PRÁCTICO 9: CONJUNTO COCIENTE, SUBGRUPOS NORMALES Y GRUPO COCIENTE

Ejercicio 1. En cada caso, hallar las clases laterales por izquierda y por derecha del subgrupo H en el grupo G, y determinar si H es un subgrupo normal de G.

- **a**. El grupo aditivo $G=\mathbb{Z}_6$, y el subgrupo $H=\langle \bar{3} \rangle$, generado por la clase $\bar{3} \in \mathbb{Z}_6$.
- **b**. El grupo multiplicativo $G=U_{14}$, y el subgrupo $H=\langle \overline{13} \rangle$.
- **c**. $G = D_3$, el grupo de las simetrías de un triángulo equilatero (con la operación de composición), y $H = \langle s_1 \rangle$, el subgrupo generado por la simetría axial del triángulo.

Ejercicio 2.

- a. Sea G un grupo conmutativo. Pruebe que todo subgrupo H de G es normal en G.
- **b**. Pruebe que $H=3\mathbb{Z}$ es normal en $G=(\mathbb{Z},+)$. Calcule el grupo cociente $\mathbb{Z}/3\mathbb{Z}$ y su tabla de Cayley.
- **c**. Sea G un grupo cíclico. Pruebe que todo subgrupo H de G es normal en G. Sugerencia: pruebe que G es conmutativo.
- **d**. Pruebe que $H = \{\bar{1}, \bar{8}\}$ es subgrupo normal en G = U(9). Halle el cociente G/H y calcule $(\bar{2}H)(\bar{4}H)$.

Ejercicio 3. Sea $GL_2(\mathbb{R})$ el grupo de las matrices invertibles 2×2 de coeficientes reales, con el producto usual de matrices. Sean

$$U = \left\{ A \in GL_2(\mathbb{R}) \ / \ A = \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \right\}, \quad T = \left\{ A \in GL_2(\mathbb{R}) \ / \ A = \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \right\}.$$

- **a**. Pruebe que U es un subgrupo de T.
- **b**. Calcule las clases laterales por derecha y por izquierda de U en T.
- \mathbf{c} . Pruebe que U es un subgrupo normal de T.
- **d**. Pruebe que U es un subgrupo de $GL_2(\mathbb{R})$, y determine si U es un subgrupo normal de $GL_2(\mathbb{R})$.

Ejercicio 4. Sea (S_3, \circ) el grupo de las permutaciones del conjunto $\{1, 2, 3\}$.

a. Considere el siguiente subgrupo de S_3 :

$$H = \left\{ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \right\}.$$

Pruebe que H no es un subgrupo normal. Sugerencia: considere $g=\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \in S_3.$

b. Considere el siguiente subgrupo de S_3 :

$$H = \left\{ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} \right\}.$$

- i) Calcule el conjunto cociente S_3/H (formado por las clases laterales por izquierda gH).
- ii) Pruebe que H es un subgrupo normal de S_3 .
- iii) Calcule la tabla de Cayley del grupo cociente. Observe que S_3 no es conmutativo, y sin embargo el grupo cociente S_3/H sí es conmutativo.

Ejercicio 5. Sea H el subgrupo de S_4 que consiste en las permutaciones $\sigma \in S_4$, tales que $\sigma(4) = 4$. Probar que H no es normal en S_4 . Sugerencia: encontrar $g \in S_4$, tal que: $gHg^{-1} \not\subset H$.

Ejercicio 6. Sea $\{H_i\}_{i\in I}$ una familia de subgrupos normales de un grupo G. Probar que $\cap_{i\in I}H_i$ es un subgrupo normal en G.

Ejercicio 7. Sea H un subgrupo con índice 2 en un grupo G. Es decir: H tiene exactamente 2 clases laterales por izquierda en G. Probar que H es un subgrupo normal de G. Sugerencia: todo grupo G se puede escribir como la unión disjunta de las clases laterales por izquierda. Lo mismo para las clases laterales por derecha.

Ejercicio 8. Sea G un grupo y H un subgrupo de G de orden finito.

- **a**. Pruebe que gHg^{-1} es un subgrupo de G, para todo $g \in G$.
- **b**. Pruebe que la conjugación preserva el orden del subgrupo. Es decir: $|gHg^{-1}| = |H|, \ \forall \ g \in G.$
- c. Supongamos que G posee un único subgrupo H de orden d. Pruebe que H es normal.

Ejercicio 9. Sea S un subconjunto de un grupo G. Se define el normalizador de S en G como:

$$N_S = \{x \in G : xSx^{-1} = S\}.$$

- **a**. Probar que N_S es un subgrupo de G.
- **b**. Supongamos que S es un subgrupo de G. Probar que S es un subgrupo normal de N_S .

Ejercicio 10. Se define el centro de un grupo G como: $Z_G = \{x \in G : xg = gx, \text{ para todo } g \in G\}.$

- **a**. Calcule el centro de $GL_2(\mathbb{R})$.
- **b**. Probar que Z_G es un subgrupo normal de G, para todo grupo G.
- **c**. Probar que, cualquiera sea $S \subset G$, se tiene: $Z_G \subset N_S$.
- **d**. Probar que si G/Z_G es un grupo cíclico, entonces G es conmutativo.

Ejercicios adicionales

Ejercicio 11. Sea H un subgrupo de G, definido de la siguiente forma: $H=\{g^2,\ g\in G\}$.

- **a**. Probar que H es un subgrupo normal de G. Sugerencia: probar que $gHg^{-1} \subseteq H, \ \forall \ g \in G$.
- **b**. Probar que $gH = g^{-1}H$, $\forall g \in G$. Es decir: $g \sim g^{-1}$ en G/H, para todo $g \in G$.
- ${f c}$. Probar que G/H es un grupo conmutativo. Sugerencia: usar la parte anterior.

Ejercicio 12. Sea D_4 el grupo de simetrías del cuadrado, y $H = \{id, r^2\}$; donde r es la rotación de 90 grados respecto al origen del plano. Pruebe que H es un subgrupo normal de D_4 , y que el cociente D_4/H es conmutativo. Notar que D_4 no es conmutativo. Sugerencia: usar el ejercicio anterior.