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● Incorporating domain knowledge

● Data scarcity

● Solving inverse problems

● Simulation and modeling

Inferring Unknown Coefficients

Inferring Boundary or Initial Conditions

Learning Hidden Forces or Fields

Discovering the Entire PDE



Background Researches: SINDy

● SINDy (Sparse Identification of Nonlinear Dynamics)
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● SINDy (Sparse Identification of Nonlinear Dynamics)

Simple and interpretable set of 
equations (ordinary differential 

equations).
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Struggles with noisy and incomplete data 

Difficult with partial differential 
equations (PDEs). 
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Main purpose of the paper

They address these limitations by incorporating physics-informed neural 
networks (PINNs) and sparse regression into a single framework to 

improve robustness and handle noisy

Root-Branch Network Architecture Alternating Direction Training Strategy

Train the DNN and the sparse 
matrix coefficients
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Summary of Contributions

● A novel “root-branch” network that handles multiple datasets with 
different initial/boundary conditions.

● An alternating direction training strategy to optimize both neural 
network parameters and sparse PDE coefficients, improving 
convergence and efficiency.

● Improved robustness and generalizability by combining the strengths of 
PINNs (accurate derivative calculation) with sparse regression 
(interpretability), making it suitable for noisy and incomplete data.
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Modeling Systems

:       Magnitude that depends of space and time

: Differential equation that describe the system

: Initial Conditions

: Boundaries conditions

In some part of the presentations we try to estimate 

Parsimonious

Closed forms

Simple

Completely defined
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Background Researches: SINDy

● SINDy (Sparse Identification of Nonlinear Dynamics)

Simple and interpretable set of 
equations (ordinary differential 

equations).

Advantages Limitations

Struggles with noisy and incomplete data 

Difficult with partial differential 
equations (PDEs). 

Brunton, S.L., Proctor, J.L., and Kutz, J.N. (2016b). Discovering governing equations from data by sparse identification of nonlinear 
dynamical systems. Proc. Natl. Acad. Sci., 113(15), 3932–3937.

REMEMBER
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DNN

Estimation of physical magnitude

Input Model Output

Measurement 
points 



Estimation of physical law

Compute the 
derivatives 

terms

Collocation points



Entire Pipeline



Entire Pipeline

Estimation of the physical 
magnitude



Entire Pipeline

Estimation of the PDE



Entire Pipeline

Estimation of the physical 
magnitude

Estimation of the PDE



Loss Function



Loss Function



Loss Function



Loss Function



Loss Function



Loss Function



Alternating Optimization Algorithm 

1. Pre-trained the network using Adam + L-BFGS



Alternating Optimization Algorithm 

1. Pre-trained the network using Adam + L-BFGS



Alternating Optimization Algorithm 

1. Pre-trained the network using Adam + L-BFGS

2. Iteration:

I. Compute the outputs of the net and derivatives terms 

II. Optimize              via STRidge (sequential threshold ridge regression)

III. Train the network via Adam + L-BFGS.



Alternating Optimization Algorithm 

Pretraining 

ADO 

1. Compute the outputs of DNN for collocation points
2. Estimate the matrix sparse matrix via STRIDge (LOOP)
3. Train the DNN with this new estimation of matrix sparse using physical loss 

and data loss

Loop of training:
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Results



Discovery of benchmark PDEs with single dataset

Burger’s Equation
 Decaying stationary viscous shock of a 

system after a finite period of time, 
commonly found in simplified fluid 

mechanics, nonlinear acoustics and gas 
dynamics

It represents a velocity field or wave amplitude, and the equation describes how 
this quantity evolves over time due to nonlinear advection and diffusion.
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Kuramoto–Sivashinsky  Equation reaction-diffusion systems, flame front 
propagation, thin film dynamics, and 

turbulence in fluid systems.

It can describe displacements, heights, velocities, or concentrations



Discovery of benchmark PDEs with single dataset

Kuramoto–Sivashinsky  Equation



Discovery of benchmark PDEs with single dataset

Kuramoto–Sivashinsky  Equation



Discovery of benchmark PDEs with single dataset

Kuramoto–Sivashinsky  Equation



Discovery of benchmark PDEs with single dataset

No linear Schrodinger Equation
modeling the propagation of light in 

nonlinear optical fibers, Bose-Einstein 
condensates, Langmuir waves in hot 

plasmas

It describe the wave function. The nonlinear interaction term, which introduces 
self-interaction
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Discovery of benchmark PDEs with single dataset

λ−ω reaction-diffusion equation
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Comparison with SINDy
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Discovery of PDEs with multiple independent datasets



FitzHugh–Nagumo (FN) reaction–diffusion system  Equation

Discovery of PDEs with multiple independent datasets

FN equations are commonly used to describe biological neuron activities excited 
by external stimulus (α), which exhibit an activator-inhibitor system because one 

equation boosts the production of both components while the other equation 
dissipates their new growth.
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Experimental discovery of cell migration and proliferation

 Fisher-Kolmogorov model
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Discussion

● Advantages of DNNs: handling noise and scarce data effectively using 
collocation points that are not tied to measurements.

● Handling Multiple Datasets.

● Alternating Direction Optimization: The framework optimizes both DNN 
training and the selection of sparse coefficients to reconstruct governing 
PDEs simultaneously.

● Robustness: The method demonstrates resilience to both Gaussian and 
non-Gaussian noise and can accurately identify governing equations 
from sparse, noisy data.



Limitations

●  Scalability issues with the "root-branch" scheme when dealing with 
multiple independent datasets.

● Inapplicability to systems where PDE coefficients vary over time or 
space (although future extensions are possible).

● Difficulty modeling chaotic behaviors or sharp propagating wavefronts 
due to the global basis approach.

● Dependency on a pre-defined library of candidate terms for PDE 
discovery, which can be hard to design.



Thanks!
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Hyperparameters
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