Physics-informed learning of governing equations from scarce data

Zhao Chen, Yang Liu & Hao Sun

Bruno J. Zorzet

sinc(i) - Santa Fe

sinc(i) - Santa Fe

Physics-informed learning of governing equations from scarce data

Zhao Chen, Yang Liu & Hao Sun

Bruno Zorzet

Introduction

Why PINNs?

- Incorporating domain knowledge
- Data scarcity
- Solving inverse problems
- Simulation and modeling

Why PINNs?

- Incorporating domain knowledge
- Data scarcity
- Solving inverse problems
- Simulation and modeling

Inferring Unknown Coefficients

Inferring Boundary or Initial Conditions

Learning Hidden Forces or Fields

Discovering the Entire PDE

Background Researches: SINDy

• SINDy (Sparse Identification of Nonlinear Dynamics)

Background Researches: SINDy

• SINDy (Sparse Identification of Nonlinear Dynamics)

Advantages

Simple and interpretable set of equations (ordinary differential equations).

Background Researches: SINDy

• SINDy (Sparse Identification of Nonlinear Dynamics)

Advantages

Limitations

Simple and interpretable set of equations (ordinary differential equations).

Struggles with noisy and incomplete data Difficult with partial differential equations (PDEs).

They address these limitations by incorporating physics-informed neural networks (PINNs) and sparse regression into a single framework to improve robustness and handle noisy

They address these limitations by incorporating physics-informed neural networks (PINNs) and sparse regression into a single framework to improve robustness and handle noisy

Root-Branch Network Architecture

Alternating Direction Training Strategy

They address these limitations by incorporating physics-informed neural networks (PINNs) and sparse regression into a single framework to improve robustness and handle noisy

Root-Branch Network Architecture

Multiple datasets

Handling with differents boundaries and initial conditions

Alternating Direction Training Strategy

They address these limitations by incorporating physics-informed neural networks (PINNs) and sparse regression into a single framework to improve robustness and handle noisy

Root-Branch Network Architecture

Alternating Direction Training Strategy

Train the DNN and the sparse matrix coefficients

Summary of Contributions

• A novel **(root-branch" network** that handles multiple datasets with different initial/boundary conditions.

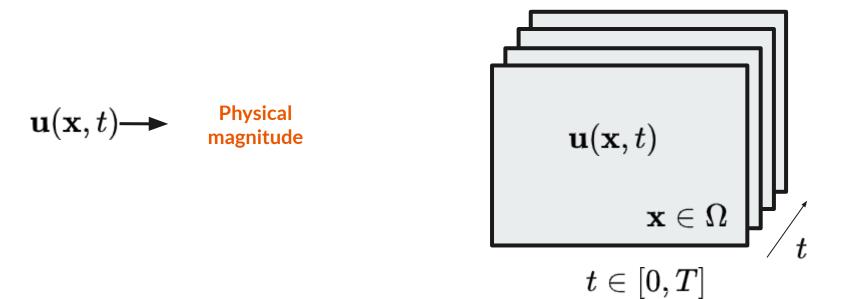
Summary of Contributions

- A novel **(root-branch" network** that handles multiple datasets with different initial/boundary conditions.
- An alternating direction **training strategy** to optimize both neural network parameters and sparse PDE coefficients, improving convergence and efficiency.

Summary of Contributions

- A novel **'root-branch' network** that handles multiple datasets with different initial/boundary conditions.
- An alternating direction **training strategy** to optimize both neural network parameters and sparse PDE coefficients, improving convergence and efficiency.
- Improved **robustness and generalizability** by combining the strengths of PINNs (accurate derivative calculation) with sparse regression (interpretability), making it suitable for noisy and incomplete data.

$$\mathbf{u}_t + \mathcal{F}\left[\mathbf{u}, \mathbf{u}^2, \dots,
abla_x \mathbf{u},
abla_x^2 \mathbf{u},
abla_x \mathbf{u} \cdot \mathbf{u}, \dots; \lambda
ight] = \mathbf{p}$$



$$\left[\mathbf{u}_t + \mathcal{F}\left[\mathbf{u}, \mathbf{u}^2, \dots,
abla_x \mathbf{u},
abla_x^2 \mathbf{u},
abla_x \mathbf{u} \cdot \mathbf{u}, \dots; \lambda
ight] = \mathbf{p}
ight]$$

Assumptions

$$\mathbf{u} = \mathbf{u}(\mathbf{x},t) \in \mathbb{R}^{1 imes n}$$

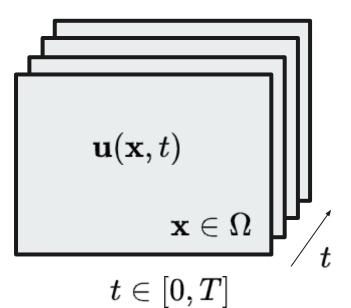
$$\mathbf{u}(\mathbf{x},t)$$

 $\mathbf{x}\in\Omega$ t
 $t\in[0,T]$

$$\left[\mathbf{u}_t + \mathcal{F}\left[\mathbf{u}, \mathbf{u}^2, \dots,
abla_x \mathbf{u},
abla_x^2 \mathbf{u},
abla_x \mathbf{u} \cdot \mathbf{u}, \dots; \lambda
ight] = \mathbf{p}
ight]$$

Assumptions

$$\mathbf{u} = \mathbf{u}(\mathbf{x},t) \in \mathbb{R}^{1 imes n}$$
 $\mathbf{p} = \mathbf{p}(\mathbf{x},t) = \mathbf{0}$



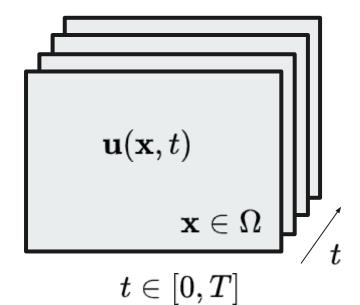
$$\left[\mathbf{u}_{t} + \mathcal{F}\left[\mathbf{u}, \mathbf{u}^{2}, \ldots,
abla_{x} \mathbf{u},
abla_{x}^{2} \mathbf{u},
abla_{x} \mathbf{u} \cdot \mathbf{u}, \ldots; \lambda
ight] = \mathbf{p}$$

Assumptions

$$\mathbf{u} = \mathbf{u}(\mathbf{x},t) \in \mathbb{R}^{1 imes n}$$
 $\mathbf{p} = \mathbf{p}(\mathbf{x},t) = \mathbf{0}$

Boundaries and initials conditions

$$egin{aligned} \mathcal{I}[\mathbf{x} \in \Omega, \; t=0; \; \mathbf{u}; \; \mathbf{u}_t] &= \mathbf{g}(\mathbf{x}) \ \mathcal{B}[\mathbf{x} \in \partial \Omega; \; \mathbf{u}; \;
abla_{\mathbf{x}} \mathbf{u}] &= \mathbf{h}(\mathbf{t}) \end{aligned}$$



$$\mathbf{u}_t + \mathcal{F}\left[\mathbf{u}, \mathbf{u}^2, \dots,
abla_x \mathbf{u},
abla_x^2 \mathbf{u},
abla_x \mathbf{u} \cdot \mathbf{u}, \dots; \lambda
ight] = \mathbf{p}$$

$$\mathbf{p} = \mathbf{p}(\mathbf{x},t) = \mathbf{0}$$

$$egin{aligned} \mathbf{u}_t + \mathcal{F}\left[\mathbf{u},\mathbf{u}^2,\ldots,
abla_x\mathbf{u},
abla_x^2\mathbf{u},
abla_x\mathbf{u}\cdot\mathbf{u},\ldots;\lambda
ight] = \mathbf{p} \ \mathbf{u}_t = \phi\Lambda \end{aligned}$$

$$egin{aligned} \mathbf{u}_t + \mathcal{F}\left[\mathbf{u},\mathbf{u}^2,\ldots,
abla_x\mathbf{u},
abla_x^2\mathbf{u},
abla_x\mathbf{u}\cdot\mathbf{u},\ldots;\lambda
ight] = \mathbf{p} \ \mathbf{u}_t - \phi\Lambda = 0 \end{aligned}$$

$$\mathbf{u}_t - \phi \Lambda = 0$$

Assumptions

$$egin{aligned} \mathbf{u} &= \{u, \ v, \ w\} \ \phi &= \{1, \mathbf{u}, \mathbf{u}^2, \dots, \mathbf{u}_x, \mathbf{u}_y, \dots, \mathbf{u}^3 \odot \mathbf{u}_{xy}, \dots, \sin(\mathbf{u}), \dots\} \in \mathbb{R}^{1 imes s} \ \Lambda &= [\lambda^u, \ \lambda^v, \ \lambda^w] \in \mathbb{R}^{s imes 3} \end{aligned}$$

$$\mathbf{u}_t - \phi \Lambda = 0$$

In some part of the presentations we try to estimate $\,\Lambda$

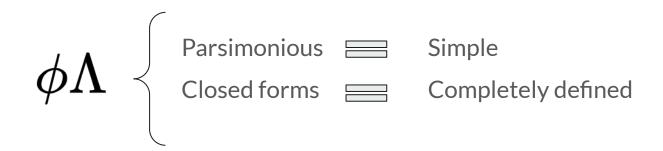
$$\mathbf{u}_t - \phi \Lambda = 0$$

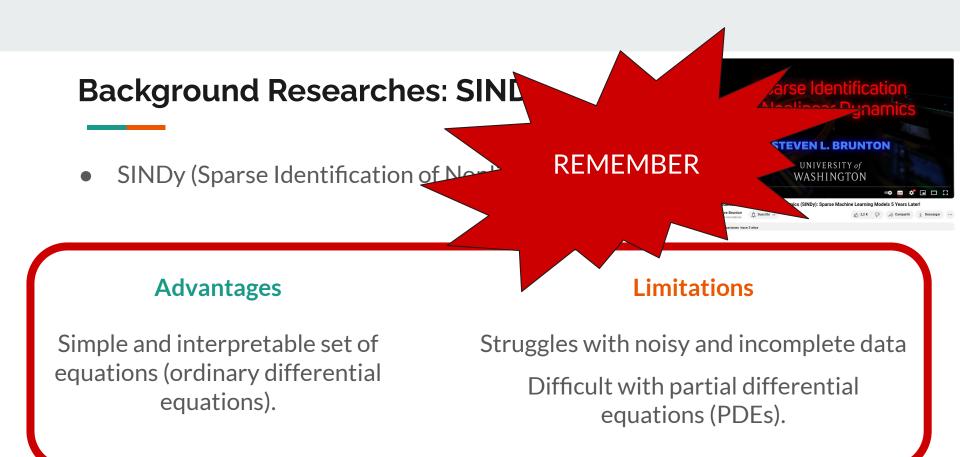
In some part of the presentations we try to estimate $\,\Lambda$

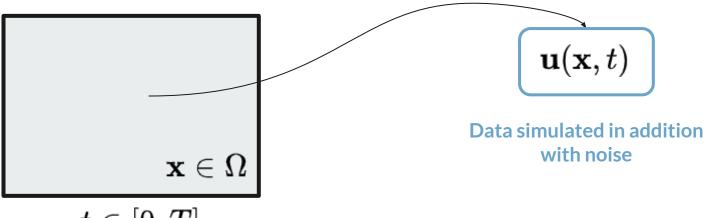
$$\phi \Lambda \left\{ egin{array}{c} { t Parsimonious} \\ { t Closed} \end{array}
ight.$$

$$\mathbf{u}_t - \phi \Lambda = 0$$

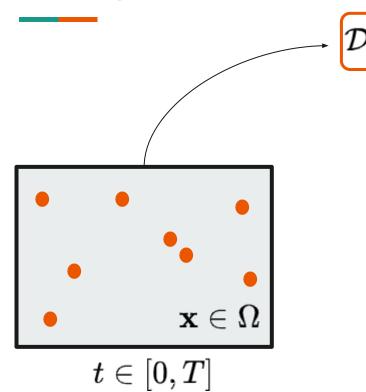
In some part of the presentations we try to estimate $\,\Lambda\,$

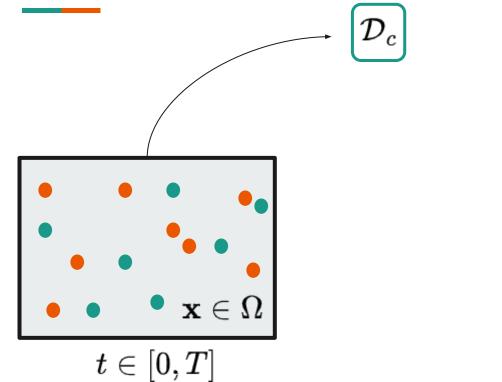


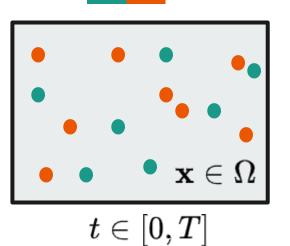


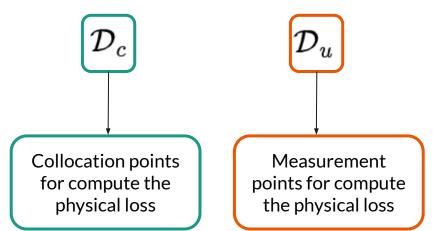


 $t\in [0,T]$

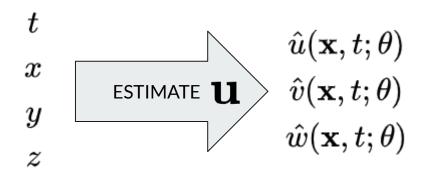


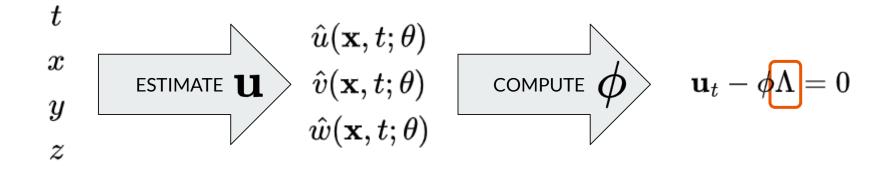




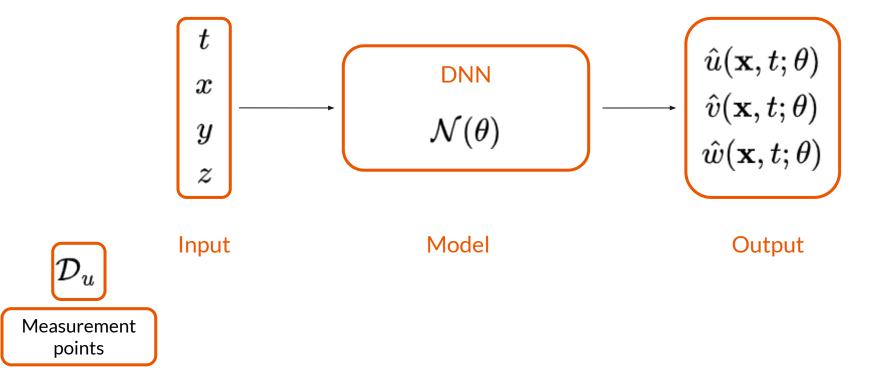


 $t \\ x \\ y \\ z$

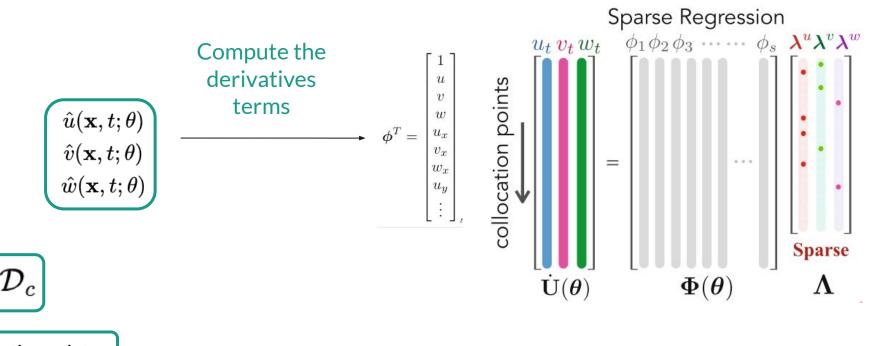




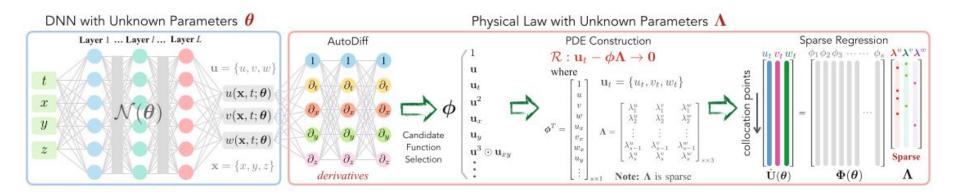
Estimation of physical magnitude

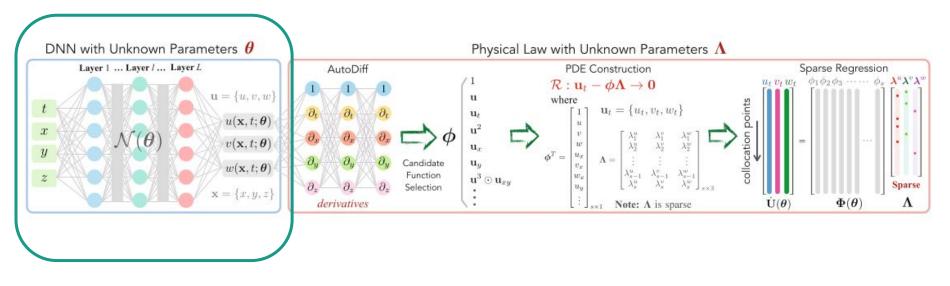


Estimation of physical law

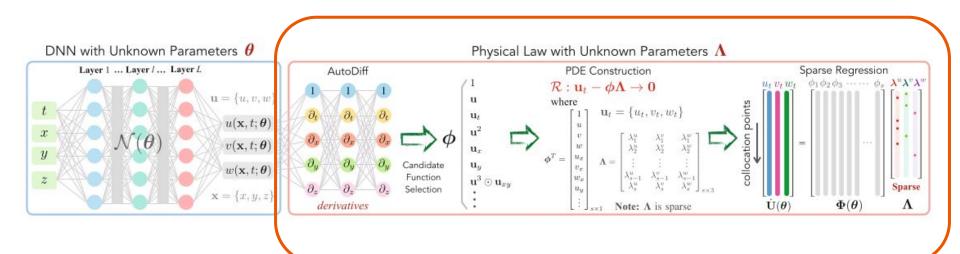


Collocation points

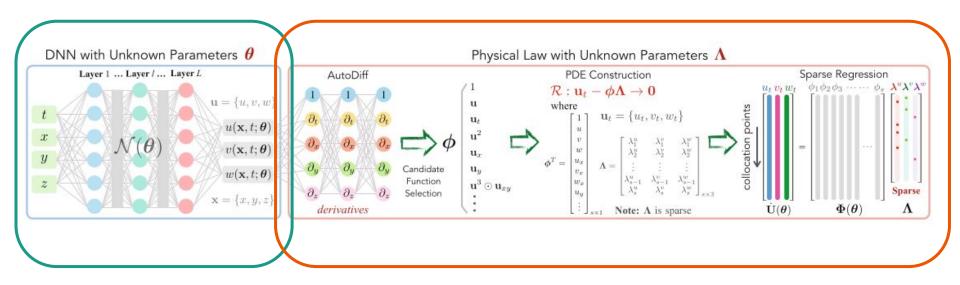




Estimation of the physical magnitude



Estimation of the PDE



Estimation of the physical magnitude

Estimation of the PDE

$\mathcal{L}(heta, \Lambda; \ \mathcal{D}_u, \ \mathcal{D}_c) = \mathcal{L}_d(heta; \ \mathcal{D}_u) + lpha \ \mathcal{L}_p(heta, \ \Lambda; \ \mathcal{D}_c) \ + \ eta \|\Lambda\|_0$

$$\mathcal{L}(heta, \Lambda; \mathcal{D}_u, \mathcal{D}_c) = \mathcal{L}_d(heta; \mathcal{D}_u) + lpha \mathcal{L}_p(heta, \Lambda; \mathcal{D}_c) + \beta \|\Lambda\|_0$$

$$\mathcal{L}(heta, \Lambda; \mathcal{D}_u, \mathcal{D}_c) = \mathcal{L}_d(heta; \mathcal{D}_u) + lpha \, \mathcal{L}_p(heta, \Lambda; \mathcal{D}_c) + eta \|\Lambda\|_0$$

$$egin{split} \mathcal{L}_d(heta; \ \mathcal{D}_u) = rac{1}{N_m} ig\| \mathbf{u}^ heta - \mathbf{u}^m ig\|_2^2 \end{split}$$

$$egin{split} \mathcal{L}_p(heta,\Lambda; \ \mathcal{D}_c) = rac{1}{N_c} ig\| \dot{\mathbf{U}}(heta) \ - \ \Phi(heta) \Lambda ig\|_2^2 \end{split}$$

$$egin{split} \mathcal{L}_d(heta; \ \mathcal{D}_u) = rac{1}{N_m} ig\| \mathbf{u}^ heta - \mathbf{u}^m ig\|_2^2 \end{split}$$

$$egin{split} \mathcal{L}_p(heta,\Lambda; \ \mathcal{D}_c) = rac{1}{N_c} \Big\| \mathbf{\dot{U}}(heta) - \ \Phi(heta) \Lambda \Big\|_2^2 \end{split}$$

1. Pre-trained the network using Adam + L-BFGS

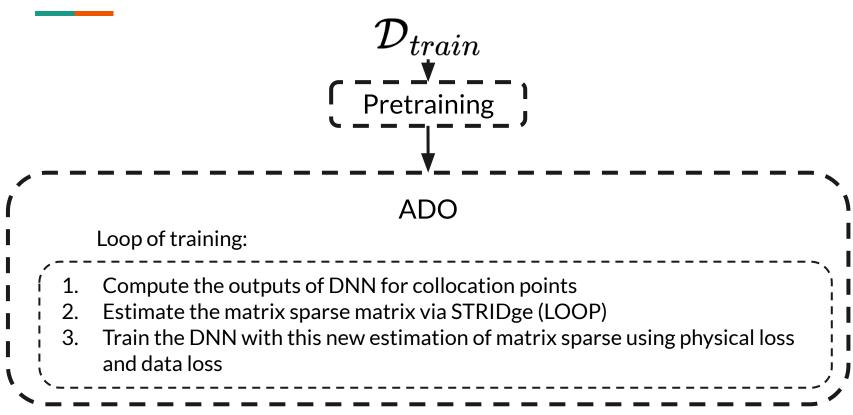
1. Pre-trained the network using Adam + L-BFGS

$$\{ heta^{\star},\ \Lambda^{\star}\} = rg\min_{\{ heta,\Lambda\}}\{\mathcal{L}_d(heta;\ \mathcal{D}_u)+lpha\ \mathcal{L}_p(heta,\ \Lambda;\mathcal{D}_c)+\gamma\|\Lambda\|_1\}$$

1. Pre-trained the network using Adam + L-BFGS

$$\{ heta^{\star},\ \Lambda^{\star}\} = rg\min_{\{ heta,\Lambda\}}\{\mathcal{L}_d(heta;\ \mathcal{D}_u)+lpha\ \mathcal{L}_p(heta,\ \Lambda;\mathcal{D}_c)+\gamma\|\Lambda\|_1\}$$

- 2. Iteration:
 - I. Compute the outputs of the net and derivatives terms
 - II. Optimize Λ via STRidge (sequential threshold ridge regression)
 - III. Train the network via Adam + L-BFGS.



Algorithm 1 The proposed ADO for network training: $[\theta_{\text{best}}, \Lambda_{\text{best}}] = \text{ADO}(\mathcal{D}_u, \mathcal{D}_c, \alpha, \gamma, \Delta\delta, n_{\max}, n_{\text{str}})$

1: Input: Measurement data \mathcal{D}_u , collocation points $\mathcal{D}_c = \{\mathbf{x}_i, t_i\}_{i=1,2,...,N_c}$, relative weighting of loss functions α and γ , threshold tolerance increment $\Delta \delta$ for STRidge, maximum number of ADO iterations n_{\max} , and maximum number of STRidge cycles n_{str} .

we take a 2D system in a 2D domain as an example: $\mathbf{u} = \{u, v\}$ and $\mathbf{x} = \{x, y\}$

- 2: Split measurement data \mathcal{D}_u into training-validation sets $(n_{tr}/n_{va} = 80/20)$: $\mathcal{D}_u^{tr} \in \mathbb{R}^{n_{tr} \times 2}$ and $\mathcal{D}_u^{va} \in \mathbb{R}^{n_{va} \times 2}$. # $N_m = n_{tr} + n_{va}$
- 3: Split collocation points \mathcal{D}_c into training-validation sets $(m_{\rm tr}/m_{\rm va} = 80/20)$: $\mathcal{D}_c^{\rm tr} \in \mathbb{R}^{m_{\rm tr} \times 3}$ and $\mathcal{D}_c^{\rm va} \in \mathbb{R}^{m_{\rm va} \times 3}$. # $N_c = m_{\rm tr} + m_{\rm va}$
- 4: Initialize the *Tensor Graph* for the entire network.
- 5: Pre-train the network via combined Adam and L-BFGS with $\{\mathcal{D}_u^{\text{tr}}, \mathcal{D}_c^{\text{tr}}\}$, and validate the trained model with $\{\mathcal{D}_u^{\text{va}}, \mathcal{D}_c^{\text{va}}\}$, namely,

$$\{\hat{\boldsymbol{\theta}}_{0}, \hat{\boldsymbol{\Lambda}}_{0}\} = \arg\min_{\{\boldsymbol{\theta}, \boldsymbol{\Lambda}\}} \{\mathcal{L}_{d}(\boldsymbol{\theta}; \mathcal{D}_{u}) + \alpha \mathcal{L}_{p}(\boldsymbol{\theta}, \boldsymbol{\Lambda}; \mathcal{D}_{c}) + \gamma \|\boldsymbol{\Lambda}\|_{1}\}. \quad \# \text{ pre-train the network}; \hat{\boldsymbol{\Lambda}}_{0} = \{\hat{\boldsymbol{\lambda}}_{0}^{u}, \hat{\boldsymbol{\lambda}}_{0}^{v}\}$$

- 6: for $k = 1, 2, ..., n_{\max}$ do
- 7: Assemble the system states over the collocation points $\mathcal{D}_c^{\text{tr}}$ and $\mathcal{D}_c^{\text{va}}$:

$$\begin{split} \dot{\mathbf{U}}_{u}^{\mathrm{tr}} &= \bigcup_{i=1}^{N_{c}^{\mathrm{tr}}} u_{t} \left(\hat{\boldsymbol{\theta}}_{k-1}; \mathbf{x}_{i}^{\mathrm{tr}}, t_{i}^{\mathrm{tr}} \right) \quad \text{and} \quad \dot{\mathbf{U}}_{u}^{\mathrm{va}} = \bigcup_{i=1}^{N_{c}^{\mathrm{tr}}} u_{t} \left(\hat{\boldsymbol{\theta}}_{k-1}; \mathbf{x}_{i}^{\mathrm{va}}, t_{i}^{\mathrm{va}} \right) \\ \dot{\mathbf{U}}_{v}^{\mathrm{tr}} &= \bigcup_{i=1}^{N_{c}^{\mathrm{va}}} v_{t} \left(\hat{\boldsymbol{\theta}}_{k-1}; \mathbf{x}_{i}^{\mathrm{tr}}, t_{i}^{\mathrm{tr}} \right) \quad \text{and} \quad \dot{\mathbf{U}}_{v}^{\mathrm{va}} = \bigcup_{i=1}^{N_{c}^{\mathrm{va}}} v_{t} \left(\hat{\boldsymbol{\theta}}_{k-1}; \mathbf{x}_{i}^{\mathrm{va}}, t_{i}^{\mathrm{va}} \right). \end{split}$$

8: Assemble the candidate library matrices over the collocation points \mathcal{D}_c , $\mathcal{D}_c^{\text{tr}}$ and $\mathcal{D}_c^{\text{va}}$:

$$\tilde{\boldsymbol{\Phi}} = \bigcup_{i=1}^{N_c} \boldsymbol{\phi}(\hat{\boldsymbol{\theta}}_{k-1}; \mathbf{x}_i, t_i), \quad \tilde{\boldsymbol{\Phi}}^{\mathrm{tr}} = \bigcup_{i=1}^{N_c^{\mathrm{tr}}} \boldsymbol{\phi}(\hat{\boldsymbol{\theta}}_{k-1}; \mathbf{x}_i^{\mathrm{tr}}, t_i^{\mathrm{tr}}) \quad \text{and} \quad \tilde{\boldsymbol{\Phi}}^{\mathrm{va}} = \bigcup_{i=1}^{N_c^{\mathrm{va}}} \boldsymbol{\phi}(\hat{\boldsymbol{\theta}}_{k-1}; \mathbf{x}_i^{\mathrm{va}}, t_i^{\mathrm{va}}).$$

9: Normalize candidate library matrices $\tilde{\Phi}, \tilde{\Phi}^{\text{tr}}$ and $\tilde{\Phi}^{\text{va}}$ column-wisely (j = 1, ..., s) to improve matrix condition:

$$\Phi_{:,j} = \tilde{\Phi}_{:,j} \big/ \left\| \tilde{\Phi}_{:,j} \right\|_2, \ \, \Phi_{:,j}^{\mathrm{tr}} = \tilde{\Phi}_{:,j}^{\mathrm{tr}} \big/ \left\| \tilde{\Phi}_{:,j}^{\mathrm{tr}} \right\|_2 \ \, \mathrm{and} \ \, \Phi_{:,j}^{\mathrm{va}} = \tilde{\Phi}_{:,j}^{\mathrm{tr}} \big/ \left\| \tilde{\Phi}_{:,j}^{\mathrm{tr}} \right\|_2.$$

- Determine ℓ₀ regularization parameters β^u = κL^v_p(θ
 ₀, λ^v₀; D^{va}_c) and β^v = κL^v_p(θ
 ₀, Λ^v₀; D^{va}_c). # κ can be determined via a Pareto front analysis, e.g., κ = 1.
- 11: Initialize the error indices:

$$\hat{\epsilon}^{u} = \mathcal{L}_{p}^{u}\left(\hat{\boldsymbol{\theta}}_{k-1}, \hat{\boldsymbol{\lambda}}_{k-1}^{u}; \mathcal{D}_{c}^{va}\right) + \beta^{u} \left\|\hat{\boldsymbol{\lambda}}_{k-1}^{u}\right\|_{0} \text{ and } \hat{\epsilon}^{v} = \mathcal{L}_{p}^{v}\left(\hat{\boldsymbol{\theta}}_{k-1}, \hat{\boldsymbol{\lambda}}_{k-1}^{v}; \mathcal{D}_{c}^{va}\right) + \beta^{v} \left\|\hat{\boldsymbol{\lambda}}_{k-1}^{v}\right\|_{0}$$

- 12: Set the initial threshold tolerance $\delta_1 = \Delta \delta$.
- 13: for $iter = 1, 2, ..., n_{str}$ do
- 14: Run STRidge as shown in Algorithm 2 to determine:

$$\tilde{\boldsymbol{\lambda}}^u = \mathtt{STRidge} \big(\dot{\mathbf{U}}^{\mathrm{tr}}_u, \boldsymbol{\Phi}^{\mathrm{tr}}, \delta_{iter} \big) \quad \text{and} \quad \tilde{\boldsymbol{\lambda}}^v = \mathtt{STRidge} \big(\dot{\mathbf{U}}^{\mathrm{tr}}_v, \boldsymbol{\Phi}^{\mathrm{tr}}, \delta_{iter} \big).$$

15: Update the error indices:

$$\boldsymbol{\epsilon}^{u} = \mathcal{L}_{p}^{u} \left(\hat{\boldsymbol{\theta}}_{k-1}, \tilde{\boldsymbol{\lambda}}^{u}; \mathcal{D}_{c}^{va} \right) + \beta^{u} \big\| \tilde{\boldsymbol{\lambda}}^{u} \big\|_{0} \text{ and } \boldsymbol{\epsilon}^{v} = \mathcal{L}_{p}^{v} \left(\hat{\boldsymbol{\theta}}_{k-1}, \tilde{\boldsymbol{\lambda}}^{v}; \mathcal{D}_{c}^{va} \right) + \beta^{v} \big\| \tilde{\boldsymbol{\lambda}}^{v} \big\|_{0}$$

- 16: if $\epsilon^u \leq \hat{\epsilon}^u$ or $\epsilon^v \leq \hat{\epsilon}^v$ (run in parallel) then
- 17: Increase threshold tolerance with increment: $\delta_{iter+1} = \delta_{iter} + \Delta \delta$.
- 18: else
- 19: Decrease threshold tolerance increment $\Delta \delta = \Delta \delta / 1.618$.
- Update threshold tolerance with the new increment δ_{iter+1} = max{δ_{iter} − 2Δδ, 0} + Δδ.
- 21: end if
- 22: end for
- 23: Return and re-scale the current best solution from STRidge cycles: Λ̂_k = { λ̃^u, λ̃^v }. # re-scaling due to normalization of Φ
- 24: Train the DNN via combined Adam and L-BFGS with $\{\mathcal{D}_{u}^{tr}, \mathcal{D}_{c}^{tr}\}$, and validate the trained model with $\{\mathcal{D}_{u}^{ua}, \mathcal{D}_{c}^{va}\}$, namely,

$$\hat{\theta}_k = \arg \min_{\theta} \{ \mathcal{L}_d(\theta; \mathcal{D}_u) + \alpha \mathcal{L}_p(\theta, \hat{\Lambda}_k; \mathcal{D}_c) \}.$$
 # train DNN given $\hat{\Lambda}_k$ as known

- 25: end for
- 26: Output: the best solution $\theta_{\text{best}} = \hat{\theta}_{n_{\text{max}}}$ and $\Lambda_{\text{best}} = \hat{\Lambda}_{n_{\text{max}}}$

Algorithm 2 Sequential threshold ridge regression (STRidge): $\hat{\lambda} = \text{STRidge}(\hat{U}, \Phi, \delta)$

- 1: Input: Time derivative vector $\dot{\mathbf{U}}$, candidate function library matrix $\boldsymbol{\Phi}$, and threshold tolerance δ .
- 2: Inherit coefficients $\hat{\lambda}$ from the DNN pre-training or the previous update.
- 3: repeat
- Determine indices of coefficients in falling below or above the sparsity threshold δ:

 $\mathcal{I} = \{ i \in \mathcal{I} : |\hat{\lambda}_i| < \delta \} \text{ and } \mathcal{J} = \{ j \in \mathcal{J} : |\hat{\lambda}_j| \ge \delta \}.$

- 5: Enforce sparsity to small values by setting them to zero: $\hat{\lambda}_{I} = 0$.
- 6: Update remaining non-zero values with ridge regression:

$$\hat{\boldsymbol{\lambda}}_{\mathcal{J}} = \arg\min_{\boldsymbol{\lambda}_{\mathcal{J}}} \left\{ \left\| \boldsymbol{\Phi}_{\mathcal{J}} \boldsymbol{\lambda}_{\mathcal{J}} - \dot{\mathbf{U}} \right\|_{2}^{2} + 1 \times 10^{-5} \left\| \boldsymbol{\lambda}_{\mathcal{J}} \right\|_{2}^{2} \right\}. \quad \# \text{ th}$$

he parameter 1×10^{-5} is small and tunable

- 7: until maximum number of iterations reached.
- 8: Output: The best solution $\hat{\lambda} = \hat{\lambda}_{\mathcal{I}} \cup \hat{\lambda}_{\mathcal{J}}$

Burger's Equation -

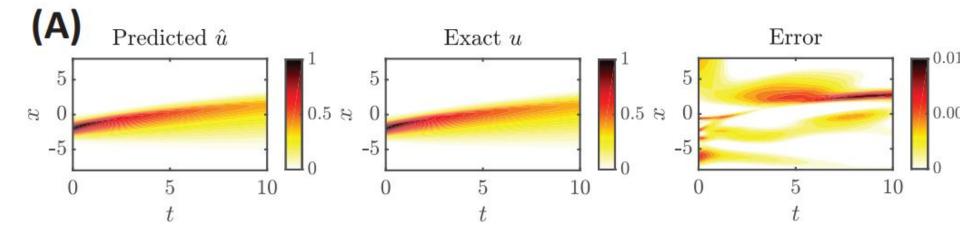
Decaying stationary viscous shock of a system after a finite period of time, commonly found in simplified fluid mechanics, nonlinear acoustics and gas dynamics

$$u_t = -uu_x +
u_{xx}$$

It represents a velocity field or wave amplitude, and the equation describes how this quantity evolves over time due to nonlinear advection and diffusion.

$$\phi \in \mathbb{R}^{1 imes 16}$$

Burger's Equation $\phi \in \mathbb{R}^{1 imes 16}$



 $\phi \in \mathbb{R}^{1 imes 16}$ **Burger's Equation** Pretraining ADO а. -0.8 -0.6 -0.4 -0.20 0.2Iter. 2-6 Iter. 1 Candidate Func ϕ_i 15 10 Uxx uu_{τ} 50 10^{2} 1000 500 10^{0} Pretraining Epochs STRidge Cycles Ground truth: $u_t = -uu_x + 0.1u_{xx}$ Discovered: $u_t = -1.009uu_x + 0.099u_{xx}$

Kuramoto-Sivashinsky Equation

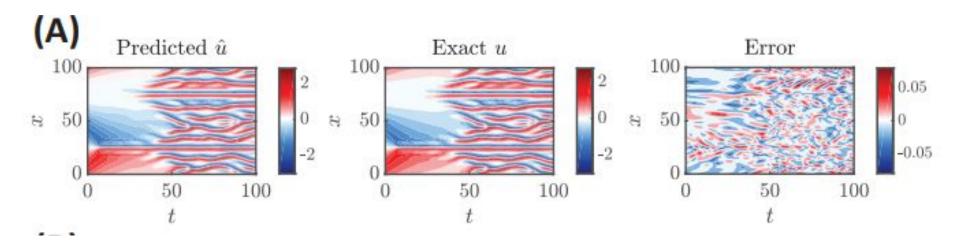
reaction-diffusion systems, flame front propagation, thin film dynamics, and turbulence in fluid systems.

$$u_t = -uu_x - u_{xx} - u_{xxxx}$$

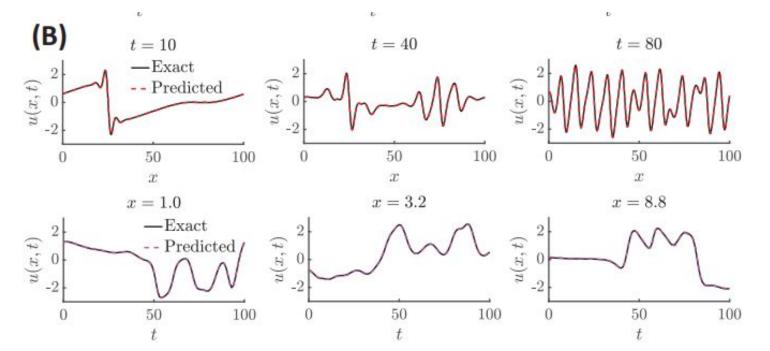
It can describe displacements, heights, velocities, or concentrations

$$\phi \in \mathbb{R}^{1 imes 36}$$

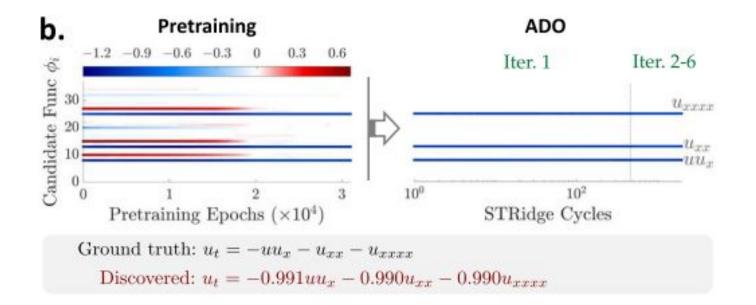
Kuramoto-Sivashinsky Equation



Kuramoto–Sivashinsky Equation $\phi \in \mathbb{R}^{1 imes 36}$



Kuramoto–Sivashinsky Equation $\phi \in \mathbb{R}^{1 imes 36}$



No linear Schrodinger Equation

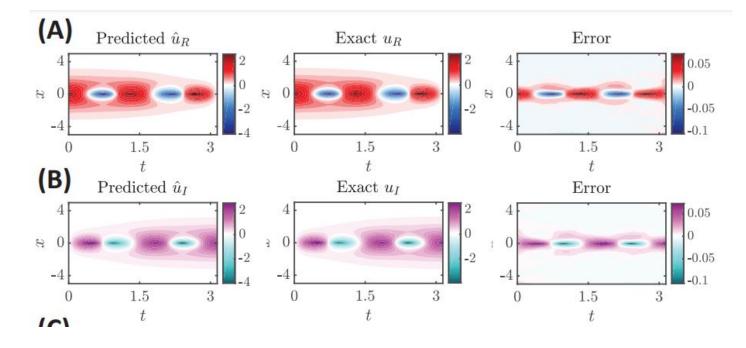
modeling the propagation of light in nonlinear optical fibers, Bose-Einstein condensates, Langmuir waves in hot plasmas

$$iu_t = -0.5u_{xx} - \mid u \mid^2 u$$

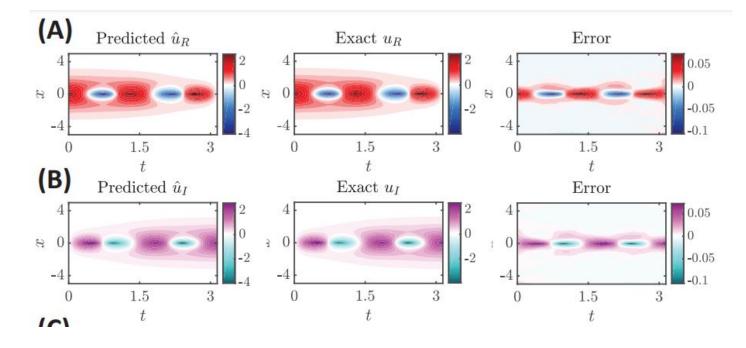
It describe the wave function. The nonlinear interaction term, which introduces self-interaction

$$\phi \in \mathbb{R}^{1 imes 40}$$

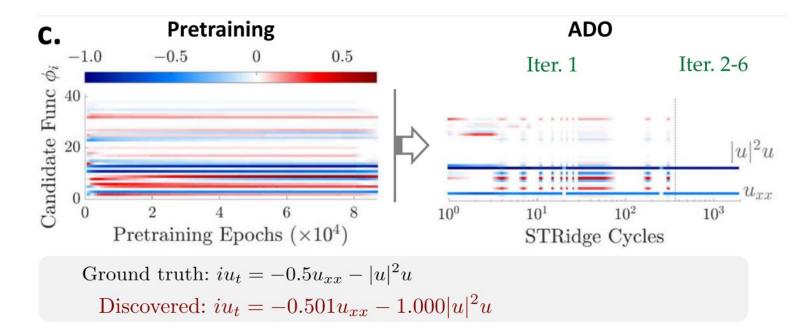
No linear Schrodinger Equation $\phi \in \mathbb{R}^{1 imes 40}$



No linear Schrodinger Equation $\phi \in \mathbb{R}^{1 imes 40}$



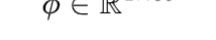
No linear Schrodinger Equation $\phi \in \mathbb{R}^{1 imes 40}$

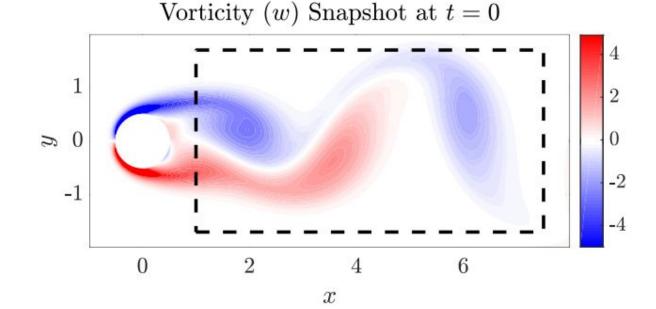


Navier-Stokes Equation $\phi \in \mathbb{R}^{1 imes 60}$

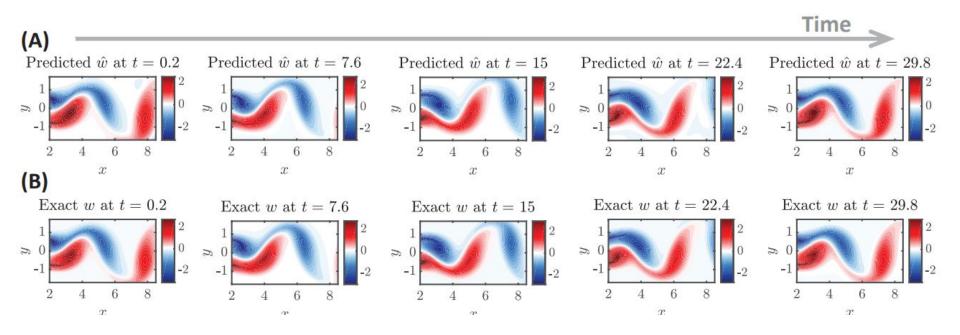
 $w_t = -uw_x - vw_y + 0.01w_{xx} + 0.01w_{yy}$

 $\phi \in \mathbb{R}^{1 imes 60}$ Navier-Stokes Equation

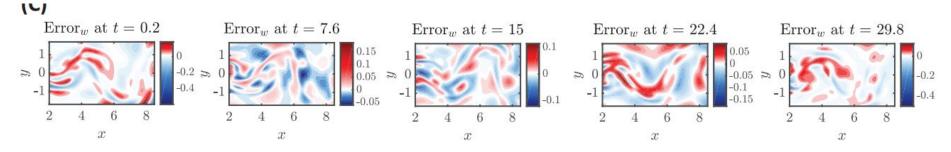




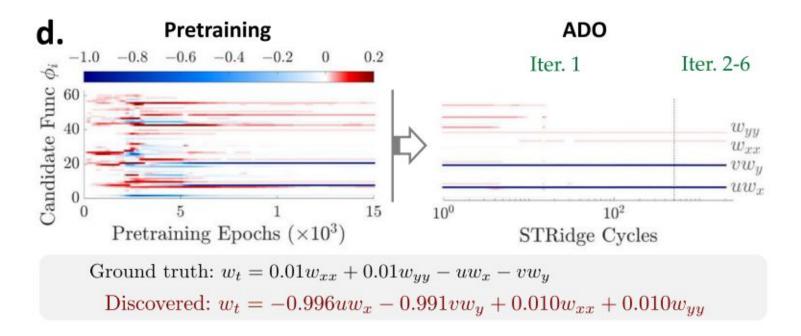
Navier-Stokes Equation $\phi \in \mathbb{R}^{1 imes 60}$



Navier-Stokes Equation $\phi \in \mathbb{R}^{1 imes 60}$



Navier-Stokes Equation $\phi \in \mathbb{R}^{1 imes 60}$



 λ - ω reaction-diffusion equation

pattern formation and wave propagation in certain types of chemical and biological systems

$$egin{aligned} u_t &= 0.1
abla^2 u + \lambda(g) u - \omega(g) v \ v_t &= 0.1
abla^2 v + \omega(g) u + \lambda(g) v \end{aligned}$$

 λ - ω reaction-diffusion equation

pattern formation and wave propagation in certain types of chemical and biological systems

$$egin{aligned} u_t = & 0.1
abla^2 u + \lambda(g) u - \omega(g) v \ v_t = & 0.1
abla^2 v + \omega(g) u + \lambda(g) v \end{aligned}$$

$$\phi \in \mathbb{R}^{1 imes 110}$$

 λ - ω reaction-diffusion equation

pattern formation and wave propagation in certain types of chemical and biological systems

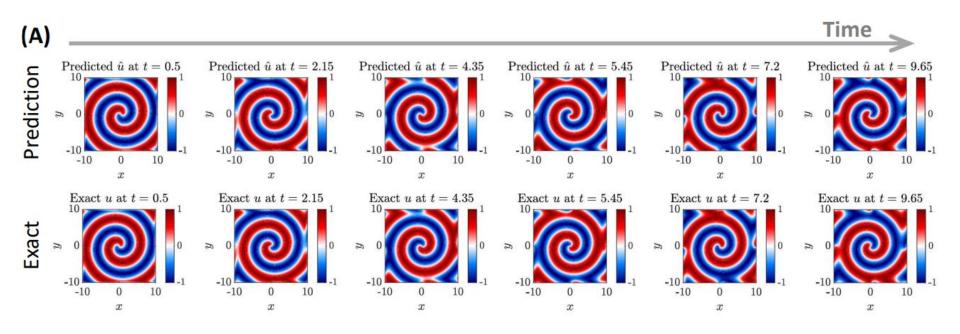
diffusion terms

reaction terms

$$egin{aligned} u_t = egin{aligned} 0.1
abla^2 u + \lambda(g) u - \omega(g) v \ 0.1
abla^2 v + \omega(g) u + \lambda(g) v \ g = u^2 + v^2 \ \omega = -g^2 \ \lambda = 1 - g^2 & \phi \in \mathbb{R}^{1 imes 110} \end{aligned}$$

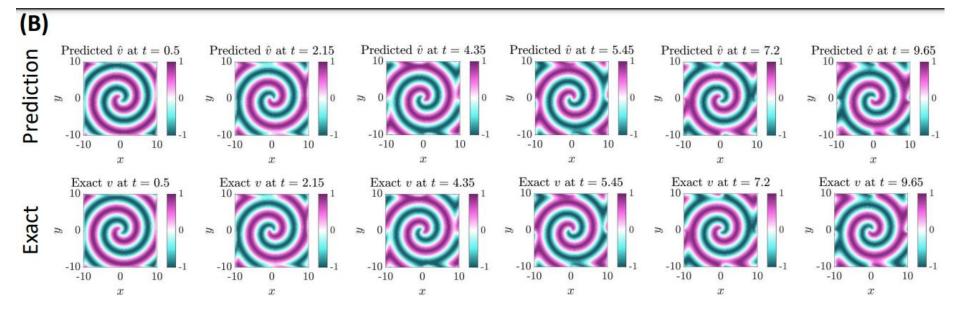
 λ - ω reaction-diffusion equation

 $\phi \in \mathbb{R}^{1 imes 110}$



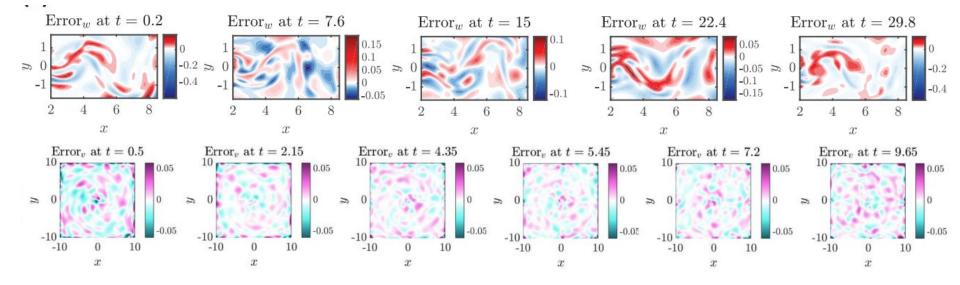
 λ - ω reaction-diffusion equation

 $\phi \in \mathbb{R}^{1 imes 110}$



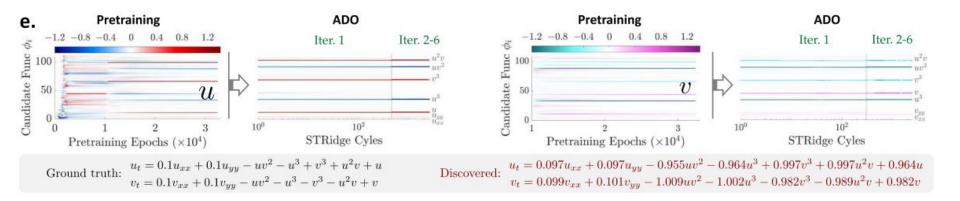
λ - ω reaction-diffusion equation

$$\phi \in \mathbb{R}^{1 imes 110}$$



 λ - ω reaction-diffusion equation

$\phi \in \mathbb{R}^{1 imes 110}$



Summary

PDE name	Err. (N-0%)	Err. (N-1%)	Err. (N-10%)	Description of data discretization
Burgers'	0.01 ± 0.01%	0.19 ± 0.11%	0.88 ± 0.03%	$x \in [-8, 8]_{\tilde{n}=256}, t \in [0, 10]_{\tilde{n}=101}$, sub. 3.19%
KS	0.07 ± 0.01%	0.61 ± 0.04%	0.94 ± 0.05%	$x \in [0, 100]_{\tilde{n}=1024}, t \in [0, 100]_{\tilde{n}=251}$, sub. 12.6%%
Schrödinger	0.09 ± 0.04%	0.65 ± 0.29%	0.08 ± 0.03%	$x \in [-4.5, 4.5]_{\tilde{n}=512}, t \in [0, \pi]_{\tilde{n}=501}$, sub. 37.5%
NS	0.66 ± 0.72%	0.86 ± 0.63%	1.22 ± 0.69%	$x \in [0, 9]_{\hat{n}=449}, y \in [-2, 2]_{\hat{n}=199}, t \in [0, 30]_{\hat{n}=151},$ sub. 0.22%
λ-ω RD	0.07 ± 0.08%	0.25 ± 0.30%	1.84 ± 1.48%	$x, y \in [-10, 10]_{\tilde{n}=256}, t \in [0, 10]_{\tilde{n}=201}$, sub. 0.29%

mean-square ratio between the noise and the exact solution.

Comparison with SINDy

PDE name	Method	Error (noise 0%)	Error (noise 1%)	Error (noise 10%)	# of Measurement points
Burgers'	PINN-SR	$0.01 \pm 0.01\%$	$0.19 \pm 0.11\%$	$0.88\pm0.03\%$	~1k
	PDE-FIND	Fail	Fail	Fail	$\sim 1 \text{k}$
		$0.15 \pm 0.06\%$	$0.80 \pm 0.60\%$	Fail	$\sim 26 \mathrm{k}$
KS	PINN-SR	$0.07 {\pm} 0.01\%$	$0.61 {\pm} 0.04\%$	$0.94\pm0.05\%$	~32k
	PDE-FIND	$35.75 \pm 16.30\%$	Fail	Fail	~32k
		$1.30 {\pm} 1.30\%$	$52.00 \pm 1.40\%$	Fail	$\sim 257 k$
Schrödinger	PINN-SR	$0.09 {\pm} 0.04\%$	$0.65 \pm 0.29\%$	$0.08 {\pm} 0.03\%$	$\sim 96 \mathrm{k}$
	PDE-FIND	Fail	Fail	Fail	~96K
		$0.05 {\pm} 0.01\%$	$3.00 \pm 1.00\%$	Fail	$\sim 257 k$
NS	PINN-SR	$0.66 {\pm} 0.72\%$	$0.86 \pm 0.63\%$	$1.22 {\pm} 0.69\%$	~30k
	PDE-FIND	Fail	Fail	Fail	$\sim 30 \text{K}$
		$1.00 \pm 0.20\%$	$7.00 \pm 6.00\%$	Fail	\sim 300k
λ - ω RD	PINN-SR	$0.07{\pm}0.08\%$	$0.25 \pm 0.30\%$	$1.84\pm1.48\%$	~37.5k
	PDE-FIND	Fail	Fail	Fail	\sim 37.5k
		$0.02 \pm 0.02\%$	Fail	Fail	$\sim 150 \mathrm{k}$

$$\mathbf{u}_t + \mathcal{F}\left[\mathbf{u}, \mathbf{u}^2, \dots,
abla_x \mathbf{u},
abla_x^2 \mathbf{u},
abla_x \mathbf{u} \cdot \mathbf{u}, \dots; \lambda
ight] = \mathbf{p}$$

$$\mathbf{u}_t + \mathcal{F}\left[\mathbf{u}, \mathbf{u}^2, \dots,
abla_x \mathbf{u},
abla_x^2 \mathbf{u},
abla_x \mathbf{u} \cdot \mathbf{u}, \dots; \lambda
ight] = \mathbf{p}$$

 $egin{aligned} \mathcal{I}[\mathbf{x}\in\Omega,t=0;\mathbf{u};\mathbf{u}_t] &= \mathbf{g}_1(\mathbf{x}) \ \mathcal{B}[\mathbf{x}\in\partial\Omega;\mathbf{u};
abla_\mathbf{x}\mathbf{u}] &= \mathbf{h}_1(t) \end{aligned}$

$$\mathbf{u}_t + \mathcal{F}\left[\mathbf{u}, \mathbf{u}^2, \dots,
abla_x \mathbf{u},
abla_x^2 \mathbf{u},
abla_x \mathbf{u} \cdot \mathbf{u}, \dots; \lambda
ight] = \mathbf{p}$$

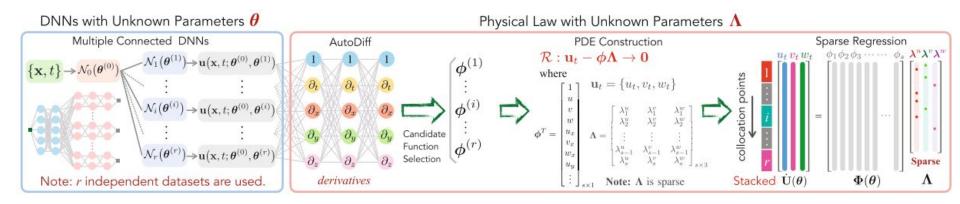
 $egin{aligned} \mathcal{I}[\mathbf{x}\in\Omega,t=0;\mathbf{u};\mathbf{u}_t] &= \mathbf{g}_1(\mathbf{x}) \ \mathcal{B}[\mathbf{x}\in\partial\Omega;\mathbf{u};
abla_\mathbf{x}\mathbf{u}] &= \mathbf{h}_1(t) \end{aligned}$

$$egin{aligned} \mathcal{I}[\mathbf{x}\in\Omega,t=0;\mathbf{u};\mathbf{u}_t] &= \mathbf{g}_2(\mathbf{x}) \ \mathcal{B}[\mathbf{x}\in\partial\Omega;\mathbf{u};
abla_\mathbf{x}\mathbf{u}] &= \mathbf{h}_2(t) \end{aligned}$$

$$\mathbf{u}_t + \mathcal{F}\left[\mathbf{u}, \mathbf{u}^2, \dots,
abla_x \mathbf{u},
abla_x^2 \mathbf{u},
abla_x \mathbf{u} \cdot \mathbf{u}, \dots; \lambda
ight] = \mathbf{p}$$

$$egin{aligned} \mathcal{I}[\mathbf{x}\in\Omega,t=0;\mathbf{u};\mathbf{u}_t] &= \mathbf{g}_1(\mathbf{x}) & \mathcal{I}[\mathbf{x}\in\Omega,t=0;\mathbf{u};\mathbf{u}_t] &= \mathbf{g}_2(\mathbf{x}) \ \mathcal{B}[\mathbf{x}\in\partial\Omega;\mathbf{u};
abla_\mathbf{x}\mathbf{u}] &= \mathbf{h}_1(t) & \mathcal{B}[\mathbf{x}\in\partial\Omega;\mathbf{u};
abla_\mathbf{x}\mathbf{u}] &= \mathbf{h}_2(t) \end{aligned}$$

$$egin{aligned} \mathcal{I}[\mathbf{x}\in\Omega,t=0;\mathbf{u};\mathbf{u}_t] &= \mathbf{g}_r(\mathbf{x}) \ \mathcal{B}[\mathbf{x}\in\partial\Omega;\mathbf{u};
abla_\mathbf{x}\mathbf{u}] &= \mathbf{h}_r(t) \end{aligned}$$

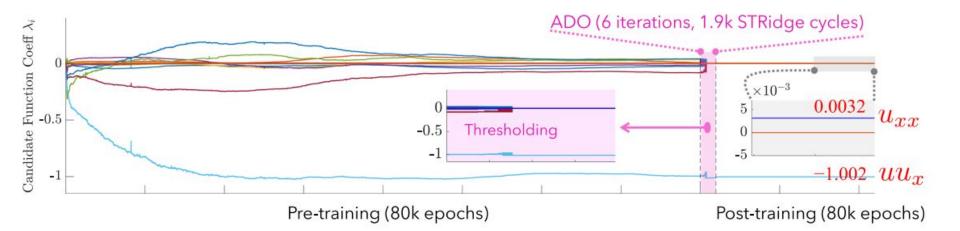


Burger's Equation $u_t = -u u_x + 0.0032 u_{xx}$ $\phi \in \mathbb{R}^{1 imes 16}$

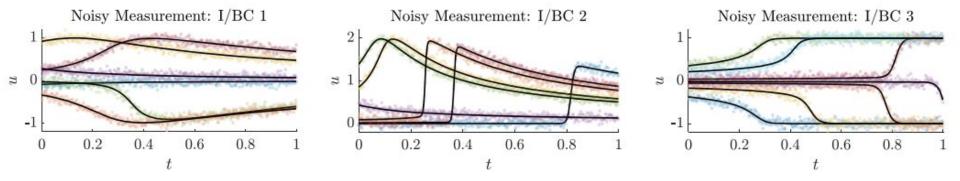
I/BC 1:
$$u(x, 0) = -\sin(\pi x), u(-1, t) = u(1, t) = 0$$

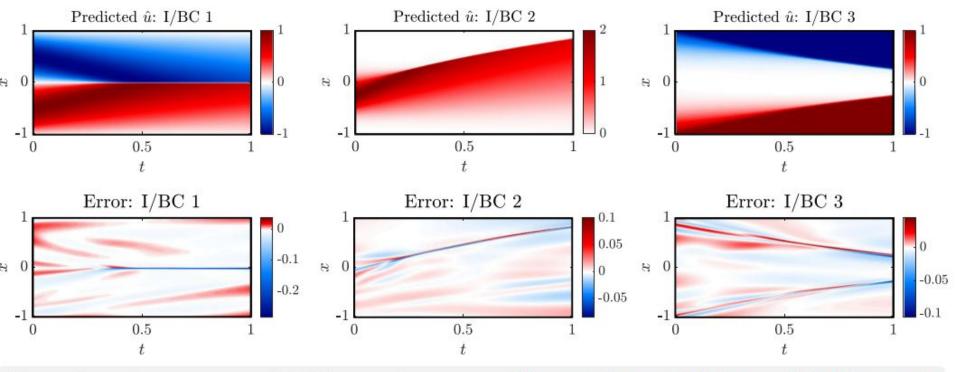
I/BC 2: $u(x, 0) = \mathcal{G}(x), u(-1, t) = u(1, t) = 0$
I/BC 3: $u(x, 0) = -x^3, u(-1, t) = 1, u(1, t) = -1$

Burger's Equation $u_t = -u u_x + 0.0032 u_{xx}$ $\phi \in \mathbb{R}^{1 imes 16}$



Burger's Equation
$$u_t = -uu_x + 0.0032u_{xx}$$
 $\phi \in \mathbb{R}^{1 imes 16}$





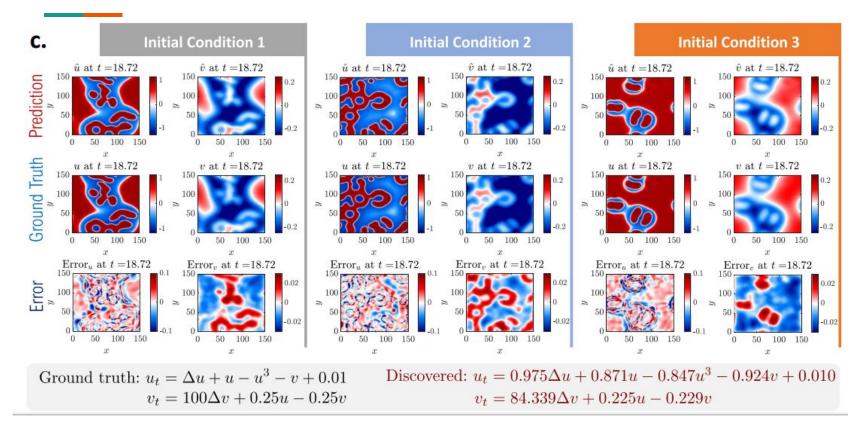
Ground truth: $u_t + uu_x - 0.0032u_{xx} = 0$

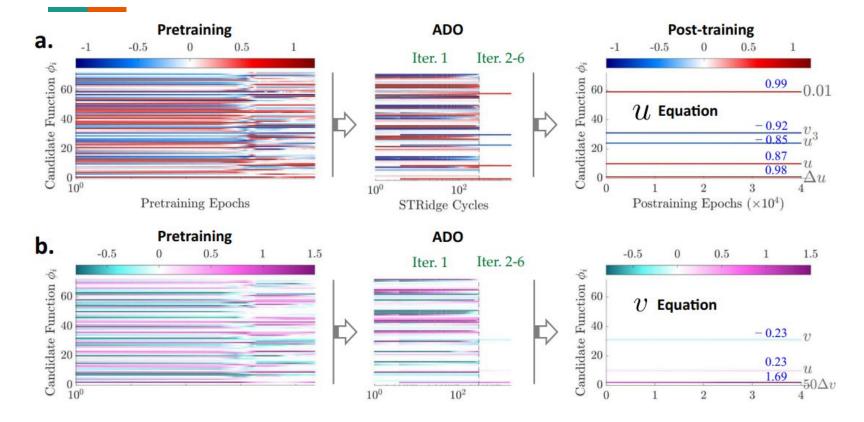
Discovered: $u_t + 1.002uu_x - 0.0032u_{xx} = 0$

FitzHugh-Nagumo (FN) reaction-diffusion system Equation

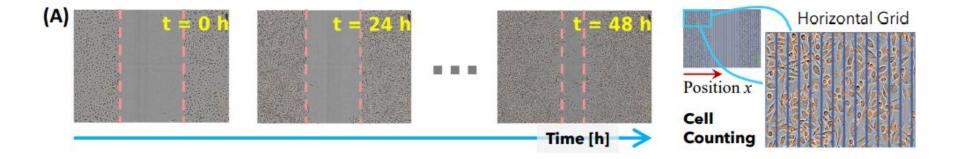
$$egin{aligned} u_t &= \gamma_u arDelta u + u - u^3 - v + lpha \ v_t &= \gamma_v arDelta v + eta(u-v). \end{aligned}$$

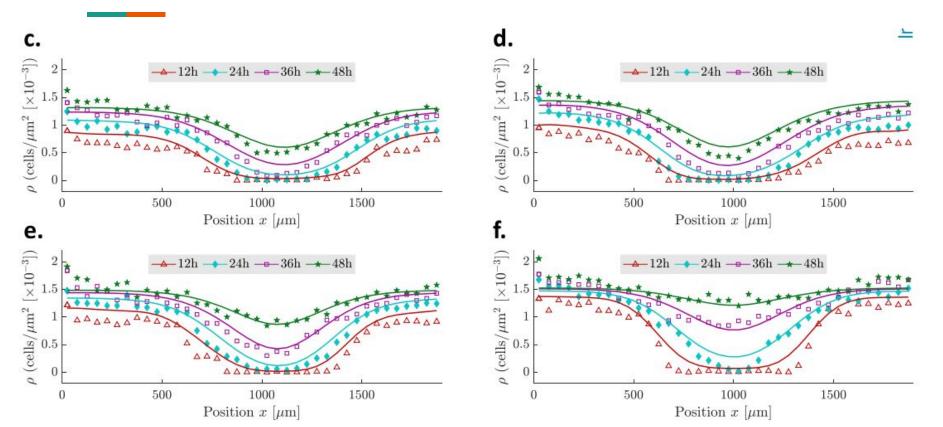
FN equations are commonly used to describe biological neuron activities excited by external stimulus (α), which exhibit an activator-inhibitor system because one equation boosts the production of both components while the other equation dissipates their new growth.

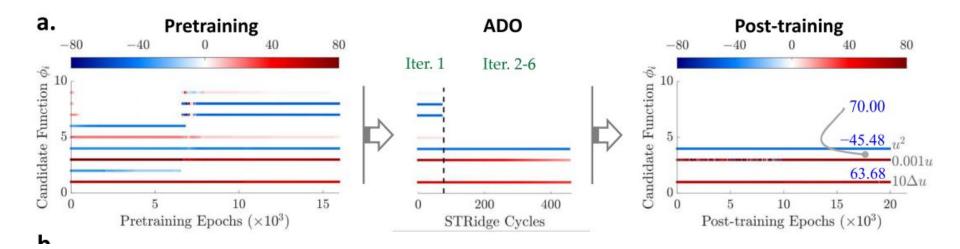


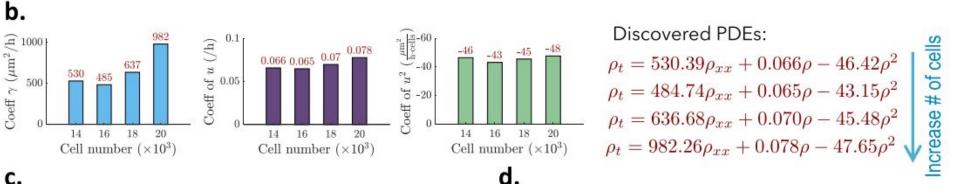


Probes in vitro









$$ho_t = \gamma
ho_{xx} + \lambda_1
ho + \lambda_2
ho^2$$

Fisher-Kolmogorov model

• Advantages of DNNs: handling noise and scarce data effectively using collocation points that are not tied to measurements.

- Advantages of DNNs: handling noise and scarce data effectively using collocation points that are not tied to measurements.
- Handling Multiple Datasets.

- Advantages of DNNs: handling noise and scarce data effectively using collocation points that are not tied to measurements.
- Handling Multiple Datasets.
- Alternating Direction Optimization: The framework optimizes both DNN training and the selection of sparse coefficients to reconstruct governing PDEs simultaneously.

- Advantages of DNNs: handling noise and scarce data effectively using collocation points that are not tied to measurements.
- Handling Multiple Datasets.
- Alternating Direction Optimization: The framework optimizes both DNN training and the selection of sparse coefficients to reconstruct governing PDEs simultaneously.
- Robustness: The method demonstrates resilience to both Gaussian and non-Gaussian noise and can accurately identify governing equations from sparse, noisy data.

Limitations

- Scalability issues with the "root-branch" scheme when dealing with multiple independent datasets.
- Inapplicability to systems where PDE coefficients vary over time or space (although future extensions are possible).
- Difficulty modeling chaotic behaviors or sharp propagating wavefronts due to the global basis approach.
- Dependency on a pre-defined library of candidate terms for PDE discovery, which can be hard to design.

Thanks!

Any questions?

Possibles questions and answers

$$\mathbf{u}_t + \mathcal{F}\left[\mathbf{u}, \mathbf{u}^2, \dots,
abla_x \mathbf{u},
abla_x^2 \mathbf{u},
abla_x \mathbf{u} \cdot \mathbf{u}, \dots; \lambda
ight] = \mathbf{p}$$

$$\mathbf{p}=\mathbf{p}(\mathbf{x},t)$$

$$\mathbf{u}_t + \mathcal{F}\left[\mathbf{u}, \mathbf{u}^2, \dots,
abla_x \mathbf{u},
abla_x^2 \mathbf{u},
abla_x \mathbf{u} \cdot \mathbf{u}, \dots; \lambda
ight] = \mathbf{p}$$

$$\mathbf{u}_t = [\boldsymbol{\phi}^u \ \boldsymbol{\phi}^p] [\boldsymbol{\Lambda}^u \ \boldsymbol{\Lambda}^p]^T$$

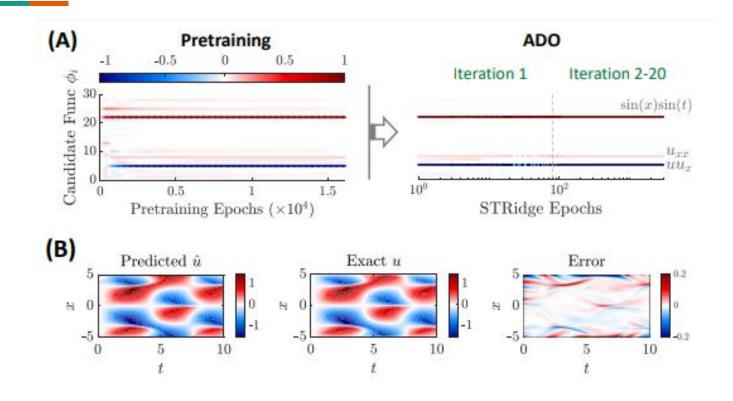
$$u_t + uu_x - 0.1u_{xx} = \sin(x)\sin(t)$$

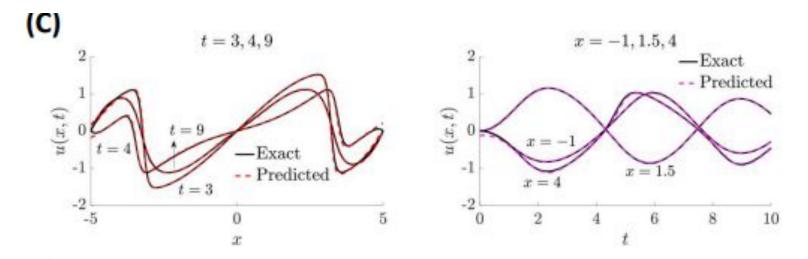
$$u_t + uu_x - 0.1u_{xx} = \sin(x)\sin(t)$$

$$\phi^{u} = \{1, u, u^{2}, u^{3}, u_{x}, uu_{x}, u^{2}u_{x}, u^{3}u_{x}, u_{xx}, uu_{xx}, u^{2}u_{xx}, u^{3}u_{xx}, u_{xxx}, uu_{xxx}, u^{2}u_{xxx}, u^{3}u_{xxx}\}$$

$$\phi^{p} = \{a, b, c, d, a^{2}, b^{2}, c^{2}, d^{2}, ac, ab, ad, bc, bd, cd\}$$

$$a = \sin(t), b = \sin(x), c = \cos(t)$$
 and $d = \cos(x)$





Ground truth: $u_t + uu_x - 0.1u_{xx} = \sin(x)\sin(t)$ Discovered: $u_t + 1.002uu_x - 0.088u_{xx} = 0.995\sin(x)\sin(t)$ If we miss some terms ?

 $w_t = -uw_x - vw_y + 0.01w_{xx} + 0.01w_{yy}$

If we miss some terms?

$$w_t = -v_x - v_y + 0.01w_{xx} + 0.01w_{yy}$$

If we miss some terms ?

$$w_t = -v_x - vw_y + 0.01w_{xx} + 0.01w_{yy}$$

 $w_t = -0.253w_x + 0.008w_{yy} + 0.035uw_{xx} - 0.782u^2w_x - 0.026u^2w_{xx} - 0.616vw_y - 0.155v^2w_x - 0.526uvw_y - 0.026u^2w_{xx} - 0.008w_{xx} - 0.00$

Hyperparameters

Example _			$\alpha^{\mathbf{a}}$			ADO				
		r_{σ} Pre-training	ADO & Post-training	8 (1)	$\beta^{\mathbf{b}}$	ADO Iteration	Adam Epochs	STRidge Cycles	$\Delta \delta^{\mathbf{c}}$	
	Burgers'	1.4	1	2	1E-7	$\mathcal{L}_pig(\hat{oldsymbol{ heta}}_0,\hat{oldsymbol{\Lambda}}_0;\mathcal{D}_c^{va}ig)$	6	1000	100	1
Single	KS	19.4	1	10	1E-7	$\mathcal{L}_pig(\hat{oldsymbol{ heta}}_0,\hat{oldsymbol{\Lambda}}_0;\mathcal{D}_c^{va}ig)$	6	1000	100	1
Dataset	Schrödinger	0.05	0.1	0.5	1E-7	$100\mathcal{L}_p(\hat{\boldsymbol{\theta}}_0, \hat{\boldsymbol{\Lambda}}_0; \mathcal{D}_c^{va})$	6	1000	100	100
	NS	1.7	1	2	1E-7	$\mathcal{L}_pig(\hat{oldsymbol{ heta}}_0,\hat{oldsymbol{\Lambda}}_0;\mathcal{D}_c^{va}ig)$	6	1000	100	1
	$\lambda - \omega$ RD	1.4	10	10	1E-7	$\mathcal{L}_pig(\hat{oldsymbol{ heta}}_0,\hat{oldsymbol{\Lambda}}_0;\mathcal{D}_c^{va}ig)$	6	1000	100	1
Multiple	Burgers'	0.02	0.01	0.1	1E-7	$\mathcal{L}_pig(\hat{oldsymbol{ heta}}_0,\hat{oldsymbol{\Lambda}}_0;\mathcal{D}_c^{va}ig)$	6	1000	100	1
Datasets	FN RD	17.2	1	10	1E-7	$\mathcal{L}_pig(\hat{oldsymbol{ heta}}_0,\hat{oldsymbol{\Lambda}}_0;\mathcal{D}_c^{va}ig)$	6	1000	100	1
Experimental	Cell	2.2E3	200	2.2E3	1E-7	$\mathcal{L}_p(\hat{oldsymbol{ heta}}_0,\hat{oldsymbol{\Lambda}}_0;\mathcal{D}_c^{va})$	6	1000	100	1

Github

📃 🌎 isds-neu / EQDiscovery		Q Type 🖉 to search	8 + • O n E
<> Code ③ Issues 4 \$ Pull requests	🕑 Actions 🖽 Projects 🕕 Security 🗠	_ Insights	
		⊙ Watch 3 →	• ⁹ ⁸ / ₈ Fork 32 → ☆ Star 103 →
알 master → 알 1 Branch	Q Go to file	t Add file 👻 <> Code 👻	About
💮 isds-neu Add files via upload 🚥		9a20ebe · last year 🕚 68 Commits	Physics-informed learning of governing equations from scarce data
Examples	Add files via upload	last year	🖽 Readme
🗅 README.md	Update README.md	3 years ago	小 Activity ☆ 103 stars
		Ø 🗉	 ⊙ 3 watching ♀ 32 forks Report repository
EQDiscovery			Releases
Overview			No releases published
Harnessing data to discover the ur	nderlying governing laws or equations that	describe the behavior of	Packages

https://github.com/isds-neu/EQDiscovery

Github

💮 isds-neu Add files via upload 🚥		9a20ebe · last year 🕚 History
Name	Last commit message	Last commit date
Discovery with Experimental Datasets	Add files via upload	3 years ago
Discovery with Multiple Datasets	Add files via upload	3 years ago
Discovery with Single Dataset	Add files via upload	last year
Discussion	Add files via upload	3 years ago

https://github.com/isds-neu/EQDiscovery

Github

Name	Last commit message	Last commit date
pycache	Add files via upload	3 years ago
Burgers_CubeIC_new.mat	Add files via upload	3 years ago
Burgers_GaussIC_new.mat	Add files via upload	3 years ago
Burgers_SineIC_new.mat	Add files via upload	3 years ago
Burgers_UniformSetting_Pre_ADO.py	Add files via upload	3 years ago
Burgers_UniformSetting_Pt.py	Add files via upload	3 years ago

https://github.com/isds-neu/EQDiscovery

Images from bing

