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Abstract
Most of the neural networks proposed so far for computational imaging (CI) in optics employ a supervised training
strategy, and thus need a large training set to optimize their weights and biases. Setting aside the requirements of
environmental and system stability during many hours of data acquisition, in many practical applications, it is unlikely
to be possible to obtain sufficient numbers of ground-truth images for training. Here, we propose to overcome this
limitation by incorporating into a conventional deep neural network a complete physical model that represents the
process of image formation. The most significant advantage of the resulting physics-enhanced deep neural network
(PhysenNet) is that it can be used without training beforehand, thus eliminating the need for tens of thousands of
labeled data. We take single-beam phase imaging as an example for demonstration. We experimentally show that one
needs only to feed PhysenNet a single diffraction pattern of a phase object, and it can automatically optimize the
network and eventually produce the object phase through the interplay between the neural network and the physical
model. This opens up a new paradigm of neural network design, in which the concept of incorporating a physical
model into a neural network can be generalized to solve many other CI problems.

Recently, deep learning (DL) has shown great potential
for solving inverse problems in computational imaging
(CI)1. Pioneering studies have demonstrated the applic-
ability of DL in optical tomography2, computational ghost
imaging3,4, digital holography5–7, imaging through scat-
tering media8–10, fluorescence lifetime imaging11 imaging
under low-light conditions12, phase imaging13–15,
unwrapping16, and fringe analysis17. Generally, an artifi-
cial neural network used in CI requires a large set of
labeled data to optimize its weight and bias parameters
(training) so that it can represent a universal function that
maps the data in the object space into the image space1.
Depending on the network architecture and the amount
of data used for training, the network training process can
take several hours or even several days, although the
reconstruction process is very quick in most cases. Thus,
the acquisition of a sufficiently large set of training data is

crucial for the training of a good neural network. How-
ever, in many applications, one is usually required to
image something that has never been seen before. It is
thus impossible to acquire sufficient ground-truth images
for network training, resulting in limited generalization
ability9,18.
We demonstrate in this letter that it is possible to

experimentally recover an image with an untrained neural
network that is built by combining a conventional artifi-
cial network such as U-Net19 with a real-world physical
model that represents the image formation physics; we
call the resulting model PhysenNet. Thus, one does not
need thousands of labeled data to train PhysenNet before
it can be used. Instead, one needs only to feed a single
image to be processed into a PhysenNet model with a
suitable handcrafted structure, and the network weight
and bias factors will be optimized through the interplay
between the neural network and the physical model,
eventually resulting in a feasible solution that satisfies the
imposed physical constraints. The idea of enforcing
implicit priors by means of the handcrafted network
structure in PhysenNet is inspired by the concept of the
deep image prior (DIP)20. We note that the DIP alone has
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been used in some CI applications20–23, but all these
studies have been largely limited to simulations. The
incorporation of the DIP with a task-specific physical
model for optical imaging and its demonstration for
coherent imaging experiments are the main contributions
of this work. Here, we take phase imaging as a typical
example to explain the principle more explicitly.
Phase problems are encountered in many applications,

ranging from astronomy to industrial inspection. How-
ever, phase imaging is a highly ill-posed problem24 when
relying on intensity-only measurements25,26, and some-
times requires a separate reference beam to encode the
phase into fringe patterns27. The PhysenNet approach
proposed here requires only one intensity I(x, y; z= d),
which is a diffraction pattern of a phase-only object ϕ(x, y;
z= 0) located at z= 0 over a distance z= d, acquired
using a single-beam set-up, i.e., without a separate refer-
ence. The basic concept is schematically outlined in Fig.
1a. The diffraction pattern I(x, y; d) is the only input to
PhysenNet, which has a handcrafted structure that is
designed to generate an estimate of the phase object,
~ϕðx; y; 0Þ. In a conventional neural network, the ground-
truth phase object ϕ(x, y; 0) in the training set must be
known, and one can calculate the error between ϕ(x, y; 0)
and ~ϕðx; y; 0Þ to optimize the weights and biases1,13–15. By
contrast, PhysenNet does not need the ground-truth
phase ϕ(x, y; 0). Instead, it uses a physical model H to
calculate a diffraction pattern ~Iðx; y; dÞ from ~ϕðx; y; 0Þ
according to, for example, the Huygens–Fresnel princi-
ple28 and then uses the error between ~Iðx; y; dÞ and the
measured I(x, y; d) to optimize the weights and biases via
gradient descent. This will force the calculated diffraction
pattern ~I to converge to the measured pattern I as the
iterative process proceeds, as schematically shown in Fig.
1b. Throughout this iterative process, the search for the

phase converges to a feasible solution, as shown by the
simulation results presented in Fig. 1c.
Now, let us take a closer look at the technical details of

PhysenNet. For a phase object, ϕ(x, y; 0), illuminated by a
coherent plane wave, the complex amplitude immediately
behind it can be written as

U0 x; y; 0ð Þ ¼ exp iϕ x; y; 0ð Þ½ � ð1Þ

The diffraction of U0 over a propagation distance z= d is
given by28

Ud x; y; dð Þ ¼
Z Z

Û0ðfx; fyÞGexp i2πðfxxþ fyyÞ
� �

dfxdfy

ð2Þ

where G ¼ exp ikd
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� λ2f 2x � λ2f 2y

qh i
is the transfer

function, Û0 is the Fourier transform of U0, and fx and
fy are the spatial frequencies in the x and y directions,
respectively. The diffraction pattern recorded by an image
sensor can be expressed as

I x; y; dð Þ ¼ Udðx; y; dÞj j2¼ HðϕÞ ð3Þ

where H(·) represents the mapping function that relates
the phase object ϕ to the measured diffraction pattern I.
The objective of the phase imaging problem is then to
formulate an inverse mapping H−1(·) such that

ϕ x; y; 0ð Þ ¼ H�1ðI x; y; dð ÞÞ ð4Þ

One typical method is to solve the minimization pro-
blem ~ϕ x; yð Þ ¼ argminϕ kHðϕÞ � Ik2 þ ρðϕÞ, where ρ(ϕ)
is a handcrafted or dictionary prior29,30 that captures the
generic regularity of the object, for ~ϕ.

Neural 
Network

input output diffraction phasea
I (x,y ;z = d ) � (x,y ;z = 0)

~

H
I (x,y ;z = d )
~

R�

−I – I
~ 2

b c

Fig. 1 Schematic illustration of the pipeline of PhysenNet. a A measured diffraction pattern I of a phase object ϕ is the input to the neural

network. The output of the neural network is taken as the estimated phase ~ϕ, which is then numerically propagated to simulate the diffraction and

measurement processes H to generate ~I. We measure the mean square error (MSE) between I and ~I as the loss value to adjust the neural network

parameters θ. b ~I during the optimization process. c ~ϕ during the optimization process
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A typical DL-based method is to attempt to learn a
mapping function R from a large number of labeled data
(ϕk, Ik), k= 1, … , K, that form the training set ST ¼
f ϕk ; Ikð Þ; k ¼ 1; ¼ ;Kg by solving

Rθ� ¼ argmin
θ2Θ

kRθ Ikð Þ � ϕkk2; 8 ϕk ; Ikð Þ 2 ST

ð5Þ
where Rθ is the mapping function of the neural network
defined by a set of weights and biases θ∈Θ. The training
process results in a feasible mapping function Rθ� that can
map a diffraction pattern I that is not in ST back to the
corresponding phase ~ϕ, i.e., ~ϕ ¼ Rθ� ðIÞ. The size K of the
training set ST can be a few thousand or even tens of
thousands in a typical CI application1–17. Experimentally
collecting such a large set of diffraction patterns Ik and
their corresponding ground-truth phases ϕk is time
consuming and usually requires mechanical and environ-
mental stability during the many hours of data acquisi-
tion. Although a training set can be created through
numerical modeling of the image formation physics4, the
mapping function learned in such a case works well only
for test images that are similar to those in the training set,
resulting in good generalization only within the set of
objects with the same priors used during training.
Instead, in the PhysenNet model proposed here, the

retrieval of the phase is formulated as

Rθ� ¼ argmin
θ2Θ

kHðRθ Ið ÞÞ � Ik2 ð6Þ

where H(·) is defined through the physical model of
diffraction described by Eqs. (1)–(3). The ground-truth
phase ϕ explicitly does not appear in objective function
(6), meaning that PhysenNet does not require the ground-
truth phase for training. Instead, it is the interplay
between H and Rθ that causes the prior of I to be
captured by the handcrafted neural network. When the
optimization is complete, the resulting mapping function
Rθ� can then be used to reconstruct the phase:

~ϕ ¼ Rθ� ðIÞ ð7Þ

It is worth pointing out that there is no limitation on the
network architecture that can be chosen to implement Rθ.
In our study, we simply adopt U-Net19, which has been
widely used for CI1,4,6,7. Typically, this network structure
consists of an encoder path that takes the diffraction
pattern as its input, a decoder path that outputs a pre-
dicted phase map, and skip paths in the middle. We use
four main types of modules to connect the input to the
output: convolution blocks (3 × 3 convolution + batch
normalization + leaky ReLU), max pooling blocks (2 × 2),

up-convolution blocks (3 × 3 de-convolution + batch
normalization + leaky ReLU), and skip connection blocks.
We use ReLU as the activation function in the output
layer. (See Fig. S1 in the Supplementary Information for
more details about the architecture.)
The neural network was implemented based on the

TensorFlow version 1.9.0 platform using Python 3.6.5.
We adopted the Adam optimizer31 with a learning rate of
0.01 to optimize the weights and biases, and added
uniformly distributed noise between 0 and 1

30 to the fixed
input I in every optimization step to achieve better
convergence20. When the training process was complete,
we removed the noise and obtained the reconstructed
phase in accordance with Eq. (7). In our study, the size of
the input image I was 256 × 256 pixels. The network
usually needed 10,000 epochs to find a very good esti-
mate. This took ~10 min on a computer with an Intel
Xeon CPU E5-2696 V3, 64 GB of RAM, and an NVIDIA
Quadro P6000 GPU.
We demonstrated the performance of the proposed

PhysenNet method through both simulation and experi-
ment. In the simulations, we first compared the proposed
method with typical phase retrieval methods, i.e., the
Gerchberg–Saxton (GS) algorithm24,25 and the transport-
of-intensity (TIE) equation26. Simulations were conducted
using the aforementioned weight parameters. The results
are illustrated in Fig. 2. We used the mean square error
(MSE) to measure the quality of the reconstructed phase
image in comparison to the ground truth shown in Fig. 2a.
For a quantitative performance evaluation, we rescaled the
reconstructed phases to the same range. The MSE value
between the phase reconstructed using PhysenNet (Fig. 2f)
and the ground truth is 0.01 rad, whereas the corresponding
values associated with the GS algorithm (Fig. 2d) and the
TIE equation (Fig. 2e) are 0.03 and 0.06 rad, respectively. In
this simulation, PhysenNet used only one diffraction pattern
to retrieve the phase, whereas the GS and TIE methods
used multiple measurements along the z axis as inputs to
enhance the quality of the reconstructed phase. In principle,
the GS algorithm can retrieve a phase from a single mea-
surement, provided that additional knowledge such as the
support of the object is known. However, greater diversity is
always preferable24.
Next, we numerically analyzed the effect of the diffraction

distance d on the quality of the reconstructed image. We
take three diffraction distances, i.e., d= 10 mm, d= 95mm,
and d= 180 mm, as examples to examine the performance.
The results are presented in Fig. 3. One can clearly see from
Fig. 3d, e, f, that in all these cases, the phase can be suc-
cessfully reconstructed from the corresponding diffraction
patterns plotted in Fig. 3a–c. This observation is consistent
with the reduction in the MSE with an increasing number
of epochs that can be seen from the plot in Fig. 3g. Indeed,
the MSE values associated with the reconstructed phase
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maps in Fig. 3d–f with respect to the ground-truth phase
image in Fig. 3h are 0.067, 0.061, and 0.076 rad, respectively.
We also conducted a direct comparison of PhysenNet

and conventional end-to-end approaches for phase ima-
ging. We employed the same neural network structure
(without the physical model) to fit the training set (10,000
human face images from Faces-LFW32) to obtain a trained
model for mapping intensity patterns to phase images (see

Table S1 in the Supplementary Information for more
details). The results are illustrated in Fig. 4. Again, we
used the MSE to measure the quality of the reconstructed
phase image in comparison to the ground truth shown in
Fig. 4b, which is one of the test images. The MSE value
between the phase reconstructed from the diffraction
pattern (Fig. 4a) using the pure end-to-end deep learning
approach (Fig. 4c) and the ground truth is 0.038 rad,

2.0

1.5

1.0

0.0

0.5

2.5

M
S

E

2000 4000 6000 8000 10000

Optimization steps

d = 10 mm
d = 95 mm
d = 180 mm

a b c

d e f h

g

0

0.5
0

255

(2� rad )

Fig. 3 Effect of d on the reconstructed phase. The first three images in the top row show the diffraction patterns at d values of a 10 mm, b 95 mm,
and c 180mm, and the phase maps reconstructed from these patterns are shown in d, e, and f, respectively. g The evolution of the MSE with an
increasing number of epochs, and h the ground-truth object phase image. Scale bar: 256 µm
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Fig. 2 Comparison of different phase imaging methods. a The ground-truth phase image: a plant cell slice obtained in our previous work35. b The
diffraction pattern calculated from a at d= 10 mm. c–f The phases reconstructed by means of c direct reconstruction from b via back propagation, d
the GS algorithm, e the TIE equation, and f PhysenNet. Scale bar: 256 µm
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whereas the corresponding value associated with PhysenNet
(Fig. 4d) is 0.033 rad. However, we observe that when the
phase image is from another set, such as the cat face shown
in Fig. 4g, the MSE between the phase reconstructed using
the conventional end-to-end approach (Fig. 4h) and the
ground truth is 0.127 rad, whereas the corresponding error
associated with PhysenNet (Fig. 4i) is 0.025 rad, which is
tenfold better. As expected, for the conventional end-to-end
deep learning approach, the recovery quality decreases as the
similarity between the test object and the training objects
decreases. However, the performance of PhysenNet is not
similarly affected.
We also performed simulations to compare Phy-

senNet with Regularization by Denoising (RED). We
generated the training dataset by adding AWGN (std=
30 dB) to 10,000 images from Faces-LFW32. We
employed DnCNN33 to fit the training dataset to obtain
the denoiser for RED. Following34, we again used
Adam31 to minimize the objective as follows:

~ϕ x; yð Þ ¼ argmin
ϕ;θ

kHðR1
θðIÞÞ � Ik2 þ λ

2
ϕT ðϕ� R2

θ� ðϕÞÞ

ð8Þ
where R1

θ is the deep neural network we used to generate
the phase ϕ from the diffraction pattern I, λ is the RED
regularization strength, and R2

θ� is the pre-trained denoising
model. The results are illustrated in Fig. 4e, j. The MSE
values between these results and the ground-truth images
are 0.039 and 0.068 rad, respectively.
Now, we will present the experimental demonstration.

The experimental apparatus is schematically shown in Fig.

5a. One can see that this is actually a single-beam lens-less
imaging geometry. A laser beam emitted from a He–Ne
laser at a wavelength of 632.8 nm (NEC Electronics Inc.
GLG5002) was first spatially filtered by a pinhole with an
aperture of 10 µm and then collimated by a lens with a
focal length of f= 200mm. The plane wave was guided to
illuminate a phase object, producing intensity images as
shown in Fig. 5b. To acquire the diffraction pattern, we
placed the camera (SensiCam EM, pixel pitch: 8 µm) at a
distance d= 22.3mm from the phase object. The recorded
diffraction pattern is shown in Fig. 5c. The proposed
PhysenNet takes this diffraction pattern as its only input
and generates an output phase map, as shown in Fig. 5d.
Off-axis digital holography (DH)27 was used to retrieve the
object phase image shown in Fig. 5e. As there was only one
diffraction pattern available, it was not possible to retrieve
the phase by using the TIE equation; however, we did
reconstruct the phase from the single diffraction pattern
shown in Fig. 5c using the GS algorithm with the phase-
only constraint on the object plane, and the result is
plotted in Fig. 5f. Note that a separate carrier beam in DH
encodes the phase into an intensity pattern, essentially
making the phase problem a well-posed one. Here, by
taking the DH reconstruction result as the ground truth,
we can calculate the MSE between Fig. 5d, e to be 0.084
rad. The cross section highlighted by the dashed line
indicates that the phase map reconstructed by the pro-
posed PhysenNet is relatively smooth. In contrast, the
MSE between the images reconstructed using the GS and
DH methods is 1.926 rad, as clearly evidenced by the noise
present in Fig. 5f. Similar observations hold for Fig. 5g–k,
which show the results of retrieving the phase for another
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g
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Fig. 4 Comparison of PhysenNet, conventional end-to-end DL and RED. a, f The diffraction patterns at a distance of 10 mm corresponding to
the real phase distributions shown in b and g. c, h The phase images reconstructed using the conventional end-to-end strategy, d, i the phase
images reconstructed by PhysenNet, and e, j the phase images reconstructed by RED
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part of the sample. The MSE value between Fig. 5i and j is
0.093 rad, whereas a value of 2.981 rad is associated with
Fig. 5k.
In all the above investigations, we imposed no assump-

tions on the profile or support of the phase object, in
contrast to almost all other phase retrieval algorithms24,25.
However, we found that PhysenNet does not work well for
phase modulation ranges larger than 2π. Resolving this
limitation is beyond the scope of the present study.
PhysenNet requires precise modeling of the image

formation mechanism [e.g., Eqs. (1)–(3) in our study],
and the incorporation of the resulting physical model
into a conventional deep neural network (U-Net in our
case). It is the interplay between the physical model and
the neural network that allows the object phase to be
reconstructed with a single intensity measurement. The
advantages of PhysenNet in comparison to the pure
end-to-end approaches for CI1 are straightforward.
First, pure end-to-end approaches usually require many
labeled data to train a neural network. In physical
experiments, such labeled data can be generated by
using an SLM, or they can be numerically synthesized
using a rigorous image formation model4. PhysenNet,
on the other hand, does not require any labeled data for

training. Instead, all it needs as input is the image to be
processed. Second, pure end-to-end approaches learn a
mapping function from the statistics of a large set of
training data, represented by the weights of the network.
When test data are fitted with the same set of weights,
test error will inevitably emerge, resulting in artefacts
and noise in the reconstructed images, particularly in
cases where the test data are far from the training data
in terms of their statistics. PhysenNet, inspired by the
DIP, does not learn a mapping function from the sta-
tistics of the training data but rather is based on the
interplay between a handcrafted network structure and
a physical image formation model. As a result, the
network in PhysenNet is more specifically tuned to
perform well in reconstruction from the given input, at
the cost of some generalization ability. Although we
have demonstrated PhysenNet only for a use case of 2D
phase retrieval, it is, in principle, also applicable for 3D
objects provided that a multi-projection technique such
as tomography is used to collect the data. In these cases,
there should be multiple mapping functions Hi, where i
= 1,2, …, N denotes the number of projections, that
relate the measured intensity Ii to the 3D object function
in the ith view. These functions Hi should be
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algorithm

Wang et al. Light: Science & Applications            (2020) 9:77 Page 6 of 7



implemented to represent the associated physics, and
objective function (6) should accordingly be generalized
to Rθ� ¼ argminθ2Θ

P
i
kHiðRθ Iið ÞÞ � Iik2.

In comparison to conventional DL approaches for CI, the
only extra ingredient that PhysenNet needs is a known for-
ward mapping function H, as described in Eq. (6). This
means that, given an estimate ~U of an object function,
PhysenNet requires the calculability of the forward transform
of ~U through an imaging system specified by H, which is
required to evaluate the cost function. No additional
requirements are imposed on either the method of data
acquisition or the illumination conditions. As a result, Phy-
senNet should be applicable for diverse imaging modalities,
provided that the forward mapping function is known.
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