonstrated on real-world bio-

logical data from scratch assay experiments and used to discover a previously unconsid-

ered biological mechanism that describes delayed population response to the scratch.
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Introduction

Collective migration refers to the coordinated migration of a group of individuals [3, 4]. This

process arises in a variety of biological and social contexts, including pedestrian dynamics [5],

tumor progression [6], and animal development [7]. In the presence of many individuals, dif-

ferential equation models provide a flexible framework to investigate collective behavior as a

continuum [8–12]. A challenge for mathematicians and scientists is to use mathematical mod-

els together with spatiotemporal data of collective migration to validate assumptions about the

underlying physical and biological laws that govern the observed dynamics. Several factors

contribute to the difficulty of this task, even for simple systems/data, some of which include

biological forms and levels of noise in the observation process, poor understanding of the

underlying dynamics, a large number of candidate mathematical models, implementation of

computationally expensive numerical solvers, etc. This work provides a data-driven tool which

can alleviate many of these problems by enabling the rapid development and validation of

mathematical models from sparse noisy data. The methodology is demonstrated using a case

study of scratch assay experiments.

Scratch assays are a widely adopted experiment in cellular biology used to study collective

cell migration in vitro as cell populations re-colonize empty spatial regions. These experiments

have been used previously to observe population-wide behavior in many different contexts,

including wound healing [13–16] and cancer progression [17]. Mathematical modeling of

scratch assays plays an important role in the quantification and analysis of population dynam-

ics. This is because (i) the equations and parameters comprising mathematical models are

interpretable, providing information about the underlying physical and biological mechanics

that drive the observed system, and (ii) when properly calibrated, they are generalizable,
affording the ability to make accurate predictions beyond the data set used for calibration.

Reaction-diffusion partial differential equations (PDEs) are frequently used to model

scratch assay experiments [2, 8, 11, 18, 19]. The general one-dimensional reaction-diffusion

equation that describes the rate of change of a quantity of interest u(x, t) (e.g. cell density) is

ut ¼ ðDuxÞx þ Gu; x 2 ½x0; xf �; t 2 ½t0; tf �; ð1Þ

in which the rate of change of u (i.e. ut) is a function of diffusion, modeled by the function D,

and reaction or growth, modeled by the function G. Note that D and G depend on the applica-

tion, and choosing the correct/optimal mechanistic models for these terms is the focus of

many current research efforts and remains an open question. The classical Fisher–Kolmogo-

rov–Petrovsky–Piskunov (FKPP) equation is a reaction-diffusion equation that has been used

to model a wide spectrum of growth and transport of biological processes. In particular, the

FKPP model assumes a scalar diffusivity function D ¼ D and logistic growth function G ¼
rð1 � u=KÞ with intrinsic growth rate r and carrying capacity K [19, 20]. Variants of the

reaction-diffusion equation have also been used to account for different types of cell interac-

tions during scratch assay experiments. For example, the nonlinear diffusivity function

D ¼ 1 � a4
3 þ 3a u=K � 2

3= Þ
2

��
with cell-to-cell adhesion coefficient α was used to model

dynamics in which neighboring cells prevent other cells from migrating [21]. Alternatively, a

diffusivity function of the form D ¼ Dð1þ aðu=KÞ2Þ can be used to model dynamics in which

cells promote the migration of others [11]. Additional variants of reaction-diffusion equation

models have captured cell migration in the presence of growth factors [22], during melanoma

progression [17], and in response to different drug treatments [18].

A recent study quantitatively investigated the role of initial cell density by conducting a

suite of scratch assay experiments on PC-3 prostate cancer cells with systematically varying ini-

tial cell densities [2]. The experimental data was used to calibrate the FKPP equation as well as
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a variant model known as the Generalized Porous-FKPP equation, which assumes that diffu-

sivity increases with cell density u by using a diffusivity function D ¼ Dðu=KÞm with diffusion

coefficient D, carrying capacity K, and exponent m. Like the FKPP equation, the growth term

is also described by the logistic growth function G ¼ rð1 � u=KÞ. While the calibrated models

approximated the experimental data well in many cases in [2], the presence of systematic

biases between the model solutions and experimental data indicate the existence of additional

governing mechanisms that may not be accounted for in these mathematical models. How-

ever, the existence of a large number of possible biophysical mechanisms that could play a role

in scratch assay dynamics makes the testing of mathematical models against these experimen-

tal data computationally challenging. Thereby, this scenario motivates the use of equation

learning methods to discover the diffusion and reaction terms directly from the experimental

data.

Enabled by advances in computing power, algorithms, and the amount of available data,

the field of equation learning has recently emerged as a powerful tool for the automated identi-

fication of underlying physical laws governing a set of observation data. The basic assumption

in this field is that measured data arise from some unknown n-dimensional dynamical system

of the form

ut ¼ Fðx; t; u; ux; uxx; . . . ; yÞ; x 2 ½x0; xf �; t 2 ½t0; tf �; ð2Þ

with quantity of interest u = u(x, t), parameter vector y 2 Rk
, and appropriate initial and

boundary conditions. An example quantity of interest for modeling cell migration dynamics is

the cell density cells=mm2ð Þ at location x and time t. The measured data fui;jg
M;N
i;j¼1

for a set of spa-

tial points xi, i = 1, . . ., M, and set of time points tj, j = 1, . . ., N, are assumed to be corrupted

by some form of observation error that may be known or unknown in practice. The goal of

equation learning methods is to identify the closed form of F in Eq (2) directly from the noisy

measurements ui,j. Note that, in order to simulate the learned equation, either the noisy or a

denoised version of the initial condition can be used along with an assumed boundary condi-

tion (e.g. no-flux) that describes the biological process generating the data.

Two primary sets of methodology have been used in field of equation learning to date:

sparse regression [23, 24] and theory-informed neural networks [1, 25]. In the sparse regres-

sion framework, numerical methods (e.g. finite differences or polynomial splines) are used

to denoise u and approximate the partial derivatives ut, ux, uxx, etc. from a set of data. The

approximations are then used to construct a library of nonlinear candidate terms (e.g. 1, u, u2,

ux, . . ., u2
xu

2
xx, etc.) thought to comprise the governing system of ordinary differential equations

(ODEs) or PDEs. The data relating ut to all possible model terms inside the library are formu-

lated as a linear regression problem in which sparsity promoting techniques are used to select

a small subset of library terms that produce the most parsimonious model. While the sparse

regression framework has been successfully demonstrated to circumvent searching through a

combinatorially large space of possible candidate models, it can require large amounts of train-

ing data and the numerical methods used for denoising and differentiation are not robust to

biologically realistic forms and levels of noise, leading to inaccuracies in both the constructed

library and learned equations [26]. Further, the method assumes the unknown function F in

Eq (2) can be written as a linear combination of nonlinear candidate terms, which may not be

true in practice.

An alternative approach uses function-approximating deep neural networks, i.e., multilayer

perceptrons (MLPs), as surrogate models uMLP(x, t) for the solution of the governing dynam-

ical system [27–29]. In particular, physics-informed neural networks (PINNs) [1, 25] assume

the mechanistic form of F in Eq (2) is pre-specified and then used as a form of regularization
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in the neural network objective function. The parameters of F are allowed to be “learnable,”

meaning that the parameters of the governing PDE are calibrated while the neural network is

trained to minimize the error between uMLP(xi, tj) and the data ui,j. This methodology ensures

that the neural network solution satisfies the physical laws described by F while simulta-

neously fitting the spatiotemporal data. Theory-informed neural networks have been demon-

strated with smaller amounts of data in the presence of noise, however, they have so far only

been applied to problems where the governing mechanistic PDE is known a priori [30–32].

Hybrid approaches that combine neural networks and sparse regression have also been

suggested to address some of the issues surrounding the above methods [26, 33]. In these

approaches, neural networks are used as surrogate models for u(x, t) and then used to con-

struct the library of candidate terms for sparse regression using automatic differentiation.

These methods have been shown to accurately learn the governing system of equations for a

variety of reaction-diffusion models from spatiotemporal data with biologically realistic levels

of noise [26].

All three approaches (i.e. sparse regression, theory-informed neural networks, and hybrids)

however, suffer from the model specification problem, in which the governing ODE/PDE

model must be specified a priori either explicitly or as a library of candidate terms. Thus, (i) if

the true dynamical system contains terms that are not included in the regularization term for

theory-informed neural networks, or (ii) if the true terms cannot be represented as a linear

combination of nonlinear candidate terms for sparse regression, then these methods will ulti-

mately fail to recover the true system. Further, detecting this issue when determining what

the “true” system is in real-use cases is an open question. Where systems with scalar or linear

dynamics may be suitable for these approaches, biological systems pose a particular challenge

in this respect, since many of the underlying mechanics driving these systems are nonlinear.

For example, the Generalized Porous-FKPP model contains a nonlinear diffusivity function

D ¼ Dðu=KÞm with unknown exponent m. These issues help explain why, to the best of our

knowledge, equation learning methods have not yet been successfully applied to real-world

biological population-level data.

In this work, biologically-informed neural networks (BINNs), an extension of physics-

informed neural networks (PINNs) [1], are presented as a solution to the library specification

problem for systems with biological/physical constraints. In this framework, the right-hand-

side function F of the PDE in Eq (2) is assumed to be a combination of biologically relevant

terms. For example, the general form of reaction-diffusion models can be described by the two

right-hand-side terms in Eq (1) meaning that the equation learning problem is transformed

from learning F to learning the diffusivity and growth functions D and G. Rather than assign-

ing mechanistic forms to each function as in previous equation learning studies, each function

is replaced with a separate neural network. This approach leverages the ability of deep neural

networks to approximate continuous functions arbitrarily well [34]. Importantly, the form of

each learned neural network function can be visualized, thereby enabling a data-driven tool

for user-guided conjecture of new mathematical equations that describe each separate term in

F . Moreover, formulating the equation learning task within the BINNs framework enables the

modeler to use domain expertise to include qualitative constraints on the parameter networks

(e.g. specifying nonlinear functions that are non-negative, monotone increasing/decreasing,

etc.) by selecting appropriate activation functions and loss terms for the optimization.

While BINNs can be used to discover a wide range of governing equations across the bio-

logical and physical sciences, including systems of ODEs and PDEs, in this work they are

demonstrated using reaction-diffusion PDEs. The BINNs methodology is first tested using

synthetic data and then demonstrated on experimental data from scratch assay experiments

with variable initial cell densities [2]. Notably, each data set is noisy and sparse, containing
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only five time measurements across 38 spatial locations. BINNs are used to discover the non-

linear forms of the diffusivity function and growth term of the governing reaction-diffusion

equation. Persistent model discrepancy is used to motivate the incorporation of a novel delay

term which may have important implications for the reproducibility and modeling of scratch

assays. The learned nonlinear forms of the diffusion, growth, and delay terms are used to

guide the selection of a mechanistic model with biologically interpretable parameters that

remove virtually all of the model discrepancy.

Scratch assay data

Biologically-informed neural networks (BINNs) are evaluated on experimental scratch assay

data from [2]. A typical scratch assay involves (i) growing a cell monolayer up to some desired

initial cell density, (ii) creating a “scratch” in the interior of the monolayer to produce an

empty region, and (iii) recording longitudinal measurements of the cell density during re-colo-

nization of the area. See Fig 1 for a visualization of the experiment.

Fig 1. Scratch assay experiment. (a) An illustration of an experiment with the IncuCyte ZOOM system (Essen BioScience, MI USA). Full details of the experiment

and image processing can be found in [2]. Cells are seeded uniformly within each well in a 96-well plate at a pre-specified density of between 10,000 and 20,000 cells

per well. A WoundMaker (Essen BioScience) is used to create a uniform vertical scratch along the middle of the well. (b) Microscopy images are collected from a

rectangular region of the well. (c) Example images corresponding to experiments initiated with 12,000, 16,000, or 20,000 cells per well. A PC-3 prostate cancer cell line

was used. The image recording time is indicated on each subfigure and the scale bar corresponds to 300 μm. The green dashed lines in the images in the top row show

the approximate location of the leading edge created by the scratch. Each image is divided into equally-spaced vertical columns, and the number of cells in each

column divided by the column area is calculated to yield an estimate of the 1-D cell density.

https://doi.org/10.1371/journal.pcbi.1008462.g001
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One-dimensional cell density profiles are obtained by manually counting the cells within

vertical columns of the two-dimensional image data. For these data, the cell density profiles

were reported for six varying initial cell density levels (i.e. 10,000, 12,000, 14,000, 16,000,

18,000, and 20,000 cells per well). To make the cell density profiles compatible with neural net-

work training, the data are pre-processed by rescaling the x and t variables to the scales of mil-

limeters (mm) and days, respectively (see Methods Section for more details). Further, the cell

density profile at the left boundary is removed from the data because it was identified as an

outlier across each of the six data sets. The resulting pre-processed cell densities at 37 spatial

points and five time points are shown in Fig 2.

Biologically-informed neural networks

BINNs are centered around a function-approximating deep neural network, or MLP,

denoted by uMLP(x, t) which acts as a surrogate model that approximates the solution to

the governing equation described by Eq (2) (Fig 3A). In this work, the governing PDE is

assumed to contain two terms, D and G, that describe the general reaction-diffusion model

in Eq (1). Since the true forms of the diffusivity and growth functions are unknown, they are

approximated by neural networks D ¼ DMLPðuÞ and G ¼ GMLPðuÞ (Fig 3B). Both DMLP and

GMLP are continuously differentiable functions that input the predicted cell density uMLP(x,

t) and output the corresponding diffusivity or growth value. The advantage of using MLPs

for the terms of the governing PDE is that the nonlinear forms of these terms can be learned

without specifying them explicitly (or as a library of candidate terms), thus circumventing

the model specification problem. Automatic differentiation (Fig 3C) is used to numerically

Fig 2. Experimental scratch assay data. Pre-processed cell density profiles from scratch assay experiments with varying initial cell densities [2]. Each subplot

corresponds to an experiment with a different initial cell density (i.e. 10,000, 12,000, 14,000, 16,000, 18,000, and 20,000 cells per well). The cell densities are reported at

37 equally-spaced positions and five equally-spaced time points.

https://doi.org/10.1371/journal.pcbi.1008462.g002
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differentiate compositions of uMLP, DMLP, and GMLP in order to construct the general reac-

tion-diffusion model in Eq (1). The resulting PDE (Fig 3D) is used to regularize uMLP during

training so that uMLP not only fits the data ui,j but also satisfies the governing reaction-diffu-

sion system.

To ensure that the fit to the data and the fidelity to the governing PDE are simultaneously

optimized, BINNs are trained with gradient-based methods using the following multi-part

objective function:

LTotal ¼ LGLS þ LPDE þ LConstr: ð3Þ

The first term LGLS concerns the generalized least squares (GLS) distance between uMLP(xi, tj)
and the corresponding observed data ui,j. The observation process is assumed to be described

by a statistical error model of the form

ui;j ¼ uðxi; tjÞ þ wi;j � εi;j; ð4Þ

in which the measured data ui,j are a combination of the underlying dynamical system u(xi, tj)
and some random variable wi,j� εi,j where� represents element-wise multiplication [35]. In

general, the independent and identically distributed (i.i.d.) random variable εi,j is modeled by

an n-dimensional normal distribution with mean zero and variance one that is weighted by

wi;j ¼ ½o1u
g

1ðxi; tjÞ . . . onugnðxi; tjÞ �T; ð5Þ

for γ� 0 and o1; . . . ;on 2 R where n is the dimensionality of the system. Note that (i) noise-

less data are modeled by letting ω1, . . ., ωn = 0, (ii) constant-variance error used in ordinary

least squares is modeled by letting γ = 0, ω1, . . ., ωn = 1, and (iii) non-constant-variance error

(e.g. proportional error) used in generalized least squares is modeled by letting γ> 0, ω1, . . .,

ωn 6¼ 0. Therefore, to account for the statistical error model in Eq (4), the GLS objective func-

tion

LGLS ¼
1

MN

XM;N

i¼1;j¼1

uMLPðxi; tjÞ � ui;j

juMLPðxi; tjÞj
g

" #2

; ð6Þ

Fig 3. Biologically-informed neural networks for reaction-diffusion models. (A) BINNs are deep neural networks that approximate the solution of a governing

dynamical system. (B) By allowing the terms of the dynamical system (e.g. diffusivity function D and growth function G) to be function-approximating deep neural

networks, the nonlinear forms of these terms can be learned without the need to specify a mechanistic model or library of candidate terms. (C) Automatic

differentiation is used on compositions of the different neural network models (e.g. u, D, and G) to construct the PDE that describes the governing dynamical system.

(D) The governing system is used in the neural network objective function to jointly learn and satisfy the governing PDE while minimizing the error between the

network outputs and noisy observations.

https://doi.org/10.1371/journal.pcbi.1008462.g003
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is used with proportionality constant γ = 0.2. Note that γ was tuned numerically following the

methodology suggested in [26] (see Methods Section for more details).

The next term LPDE ensures uMLP satisfies the solution of the governing PDE. For ease of

notation, let ûi;j � uMLPðxi; tjÞ, D̂i;j � DMLPðuMLPðxi; tjÞÞ, and Ĝi;j � GMLPðuMLPðxi; tjÞÞ. Then for

the reaction-diffusion equation, the error term takes the following form:

LPDE ¼
1

MN

XM;N

i¼1;j¼1

�
@ûi;j

@t|{z}
LHS

�
@

@x
D̂i;j

@ûi;j

@x

� �

þ Ĝi;jûi;j

� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
RHS

�2

; ð7Þ

where LHS and RHS denote the left-hand- and right-hand-sides of the governing PDE, respec-

tively. Thus, by driving LPDE to zero, the RHS is trained to match the LHS. Through this pro-

cess, the nonlinear forms of DMLP and GMLP are learned despite not being directly observed.

See the Methods Section for additional implementation details, including a random sampling

procedure that enforces this PDE constraint everywhere in the input domain during training.

Biological information and domain expertise are incorporated into the BINNs framework

by adding penalties in the loss term LConstr. For the reaction-diffusion equation, the diffusivity

and growth rates are assumed to be within biologically feasible ranges [Dmin, Dmax] and [Gmin,

Gmax], respectively. Further, diffusion is also assumed to be non-decreasing and growth to be

non-increasing with respect to cell density. The latter constraints were chosen based on the

collective behavior of the unconstrained parameter dynamics (e.g. the unconstrained diffusion

terms were generally increasing, but exhibited unrealistic dynamics, including vertical asymp-

totes, at low cell densities) while the maximum and minimum diffusivity and growth rates con-

sidered in [2] were used to ensure DMLP and GMLP stay within biologically realistic ranges. See

the Methods Section for more details. The corresponding constraints take the form:

LConstr ¼
1

MN

�
XM;N

i ¼ 1; j ¼ 1

D̂ < Dmin

D̂ > Dmax

ðD̂i;jÞ
2
þ

XM;N

i ¼ 1; j ¼ 1

@D̂=@û < 0

@D̂i;j

@ûi;j

 !2

þ
XM;N

i ¼ 1; j ¼ 1

Ĝ < Gmin

Ĝ > Gmax

ðĜi;jÞ
2
þ

XM;N

i ¼ 1; j ¼ 1

@Ĝ=@û > 0

@Ĝi;j

@ûi;j

 !2 �

:

ð8Þ

The constraints on DMLP and GMLP shown in Eq (8) were used for all computational results in

this work. See the Methods Section for numerical implementation details of these constraints.

BINNs are distinct from previous equation learning approaches in the following ways.

First, unlike the neural network / sparse regression hybrid in [26], which first trains uMLP to fit

a set of noisy data and then constructs a library of candidate terms as a separate step for the

PDE-FIND algorithm [24], BINNs include the governing PDE in the objective function of

uMLP itself, meaning that uMLP is trained to fit the noisy data while also approximately satisfy-

ing the learned PDE. Second, unlike PINNs [1], BINNs begin from a basic conservation law

(e.g. conservation of mass) and use MLPs to determine suitable forms for the terms compris-

ing these laws instead of specifying fixed mechanistic terms that may or may not capture the

full system dynamics. Therefore, by replacing the terms of the PDE (e.g. diffusion and growth)

with MLPs, BINNs extend PINNs to the class of equation learning methods, since the mecha-

nistic PDE terms do not need to be specified a priori.
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Evaluation procedure

Because the model prediction uMLP(x, t) is only a surrogate model for the dynamical system

u(x, t), it is possible that this approximation may contain errors, particularly in areas where

the PDE constraint given by Eq (7) is not satisfied. To ensure that the inferred diffusion and

growth terms lead to biologically realistic dynamics, the reaction-diffusion equation given by

Eq (1) is solved numerically with a method-of-lines approach using D ¼ DMLP and G ¼ GMLP.

Note that this model is well-defined because DMLP and GMLP are continuously differentiable

functions of the cell density, u. Further, BINNs are retrained multiple times for each data set in

which the forward simulation using the learned PDE terms that yields the smallest GLS error

(Eq (6)) is saved. All fits to the data shown in the Results Section are numerical solutions to the

PDE in Eq (1) using the learned diffusivity and growth functions. See the Methods Section for

numerical implementation details of the PDE forward solver.

Results

Simulation case study

Since the diffusivity and growth terms are inferred by BINNs through learning DMLP and

GMLP, respectively, the ability of BINNs to learn biologically accurate representations of these

terms must first be tested. To investigate this, data were simulated using the classical FKPP

and Generalized Porous-FKPP equations with parameter values from [2] for the scratch

assay data with initial cell density 20,000 cells per well. Additionally, the simulated data were

obscured with artificial observation error using the statistical model in Eq (4) with γ = 0.2.

Each simulation used the initial condition from the scratch assay data with initial cell density

20,000 cells per well. Using the same level of sparsity (i.e. 37 spatial points and five time

points), the BINNs framework was shown to (i) approximate the dynamical system accurately

and (ii) approximate the general forms of the diffusivity and growth terms. See S1 and S2 Figs

for the model and parameter fits, respectively. This case study demonstrates that BINNs are

able to learn accurate representations of the diffusivity and growth functions from biologically

realistic noisy sparse data, however, further analysis, like model selection and comparison, is

omitted here and instead explored using experimental data.

Reaction-diffusion BINNs for experimental data

As described in the previous sections, the diffusivity and growth functions are approximated

by deep neural networks, D ¼ DMLPðuÞ and G ¼ GMLPðuÞ, resulting in a governing PDE of the

form

ut ¼ ðDMLPðuÞuxÞx þ GMLPðuÞu; ð9Þ

where DMLP and GMLP are functions of the cell density u. A BINN was trained for each data set

with varying initial cell density. The resulting numerical PDE solutions using the trained DMLP

and GMLP are shown in S3 Fig for each data set. While the model fits are excellent for lower ini-

tial cell densities, there still remains a significant amount of model discrepancy at higher initial

cell densities. GLS residual errors were computed to provide an additional way of visualizing

the model discrepancy (see S4 Fig) in which non-i.i.d. residuals are clearly present at higher

initial cell densities. To investigate the specific form of the model discrepancy, Fig 4 shows the

learned diffusivity and growth functions with the corresponding model fit for the data set with

an initial cell density of 20,000 cells per well.

Fig 4 reveals clear model discrepancy in two main areas: (i) at high cell densities (i.e. x 2 [0,

0.25] mm and x 2 [1.75, 2.0] mm for t 2 [0, 1] days) where diffusion is negligible and the
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dynamics are governed primarily by growth; and (ii) at low cell densities (i.e. x 2 [0.5, 1.5] mm

for t 2 [0, 1] days) where growth is negligible and the dynamics are primarily governed by dif-

fusion. In particular, the discrepancy is largest for early time points where the diffusion and

growth dynamics appear too rapid. The solutions of DMLP and GMLP are also qualitatively simi-

lar to the classical FKPP equation in which the learned diffusivity function is relatively con-

stant while the learned growth function is approximately linearly decreasing with cell density,

u. However, despite DMLP and GMLP learning biologically realistic functions for the diffusivity

and growth, the persistent model discrepancy observed across multiple data sets with high ini-

tial cell densities (see S3 Fig) suggests that the reaction-diffusion equation described in Eq (9)

may be insufficient to fully capture the underlying dynamics of cell migration for these data.

From a mathematical modeling perspective, the model discrepancy at early time points sug-

gests the existence of a time delay that scales the magnitude of the density-dependent diffusion

and growth rates. Biological reasons behind this phenomenon may include cell damage from

the scratch assay protocol or changes in cell functions where more cells become immobile/

non-proliferative as the cell density approaches carrying capacity [36–38]. See the Discussion

Section for more details.

Delay-reaction-diffusion BINNs for experimental data

Motivated by the model discrepancy for data sets with high initial cell density, the reaction-dif-

fusion equation in Eq (9) was modified by including a time delay described by an additional

neural network function TMLP(t). The new term TMLP(t) is a continuously differentiable func-

tion of time that is constrained to be non-decreasing and output values between 0 and 1. In

this way TMLP can scale the strength of the density-dependent diffusivity and growth terms in

time. Letting the diffusivity, D, and growth, G, terms of the governing PDE be functions of u
and t, they are replaced with D ¼ TMLPðtÞDMLPðuÞ and G ¼ TMLPðtÞGMLPðuÞ. This results in a

governing PDE of the form

ut ¼ ðTMLPðtÞDMLPðuÞuxÞx þ TMLPðtÞGMLPðuÞu;

Fig 4. Reaction-diffusion BINN terms and discrepancy. Left: learned diffusivity and growth functions, DMLP and GMLP, evaluated over cell density, u. Right:

Predicted cell density profiles using BINNs with the governing reaction-diffusion PDE in Eq (9) for data with initial cell density 20,000 cells per well. Solid lines

represent the numerical solution to Eq (9) using DMLP and GMLP. The markers represent the experimental scratch assay data.

https://doi.org/10.1371/journal.pcbi.1008462.g004
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which simplifies to

ut ¼ TMLPðtÞ
�
ðDMLPðuÞuxÞx þ GMLPðuÞu

�
; ð10Þ

where DMLP and GMLP are functions of the cell density u and TMLP is a function of time t.
Note that TMLP was chosen to be separable from DMLP and GMLP since the density-dependent

dynamics of diffusion and growth are assumed to be consistent throughout time. Further, it

was assumed that both DMLP and GMLP are scaled by the same time delay; see the Discussion

Section for more details. BINNs governed by the PDE in Eq (10) were trained for each data set

with varying initial cell density. The resulting forward simulations using the trained TMLP,

DMLP, and GMLP networks are shown in S5 Fig. The model fits demonstrate that virtually all of

the model discrepancy across each initial cell density was removed by including a time delay.

This is confirmed visually using GLS residual errors (see S6 Fig) where the residuals are

approximately i.i.d. even at higher initial cell densities. In addition to visual inspection between

S3 and S5 Figs and residual errors in S4 and S6 Figs, this phenomenon is also reflected in the

mean GLS errors between the numerical simulations and scratch assay data over the spatial

dimension for each time point (see S7 Fig). In particular, including the novel time delay term

results in a significant error reduction, particularly for early time points (i.e. t = 0.5 and t = 1.0

days). Similar to the reaction-diffusion case, Fig 5 shows the learned diffusivity, growth, and

delay functions with the corresponding model fit for the data set with initial cell density of

20,000 cells per well.

Fig 5 shows that the model discrepancy in areas with high and low cell densities at early

time points has been practically eliminated. This is most clearly seen in the delay-reaction-dif-

fusion model solution at the second time point (i.e. t = 0.5 days), which matches the data more

accurately than the reaction-diffusion model in Eq (9) at the same time point (see Fig 4).

Fig 5. Delay-reaction-diffusion BINN terms and discrepancy. Left: learned diffusivity and growth functions, DMLP and GMLP, evaluated over cell density, u, and

delay function, TMLP, evaluated over time, t. Right: Predicted cell density profiles using BINNs with the governing delay-reaction-diffusion PDE in Eq (10) for data

with initial cell density 20,000 cells per well. Solid lines represent the numerical solution to Eq (10) using DMLP, GMLP, and TMLP. The markers represent the

experimental scratch assay data.

https://doi.org/10.1371/journal.pcbi.1008462.g005

PLOS COMPUTATIONAL BIOLOGY Neural networks guide mechanistic modeling from sparse experimental data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008462 December 1, 2020 11 / 29

https://doi.org/10.1371/journal.pcbi.1008462.g005
https://doi.org/10.1371/journal.pcbi.1008462


Moreover, DMLP and GMLP for the delay-reaction-diffusion BINN learned similar forms of the

diffusivity and growth compared to the reaction-diffusion case. However, the delay term TMLP

reveals that the diffusion and growth dynamics described by DMLP and GMLP are scaled down

for early time points (i.e. t< 1) before TMLP converges to 1, allowing DMLP and GMLP to come

into full effect. This observation is of particular importance since the majority of scratch assay

data are reported within this time delay region (i.e. 4, 6, 12, or 24 hrs) [8, 13, 15, 39]. Impor-

tantly, not accounting for a time delay within this region may potentially explain why scratch

assay experiments are notoriously difficult to reproduce [2].

Guided mechanistic model selection

The diffusion, growth, and delay networks DMLP, GMLP, and TMLP were used to guide the selec-

tion of biologically realistic mechanistic models for downstream use in a traditional mathemat-

ical modeling framework. Each network solution corresponding to the six scratch assay data

sets is shown in Fig 6.

From Fig 6, the learned diffusivities for each experiment with different initial cell density

are non-zero when u = 0, suggesting the existence of some constant baseline diffusivity, and

appear increasing and concave up as a function of the cell density, u, for u> 0. On the other

hand, the learned growth terms are approximately linear, which is consistent with logistic

models, and the learned delay terms all exhibit sigmoidal dynamics. Note that the outlying

GMLP solution for the scratch assay data set with 10,000 initial cells per well is likely an artifact

of the observed cell densities in that experiment not approaching the carrying capacity, and

therefore leading to unrealistic learned dynamics. Based on qualitative analysis of these plots,

the following mechanistic delay-reaction-diffusion equation is proposed to satisfy each scratch

assay data set:

ut ¼ T ðtÞ
�
ðDðuÞuxÞx þ GðuÞu

�
; ð11Þ

with diffusivity, growth, and delay functions

D ¼ D0 þ D
u
K

� �
m; ð12aÞ

G ¼ ru 1 �
u
K

� �
; ð12bÞ

Fig 6. Delay-reaction-diffusion BINN terms. The learned diffusivity, DMLP, growth, GMLP, and delay, TMLP, functions extracted from the corresponding

BINNs with governing delay-reaction-diffusion PDE in Eq (10). Each line corresponds to an experiment with a different initial cell density (i.e. 10,000, 12,000,

14,000, 16,000, 18,000, and 20,000 cells per well). Note that DMLP and GMLP have different lengths since they are evaluated between the minimum and

maximum observed cell densities corresponding to each data set.

https://doi.org/10.1371/journal.pcbi.1008462.g006
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T ¼
1

1þ e� ðb1tþb0Þ
; ð12cÞ

respectively. The diffusivity network (DMLP) solutions show significant variability across the

scratch assay data sets, so the posited mechanistic term is chosen to respect the observed vari-

ability while also being as simple as possible. Therefore, the diffusivity function D in Eq (12a)

is a combination of (i) the classical FKPP and (ii) the Generalized Porous-FKPP diffusivity

functions, with baseline cell diffusivity D0, diffusion coefficient D, and exponent m. This way

(i) and (ii) can be seen as nested models of the posited diffusivity function by setting either

D = 0 or D0 = 0, respectively. Yet the posited diffusivity is still simple, as it only increases the

number of parameters with respect to (ii) by one. Since the growth network (GMLP) solutions

are approximately linear and decreasing, the growth function G in Eq (12b) is chosen to be the

logistic growth function with intrinsic growth rate r and carrying capacity K. Finally, the delay

network (TMLP) solutions exhibit sigmoidal dynamics, so the delay function T in Eq (12c) is

represented by the logistic regression function with parameters β0 and β1. One advantage of

using a mathematical model with specified functional forms and parameters described by Eqs

(12a)–(12c) is that standard parameter estimation techniques can now be used. This enables a

comparison of the BINN-guided model in Eq (11) to other mechanistic models, namely, the

classical FKPP and Generalized Porous-FKPP equations.

Model comparison

The BINN-guided delay-reaction-diffusion model in Eq (11) was compared to the classical

FKPP equation

ut ¼ ðDuxÞx þ ru 1 �
u
K

� �
; ð13Þ

with diffusion coefficient D, intrinsic growth rate r, and carrying capacity K and Generalized

Porous-FKPP equation

ut ¼ D
u
K

� �m
ux

� �

x
þ ru 1 �

u
K

� �
; ð14Þ

with additional exponent m. These models were used as a baseline for comparison since they

have been identified as the current state-of-the-art in modeling these data [2, 40]. The parame-

ters of each model were optimized numerically using the generalized least squares error func-

tion in Eq (6) with the adjusted statistical error model in Eq (4) with γ = 0.2. Note that the

carrying capacity was fixed at K = 1.7 × 103 cells=mm2 and not optimized because it was empiri-

cally validated in [2]. The resulting model fits and parameter values for the classical FKPP and

Generalized Porous-FKPP models are shown in S8 and S9 Figs and S1 and S2 Tables. The solu-

tions of the BINN-guided delay-reaction-diffusion model in Eq (11) to each data set are shown

in Fig 7.

The predicted cell density profiles in Fig 7 closely matched the scratch assay data which

suggests that the proposed model in Eq (11) with Eqs (12a)–(12c) successfully captured the

learned dynamics from TMLP, DMLP, and GMLP. The optimized parameter values across each

data set are shown in Table 1. Note that the parameters were rescaled to μm and hours (hr) for

comparison with [2] and [40].

Table 1 reveals that many of the parameters relating to density-dependent diffusion and

growth show trends (e.g. D0 and r increasing) with initial cell density similar to [2]. The impli-

cations of this observation are considered in the Discussion Section. To compare the three
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models quantitatively, the generalized least squares (GLS) errors were computed for each

model and data set and reported in Table 2.

The results in Table 2 showed that Eq (11) with Eqs (12a)–(12c) fit each data set more accu-

rately than the classical FKPP or Generalized Porous-FKPP models. This behavior is not sur-

prising given that the BINN-guided model is more complex. Therefore, model selection

methods, which balance model accuracy with model complexity, were also used to compare

the quality of each model relative to the others. In particular, the modified Akaike Information

Criterion (AIC) from [41] was used to account for the statistical error model in Eq (4). See

Table 3 for the AIC scores across each model and data set.

Fig 7. BINN-guided delay-reaction-diffusion model solutions. Predicted cell density profiles using the delay-reaction-diffusion model in Eq (11). Each subplot

corresponds to an experiment with a different initial cell density (i.e. 10,000, 12,000, 14,000, 16,000, 18,000, and 20,000 cells per well). Solid lines represent the

numerical solution to Eq (11) using the parameters that minimize LGLS in Eq (6). The markers represent the experimental scratch assay data.

https://doi.org/10.1371/journal.pcbi.1008462.g007

Table 1. BINN-guided delay-reaction-diffusion model parameters.

Initial cell density

Parameter 10,000 12,000 14,000 16,000 18,000 20,000

D0 (mm
2
�

hr)
95.7 353.3 482.1 604.3 804.0 675.8

D (mm
2
�

hr)
3987.1 3166.4 3775.0 3773.8 2201.8 1954.9

m (unitless) 1.5976 3.4708 1.9060 3.5173 3.2204 0.9876

r (1
hr= ) 0.0525 0.0714 0.0742 0.0798 0.0772 0.0951

β0 (unitless) -1.0292 -3.3013 -3.1953 -2.9660 -1.2695 -4.0651

β1 (1
hr= ) 0.2110 0.2293 0.2761 0.2180 0.1509 0.4166

Table of model parameters for Eq (11) calibrated for each scratch assay data set. Each column corresponds to an experiment with different initial cell density (i.e. 10,000,

12,000, 14,000, 16,000, 18,000, and 20,000 cells per well).

https://doi.org/10.1371/journal.pcbi.1008462.t001
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The results in Table 3 showed that the BINN-guided delay-reaction-diffusion model out-

performs the classical FKPP and Generalized Porous-FKPP models across all data sets except

with initial cell density 14,000 cells per well. This discrepancy follows from Eq (6) where the

additional parameters in Eq (11) only slightly decreased the GLS error for the data set with ini-

tial density of 14,000. Finally, to quantify the “value” of adding the novel delay term in Eq

(12c) the differences between AIC scores for each model and the minimum AIC score,

denoted by ΔAIC, are shown in Table 4.

Table 4 suggests that the delay term is most impactful for data sets with large initial density

(i.e. 18,000 and 20,000 cells per well) since the ΔAIC scores are significantly larger for these

data sets. Biological analysis and explanations for these results are considered in the following

Discussion Section.

Discussion

In this work, biologically-informed neural networks (BINNs) were introduced as a flexible and

robust equation learning method for real-world biological applications. The BINNs framework

Table 2. Generalized least squares (GLS) errors.

Initial cell density

Model 10,000 12,000 14,000 16,000 18,000 20,000

classical FKPP 786.80 557.28 616.76 619.12 685.17 964.19

Porous-FKPP 681.18 540.29 418.57 566.89 744.44 928.38

BINN-guided model 557.01 317.18 410.79 393.15 307.74 386.52

Table of GLS errors between the model solutions and scratch assay data. Each column corresponds to an experiment with different initial cell density (i.e. 10,000, 12,000,

14,000, 16,000, 18,000, and 20,000 cells per well). Bold numbers represent the minimum GLS error across the three models.

https://doi.org/10.1371/journal.pcbi.1008462.t002

Table 3. Akaike Information Criterion (AIC) scores.

Initial cell density

Model 10,000 12,000 14,000 16,000 18,000 20,000

classical FKPP 1239.6 1175.8 1194.5 1195.2 1214.0 1277.2

Porous-FKPP 1214.9 1172.0 1124.8 1180.9 1231.3 1272.2

BINN-guided model 1183.7 1079.5 1127.3 1119.2 1073.9 1116.1

Table of AIC scores for each model and scratch assay data set. Each column corresponds to an experiment with different initial cell density (i.e. 10,000, 12,000, 14,000,

16,000, 18,000, and 20,000 cells per well). Bold numbers represent the minimum AIC score across the three models.

https://doi.org/10.1371/journal.pcbi.1008462.t003

Table 4. Difference Akaike Information Criterion (ΔAIC) scores.

Initial cell density

Model 10,000 12,000 14,000 16,000 18,000 20,000

classical FKPP 55.90 96.26 69.71 76.01 140.08 161.11

Porous-FKPP 31.23 92.54 0.00 61.70 157.42 156.11

BINN-guided model 0.00 0.00 2.53 0.00 0.00 0.00

Table of AIC differences (ΔAIC) between each model and scratch assay data set. Each column corresponds to an experiment with different initial cell density (i.e. 10,000,

12,000, 14,000, 16,000, 18,000, and 20,000 cells per well). Each ΔAIC score represents the difference between a model’s AIC score and the minimum recorded AIC score

for that data set.

https://doi.org/10.1371/journal.pcbi.1008462.t004
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was demonstrated using experimental biological data from scratch assays [2] and used to dis-

cover a delay term that had not yet been considered in the modeling of these data. The trained

diffusivity, growth, and delay networks were used to guide the selection of the mechanistic

model in Eq (11) with Eqs (12a)–(12c), which was shown to model the data more accurately

than the current state-of-the-art models (i.e. classical FKPP and Generalized Porous-FKPP

equations). The results shown in this work suggest that the BINNs framework can be success-

fully applied to a wide range of biological and physical problems where the data are sparse and

the governing dynamics are unknown. The biological motivations for various aspects of the

BINNs framework and significance of the results are discussed in the following paragraphs.

The model solutions in S3 Fig and Fig 4 indicated that using only density-dependent diffu-

sivity and growth functions DðuÞ and GðuÞ was not sufficient to fully capture the scratch assay

dynamics. Fig 4 highlighted this discrepancy at the second time measurement (t = 0.5 days) in

which the model failed to capture the areas of both high and low cell density, despite letting D
and G be universal function-approximating neural networks. In particular, the model solutions

in the areas of high cell density (i.e. x 2 [0.0, 0.5] and x 2 [1.5, 2.0]) showed exponential con-

vergence to the carrying capacity, which successfully captured the data for later time points

(t� 1 days) but over-predicted for early time points (t< 1 days). Similarly, diffusion in areas

of low cell density (i.e. x 2 [0.5, 1.5]) over-predicted the cell density profile for early time

points but then matched the data accurately for later time points. From a mathematical per-

spective, this motivates the existence of a time delay that scales the density-dependent dynam-

ics to be reduced for early time points and larger for later time points. There are also several

biological motivations for considering a time delay. For example, [36] showed how cells are

damaged at the borders of the scratch as a result of the experimental scratch assay protocol.

Cell damage can potentially inhibit the communication between cells and physically block

healthy cells from diffusing into uncolonized spatial regions. Another source of delay may

stem from changes in density-dependent cell functions (e.g. differentiation, division, and

senescence). Studies have shown that cells are more likely to terminally differentiate when cell

populations approach carrying capacity [37, 38]. Therefore, scratch assay experiments that are

performed for high density populations may contain fewer mobile/proliferative cells at the

borders of the scratch, thus causing a time delay in the cell migration dynamics.

A general framework for incorporating the delay term may be to consider diffusivity and

growth functions D ¼ DMLPðu; tÞ and G ¼ GMLPðu; tÞ, respectively. However, since the dynam-

ics of diffusion and growth are assumed to be consistent throughout time, the diffusion and

growth terms were chosen to be separable functions composed of diffusivity DðuÞ, growth

GðuÞ, and delay T ðtÞ. Additionally, it was assumed that both diffusion and growth were scaled

by the same time delay T ðtÞ as opposed to a diffusion delay T DðtÞ and growth delay T GðtÞ.
This assumption may not be accurate if the time delay is a result of density-dependent changes

in cell function where cells become mobile and proliferative at different rates. In particular,

since migration and proliferation have very different timescales, it might be natural to expect

that the delays would also have different timescales. However, since the numerical solutions

using T ðtÞmatched the data sufficiently accurately, this question is left for future work.

Finally, T ðtÞ was constrained to output values between 0 and 1 and forced to be increasing

with time. These constraints were chosen to ensure that the delay term modeled the time-

dependent changes in cell dynamics for early time points but converged to unity by later time

points.

In this work, BINNs revealed that the reaction-diffusion system in Eq (1) with cell density-

dependent diffusivity and growth functions was insufficient to capture the data dynamics.

However, the model discrepancy for data sets with large initial cell density motivated the devel-

opment of a time delay which significantly improved the model accuracy and resolved the
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observed discrepancy. The diffusivity, growth, and delay networks were used to posit a mecha-

nistic model (i.e. Eq (11) with Eqs (12a)–(12c)). Using the logistic growth model (Eq (12b)) for

the growth function and logistic regression (Eq (12c)) for the delay function followed straight-

forwardly from the parameter network solutions in Fig 6, however, the diffusivity function in

Eq (12a) warrants further discussion.

Opinions vary between the biological validity of (i) the classical FKPP and (ii) the General-

ized Porous-FKPP diffusivity functions. For example, one study compared (i) and (ii) using

experimental wound size data and found that (ii) with m = 4 provided the best fit to the data

[42]. Another study fit (i) and (ii) to experimental cell migration data with different cell popu-

lations and found that one population was best described by constant diffusivity in (i) and

the other by nonlinear diffusivity with m = 1 in (ii) [43]. These studies do not reveal which

approach is best, but they demonstrate that care is warranted. Thus, the posited diffusivity

function in Eq (12a) was chosen to respect the observed variability of the diffusivity network

(DMLP) solutions (Fig 6) while being as simple as possible (i.e. a combination of the classical

FKPP and Generalized Porous-FKPP diffusivity functions). It may be the case that the true dif-

fusivity function is even more complex, such as a linear combination of powers:

D ¼ D0 þ D1

u
K

� �m1

þ D2

u
K

� �m2

;

with baseline diffusivity D0, diffusion rates D1 and D2, carrying capacity K, and exponents m1

and m2. However, these considerations are beyond the scope of the present work and left for

future work.

The parameters of (i) the classical FKPP in Eq (13), (ii) the Generalized Porous-FKPP in Eq

(14), and (iii) the BINN-guided model in Eq (11) with Eqs (12a)–(12c) were optimized numer-

ically for each scratch assay data set. The optimized parameters for (i) in S1 Table all fall within

the ranges reported in [2]. However, this is not the case for any set of parameter values for (ii)

as shown in S2 Table. This is likely due to the parameter optimization being conducted using

the adjusted statistical error model in Eq (4) with γ = 0.2 and since the exponent m in the

Porous-FKPP diffusivity function was not fixed at m = 1 as in [2]. However, in both (i) and

(ii), the diffusion coefficient, D, and intrinsic growth rate, r, showed variability with initial cell

density, similar to the conclusions drawn in [2]. Therefore, in theory, if the delay term in Eq

(12c) accounts for the time it takes for density-dependent growth and diffusion to become

active in the system, which may be a function of initial cell density, then the variability among

diffusion coefficients and intrinsic growth rates for the BINN-guided delay-reaction-diffusion

model should be reduced across the scratch assay experiments. However, from the optimized

parameter values in Table 1, the baseline diffusion rate D0 and intrinsic growth rate r generally

increase with initial cell density and the diffusion coefficient D generally decreases with initial

cell density. This observation may indicate (i) practical identifiability issues between the

diffusion, growth, and delay terms or (ii) the existence additional mechanisms that are not

accounted for in the model. To confirm this, a Bayesian parameter estimation framework can

be used to examine practical identifiability of parameters [44, 45]. Then, a possible strategy to

mitigate this issue would be to optimize the parameters of Eq (11) with Eqs (12a) and (12b)

jointly across each scratch assay data set while allowing the delay parameters in Eq (12c) to be

tuned separately for each set. This exploration is left for future work.

The BINN-guided delay-reaction-diffusion model was compared to the baseline classical

FKPP and Generalized Porous-FKPP models using both GLS errors and modified AIC scores.

The GLS errors in Table 2 showed that the BINN-guided model fits the data more accurately

than the baseline models across each scratch assay data set. However, this improvement in

accuracy is due to the increased model complexity (i.e. number of parameters and PDE terms)
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in the BINN-guided model. Therefore, to rank the quality of each model, AIC scores were also

computed since they balance model accuracy with model complexity. The AIC scores reported

in Table 3 indicate that the BINN-guided model also exceeds the baseline models in terms of

relative quality across each scratch assay data set except with initial cell density 14,000 cells per

well, in which the Generalized Porous-FKPP model has a slightly smaller AIC score. In other

words, Tables 2 and 3 indicate that the BINN-guided model performs as well or better than the

state-of-the-art in modeling the suite of scratch assay experiments from [2]. In particular, this

advantage is afforded by including the delay term in Eq (12c). To quantify the relative value

of adding the delay term, the AIC scores from Table 3 are used to compute difference AIC

(ΔAIC) scores in Table 4 in which the ΔAIC score for a fixed model and data set is given by the

difference between the corresponding AIC score and the minimum AIC score across all mod-

els for the given data set. The ΔAIC scores in Table 4 indicate that the relative value of the

delay term is largest for data sets with initial cell density 18,000 and 20,000 cells per well. This

observation is supported by the relevant biology discussed at the beginning of this section, in

which large initial cell densities either (i) result in more damaged cells near the borders of the

scratch, (ii) cause more cells in the population to have terminally differentiated away from

mobile/proliferative cell functions, or (iii) some combination of (i) and (ii) and other poten-

tially unconsidered biological sources, all of which increase the potential time delay before the

density-dependent diffusion and growth dynamics become the primary drivers of the temporal

evolution of the system.

Conclusions and future work

BINNs, a robust and flexible framework for equation learning with sparse and noisy data, was

demonstrated and used to posit a mechanistic equation that outperforms the state-of-the-art

in modeling experimental scratch assay data. The development, training, and evaluation of

BINNs and the resulting model selection and analysis were reported to justify these claims.

The discovered time delay term may have important implications for the reproducibility and

modeling of scratch assays, since the majority of the reported data fall within the time delay

region. Some of the drawbacks of the BINNs method and opportunities for future work and

development are discussed below.

Since BINNs rely on multilayer perceptrons (MLPs), the learned dynamics may not gener-

alize well outside the training domain. For example, in the present work, if the observed cell

densities for a particular experiment do not approach the carrying capacity (e.g. the scratch

assay data set with 10,000 initial cells per well) then the learned dynamics given by DMLP and

GMLP may lead to biologically unrealistic behavior (see GMLP solutions in Fig 6). Further, since

none of the scratch assay data reported values that significantly exceeded the empirically set

carrying capacity, GMLP would likely not generalize well to a scenario with exceedingly large

observed cell densities. Options for mitigating this issue include (i) replacing unrealistic MLP

terms with mechanistic models (e.g. logistic growth instead of GMLP) if the particular dynamics

are known a priori, or (ii) adding additional constraints which force the MLP terms to satisfy

specific values (e.g. GMLP(u = K) = 0). Additional testing of out-of-sample generalizability may

involve applying the BINNs methodology to spatiotemporal data with more time measure-

ments. In this setting, a subset of time points are held out from the training procedure and

generalizability is tested by comparing the forward solution of the learned PDE against the

holdout set.

An opportunity for future development is quantifying the uncertainty of both the approxi-

mate solution uMLP and the parameter networks DMLP, GMLP, and TMLP. From the frequentist

perspective, so called “subagging” (i.e. subsample aggregating) can be used to build posterior
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distributions of the model solutions and parameter networks [46]. In this framework, one sim-

ply samples N training/validation splits and trains a BINN for each split. Then kernel density

estimation or some other equivalent methodology can be used to build distributions from the

N number of trained BINNs. Alternatively, from the Bayesian perspective, physics-informed

neural networks were recently extended to Bayesian physics-informed neural networks

(B-PINNs) [25]. In this framework, Bayesian neural networks are substituted for uMLP and reg-

ularized using a pre-specified governing PDE. In the BINNs framework, Bayesian neural net-

works could also be substituted for DMLP, GMLP, and TMLP to quantify the uncertainty of the

PDE terms in addition to the model solution.

While BINNs were demonstrated using one-dimensional reaction-diffusion PDEs for

scratch assay data in this work, they can be applied on a wide spectrum of physical and biologi-

cal problems (for both ODE and PDE systems) in which the governing dynamics are unknown

and highly nonlinear. A straightforward next step for this work would be to evaluate BINNs

on the two-dimensional scratch assay image data that were used to construct the one-dimen-

sional cell density profiles in [2]. Further, more complicated cell dynamics could be incorpo-

rated into the governing system in the present work by including PDE terms that describe cell

population heterogeneity or additional biological mechanisms for damaged (but not dead)

cells at the borders of the scratch.

BINNs were used to address a canonical problem in the field of collective cell migration by

analyzing how the combination of density-dependent cell motility and proliferation drive the

temporal dynamics of cell invasion during an experimental scratch assay. This novel frame-

work revealed new mechanistic and biological insights into this process by guiding the deriva-

tion of a mathematical model that has not been considered previously using traditional

mathematical modeling approaches. The classical FKPP and Generalized Porous-FKPP mod-

els are ubiquitous in modeling cell migration and proliferation, yet the BINNs methodology

presented here revealed that these models may fail to incorporate all of the relevant mecha-

nisms underlying this process. These results suggest that new models incorporating a time

delay may be necessary to accurately capture the dynamics within the first day of a scratch

assay, i.e., just after the scratch is introduced. Based on the success of this work, BINNs estab-

lish a new paradigm for data-driven equation learning from sparse and noisy data that could

enable the rapid development and validation of mathematical models for a broad range of

real-world applications throughout biology including ecology, epidemiology, and cell biology.

Methods

All methods herein were implemented in Python 3.6.8 using the PyTorch 1.2.0 deep learning

library. All data and code are made publicly available at https://github.com/jlager/BINNs. The

following section is intended to make BINNs feasible for a wide range of biological applica-

tions. In particular, this section covers (i) the importance of data pre-processing, (ii) strategies

for using real-world knowledge to design effective neural network models, (iii) the complete

training protocol ranging from selecting appropriate statistical error models and hyperpara-

meters to balancing the multi-objective error function, and (iv) numerical implementation

details for forward solving BINN-guided PDEs.

Data pre-processing

Input and output standardization are common practice to stabilize neural network train-

ing [47]. Since the scratch assay data in [2] reported cell densities on the order of

u ¼ Oð10� 3Þcells=
mm2 at spatial locations on the order of x ¼ Oð103Þ μm for time points on the

order of t ¼ Oð10Þ hours, these variables needed to be standardized. Without standardization,
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the neural network models failed to converge for these data because (i) the network inputs (x
and t) differed by several orders of magnitude from each other and (ii) the network inputs (x
and t) and outputs (u) also differed by several orders of magnitude. By rescaling x and t to mil-

limeters (mm) and days, respectively, the adjusted variables ranged from x ¼ Oð1Þmm, t ¼
Oð1Þ days, and cell density u ¼ Oð103Þcells=mm2 . Standardizing x and t addressed (i) while (ii)

is addressed by using scaling factors discussed in the following section. The cell density profile

at the left boundary was removed since it was consistently larger than the remaining cell densi-

ties across all six data sets.

Network design

BINNs are centered around uMLP, a function-approximating multilayer perceptron (MLP)

(also known as an artificial neural network). MLPs, like polynomials [48], are in the class

of universal function approximators, meaning that they can approximate any continuous

bounded functions on a closed interval arbitrarily well under some reasonable assumptions

[34]. However, there are several reasons for choosing MLPs over polynomials for equation

learning. For example, a recent study found that MLPs were superior to both local and global

polynomial spline regression for data smoothing and numerical differentiation in the presence

of biologically realistic noise [26]. Further, due to gradient-based optimization, MLPs can

seamlessly incorporate complex multi-objective loss functions (e.g. Eq (3)) and are generally

more stable to train since they do not involve taking large powers of their inputs. For the

scratch assay data in the present work, uMLP inputs spatiotemporal vectors x = [x, t] and out-

puts the corresponding approximations to the cell density u. To give uMLP sufficient capacity

to approximate the solution to the governing PDE, the network is chosen to have three hidden

layers with 128 neurons in each layer, resulting in a model with approximately 30,000 total

parameters. Note that, unlike in traditional mathematical modeling approaches, in practice

neural networks are typically chosen to be larger than necessary to fit the data in a given appli-

cation. However, regularization and optimization techniques are then used to monitor and

prevent the networks from overfitting. These techniques are discussed in more detail in the fol-

lowing subsection. Concretely, uMLP takes the form

uMLPðxÞ ¼ a � �ð sð sð sð xW1 þ b1 ÞW2 þ b2 ÞW3 þ b3 ÞW4 þ b4 Þ; ð15Þ

where the trainable parameters Wi and bi denote weight matrices and bias vectors for the ith

layer, σ(�) and ϕ(�) denote nonlinear activation functions, and α denotes a scaling factor. Each

hidden layer uses a “sigmoid” activation function (i.e. σ(x) = 1/(1 + e−x)) while the output layer

uses a “softplus” activation function (i.e. ϕ(x) = ln(1 + ex)). The softplus activation function is a

particular design choice since it is a continuously differentiable function that forces the pre-

dicted cell densities to be non-negative, and has been previously shown to be well-suited for

biological transport models [26]. Finally, to account for the difference in scale between the

inputs (x; t ¼ Oð1Þ) and outputs (u ¼ Oð103Þ), the MLP outputs are post-multiplied by the

experimentally validated carrying capacity (i.e. α = 1.7 × 103) from [2]. Note that in practice, if

values like this are unknown, one can simply let α be the maximum observed cell density or

some other similar quantity. The key here is to ensure the orders of magnitude between the

network inputs and outputs are similar so that the parameters of the MLP do not have to

account for the change of scale [47].

The diffusivity, growth, and delay functions of the governing PDEs are modeled with neural

networks DMLP(uMLP) and GMLP(uMLP), and TMLP(t). All three MLPs share the same number

of layers as uMLP but use 32 neurons per layer. These networks are chosen to be smaller for

both computational efficiency and because the parameter dynamics are assumed to be simpler
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than the cell density dynamics u. The hidden layers use sigmoid activation functions. The out-

put layer for DMLP uses a softplus activation because diffusion is assumed to be non-negative

for all cell densities. Since the growth term can be negative (e.g. logistic growth when the cell

density exceeds the carrying capacity), a linear output (i.e. no activation function) is used in

the final layer for GMLP. The output layer for TMLP uses the sigmoid function to constrain the

outputs to (0, 1). Finally, as with uMLP, the inputs and outputs of DMLP and GMLP are also stan-

dardized. In particular, the inputs of both networks (i.e. uMLP) are divided by the carrying

capacity K = 1.7 × 103 while the outputs of DMLP are multiplied by 0:096 mm2�

day and the

outputs of GMLP are multiplied by 2:4 1=day. These values were the maximum diffusion and

growth values considered in [2]. Similar to uMLP, the input and output scaling factors ensure

the MLP parameters do not have to account for changes in scale. No standardization was used

for TMLP since its inputs and outputs are of the same order (i.e. Oð1Þ).

Training procedure

The BINN parameters (i.e. weights and biases of uMLP, DMLP, GMLP, and TMLP) are optimized

using the first-order gradient-based Adam optimizer [49] with default hyper-parameters and

minibatch-optimization. To prevent over-fitting, the scratch assay data were randomly parti-

tioned into 80%/20% training and validation sets. The network parameters were updated itera-

tively to minimize LTotal in Eq (3) on the training set and saved on relative improvement in

validation error. In other words, the model parameters were saved if the relative difference

between (i) the validation error in the current iteration and (ii) the smallest recorded valida-

tion error exceeded 5%. Finally, since the parameters of each BINN are randomly initialized

and applied to different data sets, early stopping of 5,000 (i.e. training was stopped if the rela-

tive validation error did improve for 5,000 consecutive epochs) was used to guarantee the con-

vergence of each BINN independently. The implementation details of each term in LTotal (i.e.

LGLS, LPDE, and LConstr) are discussed in more detail below.

The first term LGLS in Eq (6) corresponds to the generalized least squares (GLS) distance

between uMLP and the observation data ui,j. Since the error process is assumed to be i.i.d., the

parameters of the statistical model in Eq (4) (i.e. γ) must first be calibrated. Following [26],

uMLP is trained using LGLS as an objective function for γ = 0.0, 0.2, 0.4, 0.6 (recall that γ = 0.0

represents the ordinary least squares case) for each data set. After qualitative assessment of the

modified residual errors (see S11 Fig), γ = 0.2 was identified as the value that produced the

most i.i.d. residuals across each of the six data sets. Using the calibrated statistical error model,

LGLS is evaluated at each training iteration using mini-batches (i.e. randomly selected subsets)

of input/output data. In general, using a small batch size acts as an additional form of regulari-

zation that helps neural networks escape local minima during training and allows for better

generalization [50]. However, this significantly increases the computational cost of training

due to the increased number of training iterations needed to converge. Therefore, BINNs were

trained using mini-batches of size 37 (i.e. 1/4 the number of points in the training set) which

was found to balance the accuracy and computational cost.

To ensure uMLP satisfies the solution of the governing PDE, the terms LPDE in Eq (7) and

LConstr in Eq (8) are included in LTotal as a form of regularization. However, since the scratch

assay data are sparse, simply training uMLP using LTotal at the observed data locations can result

in unrealistic dynamics in between data points. Therefore, to ensure uMLP satisfies the solution

of a governing PDE everywhere in the input domain, LPDE and LConstr are evaluated at 10,000

uniformly randomly sampled points xi 2 [xmin, xmax] and tj 2 [tmin, tmax] at each training itera-

tion. Without the random sampling procedure, uMLP can severely overfit to the data. To illus-

trate the importance of the random sampling procedure, the model fits, GLS errors, and PDE
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errors are shown in S12 Fig for three cases in which (i) no PDE regularization is used, (ii) PDE

regularization is used at the data locations, and (iii) PDE regularization is used at 10,000 ran-

domly sampled points. In particular, S12 Fig shows that in option (i) uMLP overfits the data

practically everywhere in the input domain, (ii) uMLP overfits everywhere except at the data

locations (see vertical lines in third subplot of row b), and (iii) the random sampling procedure

results in the smallest amount of PDE error and the largest amount of GLS error. The desired

behavior is shown in option (iii) since uMLP fits the data as accurately as allowed by the govern-

ing PDE.

The third error term LConstr constrains DMLP, GMLP, and TMLP to exhibit biologically realistic

values and dynamics. Choosing appropriate constraints can be ambiguous when the relevant

literature gives conflicting suggestions. For example, when designing a derivative constraint

for the diffusivity network DMLP, [21] suggest that diffusion should decrease with cell density

due to cell-to-cell adhesion whereas [11] suggest the opposite in which cells promote the

migration of others. To mitigate this, BINNs were trained without any constraints on DMLP

and GMLP in order to visualize the collective behavior of the parameter networks (see S10 Fig).

Note that TMLP was still forced to be non-decreasing. The network evaluations in S10 Fig

showed unrealistic parameter dynamics for some data sets, but their collective behavior was

used to design derivative constraints that forced DMLP to increase as a function of cell density

and GMLP to decrease with cell density for the set of scratch assay data considered in this work.

Concretely, the diffusion term DMLP was constrained to values between 0.0 and 0:096 mm2�

day

and the growth term GMLP to values between −0.48 and 2:41=day. The maximum and minimum

diffusion values and maximum growth value were chosen based on values used in [2]. The

minimum growth value was chosen to be negative 20% of the maximum growth value to

allow GMLP to output negative values for cell densities near the carrying capacity if needed.

The sigmoid output activation function for the delay term TMLP constrained its outputs to

between 0 and 1. Derivative terms were used in LConstr to constrain DMLP and TMLP to be

non-decreasing and GMLP to be non-increasing. For ease of notation, let ûi;j � uMLPðxi; tjÞ,

D̂i;j � DMLPðuMLPðxi; tjÞÞ, Ĝi;j � GMLPðuMLPðxi; tjÞÞ, and T̂ i;j � TMLPðtjÞ, then the constraint term

can be written concretely as

LConstr ¼
1

MN

"

a1

XM;N

i ¼ 1; j ¼ 1

D̂ < 0:0

D̂ > 0:096

ðD̂i;jÞ
2
þ a2

XM;N

i ¼ 1; j ¼ 1

@D̂=@û < 0

@D̂i;j

@ûi;j

 !2

þ a3

XM;N

i ¼ 1; j ¼ 1

Ĝ < � 0:48

Ĝ > 2:4

ðĜi;jÞ
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XM;N

i ¼ 1; j ¼ 1

@Ĝ=@û < 0

@Ĝi;j

@ûi;j

 !2

þ a5

XM;N

i ¼ 1; j ¼ 1

@T̂=@ t̂ < 0

@T̂ i;j

@ûi;j

 !2 #

: ð16Þ

Since the parameter networks and their derivatives occur at different scales with respect to

each other and with respect to the error terms LGLS and LPDE, each term of Eq (16) is weighted

by a factor αi. In particular, each constraint is weighted based on the input/output scaling fac-

tors of the corresponding neural network (see Network Design subsection). Concretely, the

terms in Eq (16) are weighted by a1 ¼
1

0:096 � 1010
�

a2 ¼
K

0:096 � 1010
�

a3 ¼
1

2:4 � 1010
�

a4 ¼
K

2:4 � 1010
�

, and α5 = 1010. Note that the weight factors for the derivative constraints on

DMLP and GMLP (i.e. α2 and α4) include the carrying capacity K = 1.7 × 103 since K was used as

an input scaling factor for these networks. The factor 1010 was chosen large enough to guaran-

tee that DMLP, GMLP, and TMLP exhibited the desired behavior. Boundary conditions can also
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be included in the LConstr term, however, since they were unknown for the scratch assay data

considered in this work, no boundary conditions were used to train uMLP.

Finally, the GLS errors at the initial condition (i.e. data locations where t = 0) were weighted

by a factor of 10 during training. This was found to improve the generalization accuracy of

DMLP, GMLP, and TMLP when evaluated using a numerical PDE solver. The reason for this is

because the cell density at t = 0 may not satisfy a governing dynamical system since the mea-

surement is taken directly after the scratch assay protocol is performed [2]. However, the initial

condition “sets the stage” for the governing dynamics to drive the temporal evolution of the

system. Therefore, by weighting the initial condition more heavily in LGLS, the PDE error term

LPDE must conform uMLP to satisfy the governing system for t> 0 as dictated by uMLP at t = 0.

This step forced DMLP, GMLP, and TMLP to learn more generalizable representations of the dif-

fusivity, growth, and delay functions, respectively. The weighting factor was numerically vali-

dated using the mean GLS error across each scratch assay experiment for weighting factors 1,

10, and 102. Note that this weighting factor makes BINNs sensitive to the random choice of

training/validation split, since some data points in the initial condition may be more informa-

tive than others for equation learning and ultimate model generalizability. This observation

was also noted in a recent equation learning study in which the random split of training and

validation sets was found to influence the structure of the learned equation [26]. Adopting a

strategy similar to this previous study, BINNs were trained 20 times for each data set (using

different random training/validation splits). The BINN for which the numerical simulations

resulted in the smallest GLS error was saved as the best model.

While the generalizability of each BINN is tested using a numerical solution to the learned

PDE, it is unclear whether DMLP, GMLP, and TMLP can learn generalizable dynamics while over-

fitting to the training set. Thus, for completeness, see S13 Fig for an example convergence plot

of the delay-reaction-diffusion BINN trained on the scratch assay data with 20,000 initial cells

per well which confirms that the BINN does not overfit to the training data. Note that the vali-

dation error is smaller than the training error because of the weighting factor applied to the

initial condition, i.e., the training set contains more weighted points than the validation set.

PDE Forward Solver

The numerical implementation details are provided for systems describing quantity of interest

u(x, t) that are governed by the following equation:

ut ¼ ðQðu; ux; tÞÞx þ FðuÞ;

uðx; t0Þ ¼ �ðxÞ;

uxðx0; tÞ ¼ uxðxf ; tÞ ¼ 0;

ð17Þ

for x 2 [x0, xf], and t 2 [t0, tf]. Note that the reaction-diffusion model in Eq (1) is an example of

Eq (17) where Qðu; ux; tÞ ¼ Dðu; tÞux and FðuÞ ¼ Gðu; tÞu. In Eq (17), the initial condition is

denoted by ϕ(x) and the boundary conditions are assumed to be no-flux boundary conditions.

Note that the no-flux condition represents a zero net flux boundary condition which does not

preclude cells moving across the boundary, but instead reflects the situation in which the flux

in the positive and negative x-directions are equal, giving rise to zero total flux. The spatial and

temporal domains are discretized into equispaced grids as:

xi ¼ iDx; tj ¼ jDt; ð18Þ

for i = 0, . . ., 200 and j = 0, . . ., 1, 000. For notational convenience, let ui(t) = u(xi, t). Then, the

method-of-lines approach is used to solve Eq (17) with the numerical discretization from [51]
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that is given by

ðQðu; ux; tÞÞx �
Piþ1=2ðtÞ � Pi� 1=2ðtÞ

Dx
; ð19Þ

where Pi+1/2(t) is an estimate for the rightwards diffusive flux at location xi that is given by

Piþ1=2ðtÞ ¼
1

2
Q uiðtÞ;

uiþ1ðtÞ � uiðtÞ
Dx

; t
� �

þ Q uiþ1ðtÞ;
uiþ1ðtÞ � uiðtÞ

Dx
; t

� �� �

: ð20Þ

The no-flux boundary conditions at x0 and x200 are implemented by incorporating the ghost

points x−1 and x201 satisfying u−1(t) = u1(t) and u201(t) = u199(t). The Scipy integration sub-

package (version 1.4.1) is used to integrate Eq (17) over time using an explicit fourth order

Runge-Kutta Method.

Parameter estimation

The parameters of each mechanistic model were optimized using the Limited-memory BFGS

algorithm with bound constraints (L-BFGS-B) in Python’s Scipy package with default toler-

ance values to minimize the generalized least squares error function in Eq (6) with the adjusted

statistical error model in Eq (4) with γ = 0.2. The parameters for Eqs (13) and (14) were initial-

ized using the values from [2]. The parameters for Eq (11) were initialized by fitting each PDE

term in Eqs (12a)–(12c) to the corresponding parameter network solutions in Fig 6 using ordi-

nary least squares. Finally, the diffusivity and growth function parameters were bounded using

Dmin ¼ 0mm2
�

day, Dmax ¼ 0:096mm2
�

day, mmin = 0, mmax = 4, rmin ¼ 01
day

.
, and rmax ¼ 2:41

day

.

(all of which come from [2]), while the delay function parameters β0 and β1 were bounded by

[−10, 10].

Supporting information

S1 Fig. Simulation model fits. Predicted cell density profiles using BINNs with the governing

reaction-diffusion PDE in Eq (9). The left subplot corresponds to the set of simulated data

using the classical FKPP equation and the right subplot corresponds to the Generalized

Porous-FKPP equation. Solid lines represent the numerical solution to Eq (9) using DMLP, and

GMLP. Dashed lines represent the noiseless numerical simulations of the classical FKPP and

Generalized Porous-FKPP equations. The markers represent the numerical simulations of the

classical FKPP and Generalized Porous-FKPP equations with artificial noise generated by the

statistical error model in Eq (4).

(TIF)

S2 Fig. Simulation parameter fits. The learned diffusivity and growth functions DMLP and

GMLP evaluated over cell density u. Starting from the left, the first two subplots correspond to

the learned diffusivity and growth functions from simulated data using the classical FKPP

equation. The last two subplots correspond to the learned diffusivity and growth functions

from simulated data using the Generalized Porous-FKPP equation. Solid lines represent the

parameter networks DMLP and GMLP and dashed lines represent the true diffusivity and growth

functions used to simulate the data.

(TIF)

S3 Fig. Reaction-diffusion BINN solutions. Predicted cell density profiles using BINNs with

the governing reaction-diffusion PDE in Eq (9). Each subplot corresponds to an experiment

with a different initial cell density (i.e. 10,000, 12,000, 14,000, 16,000, 18,000, and 20,000 cells
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per well). Solid lines represent the numerical solution to Eq (9) using DMLP and GMLP. The

markers represent the experimental scratch assay data.

(TIF)

S4 Fig. Reaction-diffusion BINN residuals. Modified residuals using BINNs with the govern-

ing reaction-diffusion PDE in Eq (9). Each subplot corresponds to an experiment with a differ-

ent initial cell density (i.e. 10,000, 12,000, 14,000, 16,000, 18,000, and 20,000 cells per well).

(TIF)

S5 Fig. Delay-reaction-diffusion BINN solutions. Predicted cell density profiles using BINNs

with the governing delay-reaction-diffusion PDE in Eq (10). Each subplot corresponds to an

experiment with a different initial cell density (i.e. 10,000, 12,000, 14,000, 16,000, 18,000, and

20,000 cells per well). Solid lines represent the numerical solution to Eq (10) using TMLP,

DMLP, and GMLP. The markers represent the experimental scratch assay data.

(TIF)

S6 Fig. Delay-reaction-diffusion BINN residuals. Modified residuals using BINNs with the

governing delay-reaction-diffusion PDE in Eq (10). Each subplot corresponds to an experi-

ment with a different initial cell density (i.e. 10,000, 12,000, 14,000, 16,000, 18,000, and 20,000

cells per well).

(TIF)

S7 Fig. Spatial errors between BINN solutions. Mean GLS errors between the reaction-

diffusion and delay-reaction-diffusion BINNs over the spatial dimension for each time point

beyond the initial condition. The initial condition is excluded since the PDE solutions are

simulated using the initial condition of the data, meaning that the error at t = 0 is zero. Each

subplot corresponds to an experiment with a different initial cell density (i.e. 10,000, 12,000,

14,000, 16,000, 18,000, and 20,000 cells per well).

(TIF)

S8 Fig. Classical FKPP model solutions. Predicted cell density profiles using the classical

FKPP model in Eq (13). Each subplot corresponds to an experiment with a different initial cell

density (i.e. 10,000, 12,000, 14,000, 16,000, 18,000, and 20,000 cells per well). Solid lines repre-

sent the numerical solution to Eq (13) using the parameters that minimize LGLS in Eq (6). The

markers represent the experimental scratch assay data.

(TIF)

S9 Fig. Generalized Porous-FKPP model solutions. Predicted cell density profiles using the

Generalized Porous-FKPP model in Eq (14). Each subplot corresponds to an experiment with

a different initial cell density (i.e. 10,000, 12,000, 14,000, 16,000, 18,000, and 20,000 cells per

well). Solid lines represent the numerical solution to Eq (14) using the parameters that mini-

mize LGLS in Eq (6). The markers represent the experimental scratch assay data.

(TIF)

S10 Fig. Unconstrained BINN terms. The learned diffusivity DMLP, growth GMLP, and delay

TMLP functions extracted from the corresponding BINNs with governing reaction-diffusion

PDE in Eq (9) (first row) and delay-reaction-diffusion PDE in Eq (10) (second row). Each line

corresponds to an experiment with a different initial cell density (i.e. 10,000, 12,000, 14,000,

16,000, 18,000, and 20,000 cells per well). Note that DMLP and GMLP have different lengths

since they are evaluated between the minimum and maximum observed cell densities corre-

sponding to each data set.

(TIF)
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S11 Fig. Statistical error model selection. The function-approximating deep neural network

uMLP is trained using LGLS for different values of γ across each data set. Each subplot shows the

modified residuals (see Eq (6)) as a function of the predicted cell density u. The columns corre-

spond to different levels of proportionality (i.e. γ = 0.0, 0.2, 0.4, 0.6) where γ = 0.0 represents

the constant variance (ordinary least squares) case. Each row (a-f) corresponds to an experi-

ment with different initial cell density (i.e. 10,000, 12,000, 14,000, 16,000, 18,000, and 20,000

cells per well). The proportionality constant that results in the most i.i.d. residuals across each

data set was chosen to calibrate the statistical error model in Eq (4).

(TIF)

S12 Fig. PDE random sampling validation. The BINNs framework is trained using LTotal

with three ways of including the PDE error term LTotal: (a) no PDE regularization, (b) PDE

regularization at the data locations, and (c) PDE regularization at 10,000 randomly sampled

points at each training iteration. The first column shows the scratch assay data with initial cell

density 20,000 cells per well (black dots) with the corresponding BINNs approximation to the

governing PDE uMLP (surface plot). The second column shows heatmaps of the modified

residual errors (see Eq (6)) at each data point. The third column shows heatmaps of the PDE

errors (see Eq (7)) evaluated on a 100 × 100 meshgrid over the input domain.

(TIF)

S13 Fig. BINNs Convergence. Example convergence and improvement plots from training a

delay-reaction-diffusion BINN to the scratch assay data with 20,000 initial cells per well. The

left subplot shows the training and validation errors (see Eq (3)) in red and blue, respectively,

and the black dot shows where the model achieved the best validation error. Similarly, the

right subplot shows the training and validation error but only when the error improved.

(TIF)

S1 Table. Classical FKPP parameter values. Each column corresponds to an experiment with

different initial cell density (i.e. 10,000, 12,000, 14,000, 16,000, 18,000, and 20,000 cells per well).

(PDF)

S2 Table. Generalized Porous-FKPP parameter values. Each column corresponds to an

experiment with different initial cell density (i.e. 10,000, 12,000, 14,000, 16,000, 18,000, and

20,000 cells per well).

(PDF)
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