Aplicaciones de Álgebra Lineal Primer Parcial 2024

30/9/2024

Ejercicio 1 (P) Sea $A = (a_{ij})_{1 \leq i,j \leq n} \in \mathcal{M}_n(\mathbb{C}).$

- **a**. Sea λ valor propio de A asociado al vector propio $v \in \mathbb{C}^n$: $A.v = \lambda.v$ y sea $1 \le i_0 \le n$ tal que $|v_{i_0}| \ge |v_i|$, para todo $1 \le i \le n$. Probar $|\lambda|.|v_{i_0}| \le \sum_{i=1}^{j=n} |a_{i_0j}|.|v_{i_0}|$.
- **b.** Demuestre que $\rho(A) \le \max\{\sum_{i=1}^{j=n} |a_{ij}| : i = 1, ..., n\}.$
- c. Demuestre que también vale que $\rho(A) \leq \max\{\sum_{i=1}^{i=n} |a_{ij}| : j = 1, ..., n\}.$

Ejercicio 2 (T) Sea $A \in \mathcal{M}_n(\mathbb{C})$ y J_A la matriz de Jordan asociada a A. Probar que

$$\lim_{s \to +\infty} \sqrt[s]{||A^s||} = \lim_{s \to +\infty} \sqrt[s]{||J_A^s||}$$

Ejercicio 3

a. i) Consideramos $B \in \mathcal{M}_n(\mathbb{C})$, donde $B = J(1) = \bigoplus_{i=1}^{i=t} J_{n_i}(1)$, con $n_i \in \mathbb{N}$, para todo $1 \le i \le t$. O sea, B es una matriz con 1 como único valor propio, la cual ya está expresada en su forma de Jordan.

Si $n \le 7$ y dim $(\ker(B-I)^3) = 6$, calcular todas las opciones posibles para t y para los n_i , $1 \le i \le t$.

- ii) Si además se sabe que $(B^h)_{h\in\mathbb{N}}$, converge, determine B.
- **b**. Describir todas las posibles formas de Jordan de $A \in \mathcal{M}_{10}(\mathbb{R})$, sabiendo que:
 - $(x-1)^3$ divide a $m_A(x)$, el polinomio minimal de A;
 - $\bullet \dim(\ker(A-I)^3) = 6;$
 - 1 + i es valor propio de A;
 - $\rho(A) = 3;$
 - $\bullet \det(A) = 6.$