

Coordinated energy management

in prosumer communities

Rodrigo Verschae

Graduate School of Informatics,

Kyoto University, Japan

Motivation

Traditional Power System

- Centralized Generation
- Generation is controlled
- Uni-directional
 Demand is not controlled

Power Balancing

Supply = Demand (+Losses) [W]

Should be satisfied at all times

Grid \rightarrow Smart-grid

- Smartgrid: Focus on improving the grid
- Goals
 - Improve reliability
 - Reduce cost
 - Reduce the need of peaking generation

Priorities in power systems

Developing countries

- Manage increasing generation capacity
- Improve system stability

Advanced countries

- Better management of energy consumption
- Demographics changes
- Environmental concerns

Diversify the generation mix

reduce costs & increase energy security

Motivation

Changes in Technology

- Electrification of loads
 - Heating, transportation
- Sensing & Control
 - Smart-taps
 - Sensor networks
 - Living activity recognition
 - Energy Management Systems (EMS)
 - at home, factories, etc.
- Decrease in cost of
 - Storage (e.g. Batteries)
 - Renewables (e.g. PV and wind)

Changes in Government policies

- Increase renewable use (Feed-in tariff (FIT) scheme)
- Deregulation of the power system
 - Elimination of vertical monopolies
 - Liberalization of
 - the generation market
 - the retail market (from April'16, Japan)

As a result:

- Reduced dependency on traditional power sources
- Decentralized & uncontrollable generation
- End-user has sensing, control & generation capabilities

Traditional model of the power system is not sufficient

Consumer \rightarrow Prosumer

- Prosumer = producer & consumer
 - Sensing, Control, Generation, Storage

- Decide which energy they want to buy (origin & type)
- Group of consumers → community of prosumers
- Centralized uni-directional → decentralized bidirectional system
- This will require
 - advanced communication & information technologies,
 - advanced prediction & estimation technologies,
 - new economic & social models

Concept of energy management **Internet of Energy (IoE)** 0%0

- End-points are autonomous agentsEnd-to-end point communication
- Distributed management through collaboration
- IoE: Energy management protocols (vs device control of IoT)

Comparison

Price-based Demand response Coordinated energy management

- Agents do not communicate
 - No control feedback
- Cluster of single agent best effort
- Limited control ability

- Agents communicate to coordinate
 - Control feedback
- Community best effort
- Higher control ability

A cost function is associated to each agent and to the community

Formulation (for day-ahead planning)

Power Profile-based coordination

• Objective function $f_i(\mathbf{x}_i) \ x_i \in R^T$

Easy to realize

 $f_i(x_i) = 0.1$

Time

Difficult to realize

 $f_i(x_i) = 10000$

Power[W]

- Difficulty of realizing profile x_i by Household i

to realize

 $f_i(x_i) = \infty$

Т

Related to the Quality of Live (QoL) associated to a given profile

Generative Model

- Sequence of stages
- HSMM-based generative model

Distributed Optimization via ADMM

$$L_{\rho}(x,z,\lambda) \triangleq \sum_{i \in \mathcal{N}} f_i(x_i) + g(\sum_{i \in \mathcal{N}} z_i) + \left(\sum_{i \in \mathcal{N}} \lambda_i^\top (x_i - z_i) + \frac{\rho}{2} \sum_{i \in \mathcal{N}} ||x_i - z_i||^2\right)$$

Alternating Direction Method of Multipliers (ADMM):

$$x_{i}^{(k+1)} = \underset{x_{i}}{\operatorname{argmin}} \left(f_{i}(x_{i}) + \frac{\rho}{2} ||x_{i} - x_{i}^{(k)} + b^{(k)}||^{2} \right)^{(i = 1, ..., N) \operatorname{Prosumer}} \frac{x_{i}^{(k+1)} := \operatorname{argmin}}{\bar{z}} \left(g(N\bar{z}) + \frac{N\rho}{2} ||\bar{z} - (\bar{x}^{(k+1)} + \eta^{(k)})||^{2} \right) \qquad b^{(k)} \operatorname{Coordinator}}{\eta^{(k+1)} := \eta^{(k)} + \bar{x}^{(k+1)} - \bar{z}^{(k+1)}} \frac{b^{(k+1)} := \bar{x}^{(k+1)} - \bar{z}^{(k+1)} + \eta^{(k+1)}}{b^{(k+1)} := \bar{x}^{(k+1)} - \bar{z}^{(k+1)} + \eta^{(k+1)}}$$

Formulation (for day-ahead planning)

Coordination Framework (ADMM based)

Illustrative Example. Scenario: 40 electric vehicles (EV) are charged. Charging all EVs at similar time should be avoided. The scheduling is done by taking into account each agent's preferences Power 1000 W Power 1000 W Electric vehicle charging • Takes about 3 hours (uninterruptible) • Requires 1000 Watts Time

Scalability

Coordination versus

critical-peak-pricing DR

Coordination versus

proportional price DR

Coincidence Factor: peak consumption relative to peak consumption of worst case (no energy management)

Extension 1: Inter-community coordination

Hierarchical architecture & coordination algorithms

Extension 2: Group formation

Grouping of agents: assignment algorithm & criteria

Extension 3: Plan update

AUGMENTED PROSUMER MODEL

Consumer \rightarrow Prosumer

- Prosumer = producer & consumer
 - Sensing, Control, Generation, Storage
- Prosumer could buy & sell power energy
 - Decide which energy they want to buy (origin & type)
- Group of consumers \rightarrow community of prosumers
- Centralized uni-directional → decentralized bidirectional

Consumer \rightarrow Prosumer

Power profile is decomposed in 8 components:

- Controlled / uncontrolled
- Offline / real-time
- Shared / private

Augmented prosumer model

Augmented Control model

Prosumer model and devices

Intended consumption: $\sum_{p=1}^{p} x_i^p$, with $x_i^p \in \mathbb{R}^T$ the intended consumption of device p. *Compensation* (shared and private) $\omega_i = \sum_{p=1}^{p} \omega_i^p$ and $\hat{\omega}_i = \sum_{p=1}^{p} \hat{\omega}_i^p$, and *capacity* (shared and private) $S_i = S_i^1 \oplus \ldots \oplus S_i^p$ and $\hat{S}_i = \hat{S}_i^1 \oplus \ldots \oplus \hat{S}_i^p$. *Deviation* (shared and private) $\delta_i = \sum_{p=1}^{p} \delta_i^p$ and $\hat{\delta}_i = \sum_{p=1}^{p} \hat{\delta}_i^p$, and *tolerance* (shared and private) $F_i = F_i^1 * \ldots * S_i^p$ and $\hat{F}_i = \hat{F}_i^1 * \ldots * \hat{F}_i^p$.

Decomposition of the ability to control the power profile

These can be aggregated at the community level

Augmented day-ahead coordination

Optimization problem (sharing problem)

$$\mathsf{Minimize} \sum_{i \in \mathcal{N}} f_i(x_i, \sigma_i, \kappa_i,) + g(\sum_{i \in \mathcal{N}} x_i, \sum_{i \in \mathcal{N}} \sigma_i, \sum_{i \in \mathcal{N}} \kappa_i)$$

(1)

with *i* an agent $\in \mathcal{N}$.

Basic Agent Model

Each agent has three devices:

- EV: controllable
- Battery: controllable
- PV: uncontrollable •

 x_i : Power profile (generation + controllable appliance + base consumption + battery (dis)charge plan)

- σ_i : Deviation profile
- κ_i : Capacity profile

Optimization problem to be solved by the community

$$\begin{array}{ll} \underset{(x_{i},\sigma_{i},\kappa_{i})_{i}}{\text{minimize}} \sum_{i=1}^{N} f_{i}(x_{i},\sigma_{i},\kappa_{i}) + g^{x} \left(\sum_{i=1}^{N} x_{i}\right) + g^{\sigma,\kappa} \left(\sum_{i=1}^{N} \sigma_{i},\sum_{i=1}^{N} \kappa_{i}\right) \\ \text{Agent cost} \qquad \begin{array}{l} \text{Community cost} \\ \text{(power)} \end{array} \quad \begin{array}{l} \text{Community cost} \\ \text{of deviation by capacity} \end{array} \right)$$

["Energy Management in Prosumer Communities: A Coordinated Approach", Energies (under review).]

Constraint:
$$f_i^{x|\tau,y}(x_i,\tau_i,y_i) = \prod[x_i = \psi_i(\tau_i) + y_i + \bar{x}_i^g]$$
 $\Pi[v] = \begin{cases} 0, & \text{if } v \text{ is true} \\ +\infty, & \text{otherwise} \end{cases}$

Battery:

Agent i

RESULTS

Example 1

- PV (deviation)
- EV (off line control)
- Battery (online & off line control)

Coordination: intended power consumption

Coordination: Tolerance & capacity

Example 2

- Household (deviation): real data
- Battery (online & off line control)

Consumption data

Day ahead-planning

Week ahead-planning

Discussion

Coordination requires new technologies

- Prediction & estimation technologies
 - Living activity recognition
 - Living activity prediction
 - Local weather forecast
 - PV, wind generation forecast

Current and future directions

- Day-ahead, hour-ahead, *real-time* coordination
- Social issues
 - User incentives, Exchange Market
 - User acceptance: Fairness, Transparency, & QoL
- Evaluate Benefits for the environment & society

Rodrigo Verschae, Graduate School of Informatics, Kyoto University

rodrigo@verschae.org http://rodrigo.verschae.org

THANK YOU FOR YOUR ATTENTION