PRÁCTICO 12: Criptografía

En los ejercicios que siguen, vamos a utilizar la siguiente numeración de los 28 símbolos:

Α	В	С	D	Ε	F	G	Н	Ι	J	K	L	M	N	Ñ	0	P	Q	R	S	Т	U	V	W	Х	Y	Z	
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27

Sistemas de clave privada

Ejercicio 1.

- a. Deseamos acordar una clave común con Romina usando el protocolo **Diffie-Hellman**. Elegimos el primo p=991, y g=7 como raíz primitiva módulo p; ambas de forma pública. Romina elige al azar, y en secreto, un número n < p, y nos envía públicamente $g^n \equiv 989 \pmod{p}$. Nosotros elegimos al azar m=11 (secretamente).
 - i) ¿Cuál es la clave k común que acordamos con Romina?
 - ii) ¿Qué número tenemos que mandarle públicamente a Romina para que solamente ella pueda calcular la clave fácilmente?
- b. Supongamos que deseamos comunicarnos con Romina a través de un **sistema Vigenere**, utilizando una palabra clave de 3 letras. Para esto tomamos la clave k común acordada con Romina en la parte anterior, y la escribimos en base 28:

$$k = L_2 28^2 + L_1 28 + L_0, \quad 0 \le L_i < 28.$$

A partir de esto definimos la clave común como: $L_2L_1L_0$. Por ejemplo, si fuese $k=25\cdot 28^2+0\cdot 28+2$, la clave común sería YAC.

- i) Cifrar los siguientes mensajes: SIMULADOR, Y_WALTER.
- ii) Descifrar los siguientes mensajes enviados por Romina: GZFAKPVP, NJÑJXDPX.

Ejercicio 2. Queremos acordar una clave común con Rodrigo usando el protocolo **Diffie-Hellman**. Elegimos un primo p y una raíz primitiva g módulo p. Rodrigo no quiere un exponente complicado por miedo a no recordarlo, por lo que elige a p-1. Explicarle por qué esto es una mala idea.

Ejercicio 3. Ofelia desde Colonia y Lucía desde Artigas quieren intercambiar un mensaje de forma privada. Así que no tienen más remedio que aprender un poco de criptografía.

- a. Al principio Ofelia no entendió bien el método de Diffie-Hellman y propone el siguiente método para fijar una clave común: eligen (públicamente) un primo p y un entero 1 < g < p. A su vez, Ofelia elige en secreto un entero n y Lucía elige un entero m. Ofelia calcula $a = ng \pmod p$ y le manda a a Lucía. Lucía calcula $b = mg \pmod p$ y le manda b a Ofelia. La clave común será: $k = ngm \pmod p$; la cual Ofelia puede calcular haciendo $k = nb \pmod p$, y Lucía haciendo $k = am \pmod p$.
 - i) Eligen p=101 y g=2. Ofelia le manda a=19 y Lucía elige m=35, ¿cuál es la clave común?

- ii) Un observador ve que Ofelia manda a=19, y que Lucía manda b=35. ¿Puede obtener la clave? En caso afirmativo, hallarla.
- iii) Describir un método para encontrar la clave en general, conociendo $p,\ g,\ a$ y b.
- b. Lucía lee el libro y entiende que hay que usar potencias en vez de multiplicaciones; así que Lucía y Ofelia utilizan el método **Diffie-Hellman** correcto para acordar una clave común. Toman como primo p=89 y g=7. Lucía elige el número secreto m=86 y Ofelia le envía $b=g^n\equiv 17\pmod p$. ¿Cuál es la clave secreta K que acuerdan?
- c. Sea K la clave secreta acordada en la parte anterior. Se utiliza luego un **criptosistema afín**, con función de encriptado $E: \mathbb{Z}_{28} \to \mathbb{Z}_{28}$, tal que $E(x) = cx + e \pmod{28}$, sabiendo $K = c \cdot 28 + e$, con $0 \le c < 28$ y $0 \le e < 28$. Para cifrar un texto se cifra letra a letra usando la función de cifrado. Lucía cifra PASALA y se lo manda a Ofelia. ¿Qué mensaje recibe Ofelia?
- d. Supongamos ahora que somos espías y sabemos que Ofelia le envía a Lucía un mensaje cifrado según un **criptosistema afín**, pero desconocemos los valores de c y e de la función de cifrado. Interceptamos el siguiente texto: LÑVJ Ñ. Sabemos que el mensaje original (sin cifrar) contiene dos O y nos informan que Ofelia siempre usa e=9.
 - i) Hallar la función de cifrado que usaron Lucía y Ofelia.
 - ii) Descifrar el mensaje interceptado.

Ejercicio 4.

- a. Probar que 5 es una raíz primitiva módulo 97.
- b. Supongamos que interceptamos la conversación entre Alicia y Bob cuando ambos están utilizando el protocolo **Diffie-Hellman** para acordar una clave común. Alicia y Bob acuerdan p=97 para el módulo y g=5 como generador. Alicia le envía a Bob 3 y Bob le envia a Alicia 7. ¿Cuál es la clave k común que acuerdan Alicia y Bob? (la idea es ver que no es fácil descubrir la clave).
- c. Supongamos que Diego y Marta quieren utilizar el método **Diffie-Hellman** de intercambio de clave, usando el primo p=97 y la raíz primitiva g=29. Diego le envia a Marta el número x=85. Marta luego le envía a Diego el número y=3. Recordando que 5 es una raíz primitiva módulo 97, y teniendo como datos los siguientes logaritmos discretos $\log_5 29=13$ y $\log_5 85=90$, hallar la clave común.

Sistemas de clave pública

Ejercicio 5. (Parcial 2, Semestre 1, 2021)

- $\mathbf{a}. \ \ \mathsf{Hallar} \ \mathsf{el} \ \ \mathsf{menor} \ x \in \mathbb{Z}^+ \ \mathsf{que} \ \mathsf{verifica} \ \left\{ \begin{array}{l} x \equiv 10 \pmod{13} \\ x \equiv 91 \pmod{101} \end{array} \right..$
- **b**. Sea E la función de cifrado **RSA** con clave (n,e). Describir la función de descifrado D, y probar que descifra.
- c. Si (n,e)=(1313,271), cifrar la letra K. Sugerencia: usar TCR con $1313=101\times 13$.

Ejercicio 6. Sea n = pq, con p y q primos.

- **a**. Describir un método para factorizar n si se conocen los valores de n y $\varphi(n)$.
- **b**. Factorizar n=187 sabiendo que $\varphi(187)=160$.

Ejercicio 7. Supongamos que n es un número muy díficil de factorizar. Bernardo utiliza un **criptosistema RSA** con clave (n,e_1) , al mismo tiempo que Bruno utiliza la clave (n,e_2) , con $mcd(e_1,e_2)=1$. Adriana les envía el mismo texto x a ambos, calculando $y_1=x^{e_1}\pmod n$ e $y_2=x^{e_2}\pmod n$ (envía y_1 a Bernardo e y_2 a Bruno). Alguien que intercepta los mensajes realiza los siguientes cálculos:

hallar
$$c_1, c_2 \in \mathbb{Z}^+ \ / \ c_1 e_1 + c_2 e_2 = 1$$
, y luego calcular $x_1 \equiv y_1^{c_1} y_2^{c_2} \pmod{n}$.

Notar que estos cálculos se pueden realizar de forma eficiente (por ejemplo mediante Euclides extendido y exponenciación rápida).

- a. Probar que x_1 es el texto x. Por lo tanto, si bien el criptosistema es seguro, el mensaje puede ser descifrado en este caso.
- **b**. Descifrar el mensaje si $y_1=9983$ e $y_2=4026$, sabiendo que $n=16123, e_1=27$ y $e_2=29$.

Ejercicio 8. Sean n=606409 y e=1111. Factorizar n mediante el **método de Fermat**. Este método consiste en lo siguiente: vamos calculando $n+s^2$, con $s=0,1,2,\ldots$, hasta obtener un cuadrado perfecto. Una vez que lo conseguimos, se obtiene: $n+s^2=t^2\Rightarrow n=t^2-s^2=(t-s)(t+s)$. Este método es eficiente para factorizar números que poseen divisores cercanos a \sqrt{n} .

Ejercicios adicionales

Ejercicio 9. Se considera el siguiente método de intercambio de clave: dado un grupo G, Alicia y Bob eligen un elemento $g \in G$. Alicia elige en secreto un entero m y le manda a Bob $x = g^m \in G$. Luego Bob elige en secreto un elemento $k \in G$ que será la clave, un entero n y le manda a Alicia el par (g^n, kx^n) .

- a. ¿Puede Alicia descubrir la clave?
- **b**. Sea $G = GL(2,\mathbb{R})$ y $g \in G$ una matriz diagonalizable, con valores propios positivos. ¿Puede un observador descubrir la clave?
- c. Sea $G = GL(2,\mathbb{R})$ y $g \in G$, con $\det(g) \neq \pm 1$. ¿Puede un observador descubrir la clave? Sugerencia: discutir según la forma de Jordan de la matriz g.
- **d**. Sea G=U(97) y g=5. Si Alicia elige m=4, ¿qué elemento le manda a Bob? Si luego Alicia recibe (74,44), hallar la clave.

Ejercicio 10. Firma digital. Supongamos que Alicia quiere enviar un documento m firmado a Bob, de manera que Bob sepa con seguridad que fue firmado por Alicia y no otra persona. Como en RSA, Alicia elige dos primos grandes p y q, para obtener n=pq, y e coprimo con $\varphi(n)$. Luego calcula d tal que $ed\equiv 1\pmod{\varphi(n)}$. Publica n y e y guarda p, q y d. La firma digital de Alicia, asociada al mensaje m, es:

$$s = m^d \pmod{n}$$
,

y puede enviar (m, s) a Bob. Ahora Bob puede verificar que el documento fue firmado por Alicia elevando s a la potencia e-ésima y compararlo con m:

$$s^e = (m^d)^e = m^{ed} \equiv m \pmod{n}.$$

Supongamos que Alicia envía tres documentos a Bob con su firma digital de la forma (m,s), donde m es el documento y s la firma digital del mismo. Alicia usa n=10379 como módulo, y exponente de cifrado e=17; siendo ambos valores públicos. Bob crea un cuarto documento e intenta falsificar la firma digital de Alicia sin éxito. ¿Cuál de los siguientes documentos es la falsificación?

$$(209, 8690), (1059, 5909), (921, 636), (347, 5120).$$