Environmental particles

Outlines

- Background information
- Particle thermodynamics
- Particle measurements

- Estimating exposures and emissions in indoor environmen
- Research at UNICAS

200 nm

Background information

Effects on human health

- Health effects. Effect on morbidity and mortality in Europe and worldwide. Classified as carcinogenic compound Group 1 (PRESS RELEASE N°221 – Lyon/Geneva, 17 October 2013)
- Environmental effects. Airborne particles can also impact the environment. They contribute to air pollution, reducing visibility and contributing to phenomena such as smog. Certain particles, like black carbon, absorb sunlight and can accelerate the melting of ice and snow, thereby contributing to climate change.
- Climate Change. Particulate matter plays a complex role in the Earth's climate. Some particles, like sulfates, reflect sunlight and can cool the Earth, while others, like black carbon, absorb sunlight and contribute to warming.

Definition and classification

Atmospheric Aerosol

is a metastable suspension of solid or liquid particles in a gas (e.g. air).

Classification by size

- PM₁₀
- Coarse Particles (PM_{2.5-10})
- Fine Particles (PM_{2.5})
- Ultrafine particles (UFPs)
- Nanoparticles

mass fraction of particles with D_{eq} < 10 μm mass fraction of particles with 2.5 μm < D_{eq} < mass fraction of particles with D_{eq} < 2 D_{eq} < 0.1 μm (100 nm)

```
D_{eq} < 0.050 \ \mu m (50 \ nm)
```


Origins and sources

- Combustion vs. mechanical generation
- Natural vs. anthropic; primary vs. secondary

Aerosol metrics and measurement approaches

• Number, surface area vs. mass

Definition and classification

Size distributions

- size range = few nanometers to tens or hundreds of micrometers 1.5E+03
- **Modes** in different ranges (as a function of the metrics)

From emission to risk

Environmental policy (e.g. European emission standards for vehicles)

outdoor air quality

es of the outdoor air quality on;

nenomena;

on and mechanical generation

Proposal for a

Brussels, 26.10.2022

COM(2022) 542 final

2022/0347 (COD)

DIRECTIVE OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL

on ambient air quality and cleaner air for Europe

(recast)

- 100 1000 pait. cm
- 1000-5000 part. ci
- 5000-20000 part.
- <100000 part. cm⁻
- Sub-micrometric p
 - Residential heatin
 - vehicles;
 - short-term exposu
 - Metrological issue

D. Minimum number of sampling points for fixed measurements of ultrafine particles where high concentrations

New Particle

Formation and Growth

(Homogenous Nucleation

Adsorption/Condensation

Soot Particle

Soot and

Metallic Ash

Particles

Exhaust

Air Dilution

and Cooling

Ultrafine particles shall be monitored at selected locations in addition to other air pollutants. Sampling points to monitor ultrafine particles shall coincide, where appropriate, with sampling points for particulate matter or nitrogen dioxide referred to in Point A, and be sited in accordance with Section 3 of Annex VII. For this purpose, at least 1 sampling point per 5 million inhabitants shall be established at a location where high UFP concentrations are likely to occur. Member States that have fewer than 5 million inhabitants shall establish at least 1 fixed sampling point at a location where high UFP concentrations are likely to occur.

Particulate matter ($PM_{2.5}$ and PM_{10}), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide

World Health Organization

Table 0.1. Recommended AQG levels and interim targets

Pollutant	Averaging time		Interim target			AQG level
		1	2	3	4	-
PM _{2.5} , µg/m³	Annual	35	25	15	10	5
	24-hour ^a	75	50	37.5	25	15
PM ₁₀ , µg/m ³	Annual	70	50	30	20	15
	24-hour ^a	150	100	75	50	45
O ₃ , μg/m³	Peak season ^b	100	70	-	-	60
	8-hour ^a	160	120	-	-	100
NO ₂ , µg/m³	Annual	40	30	20	-	10
	24-hour ^a	120	50	-	-	25
SO ₂ , µg/m³	24-hour ^a	125	50	-	-	40
CO, mg/m ³	24-hour ^a	7	-	_	_	4

^a 99th percentile (i.e. 3-4 exceedance days per year).

^b Average of daily maximum 8-hour mean O_3 concentration in the six consecutive months with the highest six-month running-average O_3 concentration.

Box 4.2. Good practice statement – UFP

The GDG decided to formulate the following four good practice statements on UFP to guide national and regional authorities and research towards measures to reduce ambient ultrafine particle concentrations.

- 1. Quantify ambient UFP in terms of particle number concentration (PNC) for a size range with a lower limit of \leq 10 nm and no restriction on the upper limit.
- Expand the common air quality monitoring strategy by integration of UFP monitoring into existing air quality monitoring. Include size-segregated real-time PNC measurements at selected air monitoring stations in addition to, and simultaneously with, other airborne pollutants and characteristics of PM.
- Distinguish between low and high PNC to guide decisions on the priorities of UFP source emission control. Low PNC can be considered < 1000 particles/ cm3 (24-hour mean). High PNC can be considered > 10 000 particles/cm3 (24-hour mean) or 20 000 particles/cm3 (1-hour).
- 4. Utilize emerging science and technology to advance approaches to the assessment of exposure to UFP for application in epidemiological studies and UFP management.

Health effects

Health effects, particle metrics

- Epidemiological studies recognized cardiovascular and respiratory issues related to the exposure to particle
- Which size or property is responsible? (PM_{10} , PM_{25} , Ultrafine, surface area, assumption rate, Deposition in the lungs Lungs as port of entry...

From exposure to dose

Take-home messages

 Huge number of small particles (sub-micrometric), very few large particles (supermicrometric);

 (mm^2)

Exposure

time

• Exposure: personal measurements vs. fixed sampling points

Health effects are related to the dose: estimate of the dose?

From the dose to risk

Risk models

Response

e.g. Lung cancer risk model (Model by Sze-To et al. (2012))

Risk = Toxicity × Dose

 $c_f = 6.6 \times 10^{-13} \text{ mg nm}^{-2}$ (Sze-To *et al.*, 2012) equivalent toxicity of the particle surface area metric expressed as particle mass

Total exposure period (days per year)

$$ELCR_{extra} = \frac{1}{BW} \left(\sum_{i}^{n} SF_{i} \cdot \frac{m_{i}}{PM_{10}} \right) \cdot \left[c_{f} \cdot \delta_{Al\nu+TB} + \delta_{PM_{10}} \right] \cdot N_{day}$$

Body weight (70 kg) /

SF: inhalation slope factor (lifetime cancer potency) the percent increase in the risk of getting cancer associated with exposure to a unit concentration of a chemical every day for a lifetime, here assumed equal to 70 years

mass concentration of the *i*-th pollutant present on the PM₁₀

$$SF_m = \sum_i^n SF_i \cdot \frac{m_i}{PM_{10}}$$

SF of the mixture of the *n* carcinogenic pollutants on PM₁₀

Particle thermodynamics

Aerosol dynamics

General Dynamic Equation, GDE

- Aerosol is characterized by **dimensional**, **chemical** and **physical** variations: **metastable** suspension
- Thermodynamic and physical transformations of particle formation, growth and removal
- The general particle dynamics equation models the influence of chemical-physical phenomena on the aerosol distribution function.

 ∂n_d

Aerosol dynamics

Formation: nucleation

gas-to-particle conversion (GPC) – ULTRAFINE PARTICLES - Nucleation

- formation of new nanoparticles from molecules in the gas phase
- on a molecular scale, nucleation is due to the random formation of agglomerates of molecules that constitute stable clusters once a critical size has been reached

- At the molecular scale, nucleation begins with the random and spontaneous aggregation of molecules.
- These molecules might be in a vapor or a solution, and under certain conditions, they start to come together due to intermolecular forces. Initially, these clusters are unstable and can easily disband, but if they reach a certain "critical size," they become stable and can continue to grow.
- The critical size is the point at which the cluster is energetically favorable to grow rather than shrink.

Formation: nucleation

The saturation ratio plays a crucial role in nucleation. The saturation ratio is defined as the ratio of the actual concentration of molecules (in vapor or solution) to the equilibrium concentration at which the phase transition (like condensation or crystallization) would naturally occur.

- If the saturation ratio is less than 1, the environment is undersaturated, meaning that molecules are more likely to remain in their dispersed state rather than aggregate. Under these conditions, nucleation is unlikely because the energy barrier for forming a stable nucleus is too high.
- If the saturation ratio is exactly 1, the system is in equilibrium, and while nucleation can occur, it will do so at a much slower rate because the energy barrier is still significant.
- When the saturation ratio is greater than 1, the environment is supersaturated. In this state, the energy barrier for nucleation decreases, making it easier for molecular clusters to reach the critical size and become stable. The higher the saturation ratio, the more likely it is that nucleation will occur, and the faster the process will proceed. $S = \frac{p_A}{p_A^5} = \frac{p_A}{p_A^5}$
 - S>1 large clusters can be formed, some of them exceed a critical size, grow rapidly to form a stable condensed phase.

Formation: nucleation

Homogeneous nucleation

 does only occur when the vapor phase of this species is supersaturated with respect to the condensed phase of this specie

Heterogeneous nucleation

- the energy barrier for stable nucleus formation is reduced
- enables gas-to-particle conversion at even lower supersaturation
- Nucleation on an Insoluble Foreign Surface
- Ion-Induced Nucleation

Homogeneous nucleation occurs uniformly throughout the volume of a pure substance, requiring higher levels of supersaturation or supercooling to overcome a higher energy barrier, as it lacks any surfaces or impurities to facilitate the process. In contrast, heterogeneous nucleation takes place at specific sites such as surfaces, container walls, or impurities, where the presence of these interfaces lowers the energy barrier, allowing nucleation to occur more easily and at lower levels of supersaturation or supercooling. As a result, homogeneous nucleation is less common and requires more extreme conditions, while heterogeneous nucleation is more prevalent in natural and industrial contexts.

Growth: coagulation

Coagulation of UFPs

- The coagulation phenomenon is a **growth process of** particles characterized by the union of the particles themselves following their relative movement
- Consequent decrease in the number and surface area concentration (not mass)
- The collision, which causes coagulation phenomena, can be due to Brownian motions (thermal coagulation) or to external forces (gravitational, inertial, electrical, etc.; kinematic coagulation)

Growth: condensation

Condensation for sub-micron particles

- Condensation processes usually require a **supersaturated vapor** and a surface for the vapor to condense onto, e.g. existing aerosol particles
- For particles smaller than the gas mean free path (λ = 66 nm) the kinetic theory of gases gives us for the number of molecules colliding with particles per unit time and unit volume

Dynamics: particle motion

Drag force

Stokes's law: describes the drag force on a spherical particle of diameter d_p that travels through a gas of viscosity η with velocity u_{∞} (Re<<1)

Dynamics: particle motion

Drag force

- One of the assumptions for the derivation of Stokes's law is that the relative velocity of the gas at the surface of the aerosol particle is zero (*no slip condition*). This assumption is valid for large particles where we can treat the surrounding air like a homogeneous fluid
- Particles smaller than about 1 μ m in diameter, especially nanoparticles, settle significantly faster than predicted by Stokes's law. This is caused by the 'slip' at the surface of the particle when the particle size approaches the dimension of the mean free path. A correction factor to account for this effect was determined by Cunningham and is called Cunningham slip correction factor C_c.

	d_p (μ m)	C_c
	0.001	216
	0.005	43.6
$3\pi n \mu d$	0.01	4.95
$Snn u_{\infty} u_{p}$	0.1	2.85
\overline{C}	0.5	1.32
C_c	1.0	1.16
	5.0	1.03
	10.0	1.01

 $F_d =$

Newton's laws and conservation of momentum

- a body tends to preserve its state of inertia
- the rate of change of the momentum of a body is equal to the net force acting on the body

Settling for	Size	Settling velocity	Relaxation time	velocity
Drag force	(µm)	(m/s)	(s)	
	0.3	4.16E - 06	4.24E - 07	*settling velocity at
	1	3.44E - 05	3.50E - 06	the equilibrium
	2.5	1.96E - 04	2.00E - 05	between forces
• <i>Relaxa</i> in exte	5 7.5 10	7.61E - 04 1.69E - 03 3.00E - 03	7.76E - 05 1.73E - 04 3.06E - 04	nges $\tau = \frac{m_p C_c}{3\pi\eta d_p}$
 stopping starting reaches 	20 g from an initial speed s the equilibrium veloci	1.19E - 02 due to the application ty	1.21E – 03 or an external for	then, ce, it $s_p = \frac{\rho_p d_p^2 C_c v_0}{18\eta}$

The Stokes number (St) is a dimensionless number used in fluid dynamics to characterize the behavior of particles suspended in a fluid flow. It is defined as the ratio of the particle's relaxation time to a characteristic time scale of the flow. The Stokes number is given by:

 $\mathrm{St} = rac{ au_p}{ au_f}$

Where:

- τ_p is the particle relaxation time, which represents the time it takes for a particle to adjust to changes in the fluid flow. It depends on the particle's size, density, and the viscosity of the fluid.
- au_f is the characteristic time scale of the fluid flow, typically related to the flow's velocity and a characteristic length scale (such as the size of an obstacle or the distance over which the flow changes).

The Stokes number indicates how well particles can follow the flow of the fluid:

- St ≪ 1: Particles closely follow the fluid flow, as their relaxation time is much smaller than the flow time scale.
- St ≫ 1: Particles are less influenced by the fluid flow and tend to continue moving in their original direction rather than following the flow.

Stokes number and impaction

Stokes number gives direct information about the behavior of the obstacle.

 Stk >> 1 The particle will not be able to stop within a distance obstacle, which also will be the dimension of the change of consequence the particle will travel in a straight line and streamlines.

Electrical forces

Equilibrium between drag forces and electrical forces...

Terminal velocity in an electric field

$$q\vec{E} \qquad m_p \frac{d\vec{v}}{dt} = \frac{3\pi\eta d_p}{C_c} (\vec{u} - \vec{v}) + q\vec{E} \qquad v_{te} = \frac{q E C_c}{3\pi\eta d_p}$$

electrical mobility Z_p gives the velocity of the particle in an external electrical field v_{te} of certain strength E

 $\vec{F}_{i} =$

$$v_{te} = Z_p E \qquad Z_p = \frac{q C_c}{3 \pi \eta d_p}$$

TABLE 15.2Electrical Mobility of Electrons, Ions, andAerosol Particles at Standard Conditions

Particle Diameter	Electrical Mobility (m ² /V · s) ^a			
(μm)	Singly Charged	Maximum Charge ^b		
Electron	6.7×10^{-2}			
Negative air ion	1.6×10^{-4}			
Positive air ion	1.4 × 10 ⁻⁴			
0.01	2.1 × 10 ⁻⁶	7.3 × 10 ⁻⁴		
0.1	2.7 × 10 ^{−8}	9.3 × 10 ⁻⁴		
1.0	1.1 × 10−9	$(2.5 \times 10^{-3})^{\circ}$		
10	9.7 × 10 ^{−11}	$(6.7 \times 10^{-3})^{\circ}$		
100	9.3 × 10 ⁻¹²	(1.1 × 10 ⁻²)°		

Dynamics: equivalent diameters

Equivalent diameters

equivalent diameters are defined as those of **spherical particles that would behave the same** as the measured particle in a particular measurement coture. Since there are a large variety of Sphere of same equivalent particle ways to measure parti Sphere of same minimum length maximum length diameters. Sphere of same weight a_{min} d., d max Aerodynamic equivalent Sphere of same diameter of a particle is of unit density ($\rho = 1$ volume Sphere having same dsed sedimentation rate g/cm3) that has the sam Stokes's Aerodynamic equivalent equivalent D_a sphere sphere Sphere of same Small particle surface area Sphere passing same asieve wiht high density $d_{s} = 4.3 \, \mu m$ sieve aperture $\rho_0 = 4 \text{g/cm}^3$ $d_{a} = 8.6 \, \mu m$ $\rho_p = 1 \text{g/cm}^3$ Equivalent electrical mobility diameter diameter of a particle of unit density that has the

 $V_{TS} = 0.22 \text{ cm/s}$

 $V_{TS} = 0.22 \text{ cm/s}$

 $V_{TS} = 0.22 \text{ cm/s}$

same electrical mobility (Z) as the particle under examination.

Dynamics: Diffusion

net flux or diffusion flux of particles is a result of the concentration gradient

Brownian Motion

- Particles suspended in surrounding air are continuously bombarded by gas molecules.
- In every collision inertia is transferred from the gas molecule to the aerosol particle, changing the direction of motion of the particle.
- This transfer of inertia together with the statistical distribution of the gas molecules colliding with the particles results in a 'random walk' of the particles (Brownian motion).

$$m_p \frac{d\vec{v}}{dt} = -\frac{3\pi\eta d_p}{C_c}\vec{v} + m_p\vec{a}$$

Figure 2.31: Projection of the path of (a) an air molecule and (b) of an aerosol particle of $d_p = 0.1 \mu m$ undergoing Brownian motion. For the aerosol particle the path of motion of the center of the particle is shown. (from Hinds 1999)

Dynamics: Diffusion

- net flux or diffusion flux of particles is a result of the concentration gradient
- Fick's laws
- Diffusion coefficient: the proportionality between flux and concentration gradient

Dynamics: deposition

Deposition by diffusion

- Unlike gas molecules aerosol particles (especially small ones) stick to surfaces when they collide with them
- **Surfaces are sinks** for the particles and that the particle concentration at the surface is zero.
- So close to a surface the particle concentration will have a gradient that causes a continuous diffusion flux of particles onto the surface

Particle diameter, d _p (μm)	Deposition by diffusion (part. m ⁻²)	Deposizione by gravitational settling (part. m ⁻²)	Diffusion/gravitational settling ratio
0.001	2.6×10 ⁴	0.68	3.4×10^4
0.01	2.6×10 ³	6.9	380
0.1	300	88	3.4
1.0	59	3500	0.017
10	17	3.1×10^{5}	5.5×10 ⁻⁵
100	5.5	2.5×10^{7}	2.2×10 ⁻⁷

Dynamics: deposition

Deposition in ducts, transport losses

Penetration of particle in a ducts...

Dynamics: deposition

Particle removal and deposition:

- impaction (inertia)
- diffusion
- gravitational settling
- electrostatic forces
- thermophoresis
- interception

Particle measurements

Laboratory at UNICAS

- PM samplings/measurements
 - Gravimetric samplers & heads (PM₁₀, PM_{2.5}, PM₁)
 - 1 Nanoparticle Aerosol Sampler TSI 3089
- Particle number concentration/distribution measurements
 - 2 Scanning mobility particle sizer (SMPS) TSI 3936
 - 1 Aerodynamic Particle Sizer Spectrometer (APS) TSI 3321
 - 2 CPC TSI 3775 (buthanol) + 1 CPC TSI 3750
 - 1 Fast Mobility Particle sizer (FMPS) TSI 3091
 - 1 Nanoparticle Surface Aerosol Monitor TSI 3550
 - 1 Thermodiluter for submicrometer particles
 - 1 Diluter for APS
- Generation/calibration
 - 1 monodisperse aerosol generation system (TSI 3940)
 - 1 Aerosol electrometer TSI 3068B
 - 1 Super-micron aerosol disperser Palas
- Portable instruments
 - 4 Philips Nanotracer/Testo Discmini
 - 1 CPC TSI 3007
 - 1 Nanoscan SMPS TSI 3910
 - 1 Optical Particle Sizer 3330
 - 1 DustTrak photometer 8534
 - 1 Aethalometer AE51 BC monitor

Gravimetric measurement

Measurement principle

- Particulate matter is determined through **air filtration** resulting in the **collection** of particulate matter suspended in the air.
- The final concentration of particulate matter is obtained by determining the change in mass of the filter **divided by the volume** of normalized aspirated gas (0 °C and 101325 Pa).

Experimental apparatus

- Analytical scale
- Constant flow volumetric sampler
- Filter holder
- Cellulose filter
- Connecting pipes •

Outdoor PM measurement

Sampling head (PM_1 , $PM_{2.5}$ o PM_{10}) allows a "selection" by inertial impact.

Measurement at the stack of plants

- 1. Inlet nozzle
- 2. Filter holder
- 3. Pitot tube
- 4. Temperature sensor
- 5. Temperature indicator
- 6. Static pressure measurement
- 7. Dynamic pressure measurement
- 8. Support
- 9. Cooling and gas collection system
- 10.Suction unit and gas measuring device
- 11. Manometer

Measurement at the stack of plants

Metrological issue: the **isokinetic sampling**

v_C = sampling velocity v_F = exhaust velocity

Measurement at the stack of plants

Metrological issue: the **isokinetic sampling**

 v_{c} = sampling velocity v_{F} = exhaust velocity

Measurement at the stack of plants

Metrological issue: the **isokinetic sampling**

Uncertainty budget

- weighing procedure and wrong filter conditioning can generate high PM uncertainties!
- European standards guarantee lower uncertainties than US-EPA (flow rate effect!)

Gravimetric method for UFPs?

- Reference method for PM (not for PN).
- representative only of the fraction of particles that have a significant contribution in terms of mass.

Particle counting

- The industrial need to individually select and count extremely small particles has made possible the development of optical detection techniques and the refinement of particle size classification methodologies
- The Aitken dust counters utilized heterogeneous nucleation to grow particles in order to be detected by the human eye
- The Aitken dust counters revolutionized aerosol science by allowing measurement of concentrations of particles over a broad size range!

FIG. 1. Aitken's laboratory dust counter (1888): 500 cm³ expansion flask (A) with a stage (O) for sedimented droplet counting with the aid of a magnifying glass (S). Sampling flask (G) and pump of 150-cm³ capacity for saturated air expansion (B).

Particle counting or ...?

Direct optical sizing techniques for ultrafine particles is problematic due to:

- weak optical diffraction signal of light characteristic of objects of dimensions much smaller than the wavelength of the light itself,
- non-direct proportionality of the optical properties to a particular property of the particle over the entire dimensional range of interest.

Moreover, classification techniques exploiting inertial and gravimetric methods can only be used at pressures much lower than atmospheric ones.

Thus...ultrafine particles need to be counted and classified by electrical techniques!

CPC 3775 (TSI Inc.) – Condensation Particle Counter Counting efficiency Cut-off diameter (Kelvin effect)

Electrostatic classifier

aerosol

f(N) =

The particles then enter the differential Classification according to particle electrical mobility mobility analyzer (DMA) and are separated according to their electrical mobility. Control An electric field inside the DMA influences Polydisperse -Knob Aerosol Neutralizer 3077(TSI Inc.) the flow trajectory of the charged Aerosol Kr Display Polydisperse, sub micrometer 11. particles. The DMA contains an inner 85 Aeroso passes through cylinder that is connected to a negative Neutralizer а 11. 11 Sheath bipolar charger, radioactive Impactor 11 Inlet establishing a bipolar equilibrium 11 Polydisperse • • цĿ, Aerosol In charge level on the particles 11 $n_p eC$ ΔP 11 $\frac{2\pi\varepsilon_0 D_p kT}{e^2} \ln\left(\frac{Z_{i+1}}{Z_{i-2}}\right)$ F_{viscous drag} 11 Flowmeter Heat 11 $2\frac{2\pi\varepsilon_0 D_p k_1}{2}$ Absolute Temp 11 Exchanger $\sqrt{4\pi^2 \varepsilon_0 D_p kT}$ Sensor Pressure 11 11 Excess Filter Filter Sheath Pump High Voltage Power Supply Ground - ΔP -Exhaust Monodisperse Orifice Filter Aerosol Out Bypass **Bypass** Pump

DMA 3081 (TSI Inc.)

Electrostatic classifier

- **Smaller particles**, characterized by high electrical mobility, are attracted more quickly towards the electrode, while,
- **larger particles**, with lower electrical mobility, are influenced more by the forces of the flow field and are therefore able to complete a longer trajectory in the classification region.

DMA 3081 (TSI Inc.) – Differential mobility analyzer

- The classification region is made up of two coaxial steel cylinder-electrodes: the center rod, connected to a power generator capable of providing voltages up to -10 kV 📉 Size Data Graph [PSD2PM~2.S80]
- Varying the center rod voltage varies the elec in the classification region (annular region which the particle moves.
- mobility have the correct trajectory to pass the particles within a narrow range of contract trajectory to pass the pass
- ...automatic scan of the entire size range!

Variable gh-voltage supply

20-10 000 Volts

Sheath

Fast Mobility Particle Sizer

- The FMPS[™] spectrometer performs particle size classification based on differential electrical mobility classification (as with the SMPS[™]).
- The charged aerosol enters the analyzer column near on-axis and above the central rod.
- The particles are deflected radially outward and collected on electrically isolated electrodes that Excess Flow are located at the outer wall.
- The particle number concentration is determined by measurement of the electrical current collected on a series of electrodes.

Measurement issuesAggregates1.31.41.51.61.71.8

Morphological analysis

- Idealized Aggregate theory (Lall and Friedlander, 2006)
- Fractal dimension < 2

200 nm

Measuring super-micrometric particles

Aerodynamic Particle Sizer - APS 3321 TSI Measurement range: 0.5 – 20 µm sizing and counting technique: *time-offlight*

- The APS accelerates the aerosol sample flow through an accelerating orifice.
- The aerodynamic size of a particle determines its rate of acceleration, with larger particles accelerating more slowly due to increased inertia.
- As particles exit the nozzle, they cross through two partially overlapping laser beams in the detection area.
- Peak-to-peak time-of-flight is measured with 4 nanosecond resolution for aerodynamic sizing. The amplitude of the signal is logged for light-scattering intensity.

Measuring super-micrometric particles

Aerodynamic Particle Sizer - APS 3321 TCT

Time-of-Flight Measurement Results

Every particle signal is processed in real time as one of four distinct events. The Model 3321 logs the occurrence of all events, but only Events 1 and 2 are included in size distribution results. Light-scattering intensity is recorded for Event 2 only.

Event 1

This event occurs when the signal for a small particle cannot stay above the threshold and only one crest is detected. The measurement is aborted, and the time-offlight of the particle is not recorded. However, the event is logged for concentration calculations and displayed in the <0.523-µm size channel in uncorrelated mode.

Event 2

This is a valid particle measurement. The signal stays above the threshold and two crests are detected. The time-of-flight between the two crests is recorded and the events are included in the concentration calculations.

Event 3

This event is caused by coincidence. Although the signal stays above the threshold, three or more crests are detected. Events of this type are logged but not recorded for concentration or time-of-flight.

Event 4

This event is outside the maximum range of the timer. The signal remains above the threshold until it moves outside the timer range, and only one crest is detected. A type 4 event is normally caused by large or recirculating particles. Again, the event is logged, but no time-of-flight is recorded.

Figure 4: Flow recirculation is restricted in Model 3320 APS with a redesigned eduction nozzle⁶ that is identical to the nozzle in Model 3321.

Measuring super-micrometric particles

SMPS-APS to measure PM

			Uncertainty contributio
	Uncertainty value	Distribution	$u_{m-SMPS,i}(x_i) (\mu g m^{-3})$
taw count (c')	$\pm 1/\sqrt{c_i'}$	Poisson	$1.09 \cdot 10^{-1}$
ampling flow rate* (θ)	$\pm 0.015 \text{ Lmin}^{-1}$	Normal	$3.94 \cdot 10^{-1}$
Diffusion efficiency correction (η_{diff})	$\pm 10\%$		$1.26 \cdot 10^{-1}$
CPC efficiency correction (η_{CPC})	$\pm 8\%$	Rectangular	$1.01 \cdot 10^{-1}$
MA efficiency correction (η_{DMA})	Included in volumetric diameter uncertainty		
ampling time* (t)		Negligible	
article density* (ρ_p)	$\pm 0.5 \text{ g cm}^{-3}$	Rectangular	2.68
Volumetric diameter (d_{ve})	$\pm 0.95\%$	Rectangular	$2.46 \cdot 10^{-2}$
low ratio (ϕ)		Negligible	
Combined uncertainty (u_{M-SMPS})			2.72
tatistical cover factor k			2
xpanded uncertainty (U_{M-SMPS})			5.43
otal mass concentration (M_{SMPS})			15.8
elative uncertainty			34.4%
*Fully correlated contributions			

Measurement at the stack

Sampling issues

Measurement artifacts: coagulation, nucleation e condensation! Thermo-dilution of the sampled aerosol flow

Measurement at the stack

Thermo-dilution system

Figure 3 – Exhaust Probe Rotating Disc and Thermal Conditioner (Matter Engineering).

Volatility analysis

Removing volatile amount by thermodilution

Portable instruments: photometer for PM

DustTrak photometer (TSI Inc.)

Measurement of PM fractions through **light scattering** technique.

- Sample flow passes through the inlet entering the sensing chamber; here, it is illuminated by a **sheet of laser light** (formed from a laser diode).
- A gold coated spherical mirror captures a significant fraction of the light scattered by the particles and focuses it on to a photo detector.
- The voltage across the photo detector is proportional to the mass concentration of the aerosol over a wide range of concentrations.
- The voltage is then multiplied by a calibration constant (determined from a known mass concentration, i.e. gravimetric measurement).
- The scattered light depends on the size distribution of the aerosol, refractive index, shape factor and density of the aerosol!

Portable instruments: counters for PN

Diffusion chargers

Measurement principle based on total electric charge of the particles collected.

- Particles are mixed with unipolar ions, which randomly collide with the particles by diffusion (hence the name) and transfer their charge to the particles.
- Excess ions are removed from the gas flow, the charged particles are subsequently captured in a particle filter, and a small current can be detected flowing from the filter.
- The diffusion charging process is material $v_{pl} = v_1$ independent, and thus particles of different $v_{pl} = 0$ compositions cannot be distinguished.
- The average charge q acquired by a particle in this process depends solely on its diameter.
- Lung deposited surface area of the particles estimated (for a reference worker) – semiempirical relationships

Estimating exposures and emissions in indoor environments

Well-mixed simplified approach

Mass balance

$$C_{out} \cdot Q_{in} \cdot P + ER = C_{in}(t) \cdot Q_{out} \cdot P + \frac{dN_{in}(t)}{dt}$$

Well-mixed simplified approach

Well-mixed simplified approach

Well-mixed simplified approach

Deposition

...

- Resuspension
- Removal through air purifier

 $+\frac{\text{ER}+\text{Res}}{\text{V}\cdot(\text{AER}\cdot\text{P}+k+\text{ACH}\cdot\text{Eff}_{\text{pur}})}$

 Q_{in}

Well-mixed simplified approach

- Deposition
- Resuspension
- Removal through air purifier
- Viral inactivation for viruses, λ (h⁻¹)

$$C_{in}(t) = C_{back} \cdot e^{-(AER \cdot P + k + ACH \cdot Eff_{pur} + \lambda) \cdot t} + \frac{C_{out} \cdot AER \cdot P}{AER \cdot P + k + ACH \cdot Eff_{pur} + \lambda} \left(1 - e^{-(AER \cdot P + k + ACH \cdot Eff_{pur} + \lambda) \cdot t}\right) + \frac{ER + Res}{V \cdot (AER \cdot P + k + ACH \cdot Eff_{pur} + \lambda) \cdot t}\right) = \frac{1}{\lambda + \frac{ER + Res}{V \cdot (AER \cdot P + k + ACH \cdot Eff_{pur} + \lambda) \cdot t}} = \frac{1}{\lambda + \frac{1}{\lambda + ACH \cdot Eff_{pur} + \lambda}} \left(1 - e^{-(AER \cdot P + k + ACH \cdot Eff_{pur} + \lambda) \cdot t}\right)$$

-(AER·P+k+ACH·Eff_{pur}+λ)·t = "removal rate

Estimating the emission factor/emission rate

Quantifying the emission of indoor sources

Mass balance approach

- Emission rate (emission per unit time)
- Emission factor (emission per unit mass, quantity...)

Research at UNICAS

Research studies

From emission to risk...and feedback

"Tossicità"

Dose

Outdoor sources

Incinerator plants

- At the stack
- Filter efficiency

Outdoor sources

Incinerator plants

- Thermodilution
- Measurement artifacts

Outdoor sources

Incinerator plants

Results

Plant equipped with Electrostatic filters: 3.0×10^5 part. cm⁻³.
Incinerator plants

Results

Fabric filter efficiency for UFPs > 99.99%;

Thermal plants for residential heating

Boilers (LPG and methane) Condensing Boilers (LPG and methane) Pellet Stoves

Thermal plants for residential heating Concentrations

Thermal plants for residential heating Distributions

Urban areas

Mobile platform to measure concentrations and distributions

Urban areas

Street canyon

Urban areas

- canyon effect
- Proximity effect
- Concentration gradient of UFPs

1.00E+06

buildingside

CFD studies

CFD analysis of particle dispersion in street-canyons...and industrial areas

Cooking activities

Concentrations and distribution Different cooking activities Different types of food Emission rate

Volatility analysis

Summary of the emission factors for generated using a gas stove at maximum power for the frying of 50 g of chips: emission factor (EF), peak value (PV) and mode diameter (MD) for number (N), surface area (S) and mass (M).

	Olive oil	Peanut oil	Sunflower oil (specific for frying)
NEF (part. min ⁻¹) SEF (μm ² min ⁻¹) MEF (μg min ⁻¹) NPV (part. cm ⁻³) SPV (nm ² cm ⁻³) MPV (μg m ⁻³) NMD (nm) Geometric standard deviation (nm)	$\begin{array}{c} 1.8 \times 10^{12} \\ 2.5 \times 10^5 \\ 2.8 \times 10^3 \\ 1.2 \times 10^5 \\ 1.1 \times 10^{10} \\ 118 \\ 61.5 \\ 1.91 \end{array}$	$\begin{array}{c} 2.3 \times 10^{12} \\ 1.6 \times 10^5 \\ 1.8 \times 10^3 \\ 1.2 \times 10^5 \\ 6.8 \times 10^9 \\ 68 \\ 49.6 \\ 1.82 \end{array}$	$ \begin{array}{c} 1.1 \times 10^{12} \\ 1.2 \times 10^{5} \\ 1.2 \times 10^{3} \\ 1.1 \times 10^{5} \\ 6.0 \times 10^{9} \\ 60 \\ 49.6 \\ 1.80 \\ \end{array} $

Summary of the size distribution of aerosols generated using a gas stove at maximum power when grilling cheese, wurstel (pork meat), bacon and eggplants (vegetable). Emission factor (EF), peak value (PV) and mode diameter (MD) for number (N), surface area (S) and mass (M).

	Cheese	Wurstel	Bacon	Eggplants
NEF (part. min ⁻¹)	3.4×10^{12}	3.1×10^{12}	2.8×10^{12}	2.6×10^{12}
SEF ($\mu m^2 min^{-1}$)	1.6×10^{5}	1.8×10^5	2.3×10^5	4.8×10^4
MEF ($\mu g min^{-1}$)	9.5×10^{3}	1.0×10^4	1.2×10^{4}	5.2×10^{2}
NPV (part. cm ⁻³)	1.1×10^{5}	1.3×10^{5}	1.0×10^{5}	1.2×10^{5}
SPV (nm ² cm ^{-3})	4.6×10^{9}	5.8×10^{9}	$9.8 imes 10^9$	2.8×10^9
MPV ($\mu g m^{-3}$)	283	352	389	78
NMD (nm)	41	43	49	29

Size-resolved chemical analysis of freshly emitted particles

Incenses candles Mosquito coils Cooking activities

Figure 1 – Particle mass distributions, normalized to the total concentration, measured during combustion of candles (a), incenses (b), mosquito coils (c), and grilling bacon (d) through the ELPI+™: solid lines represent average distributions, dashed lines represent standard deviations of the measured distributions.

Size-resolved chemical analysis of freshly emitted particles

Other sources (no combustion): nucleation

Cleaning products

• Chemical reactions induced by ozone and volatile organic compounds (VOCs) produce multi-oxygenated compounds (e.g. dicarbonyls, peroxides) that, after condensations,

Outdoor exposure

Urban areas

Concentration gradients in urban areas

Table 5

Number of road links' sides (over 16 investigated) having concentrations statistically larger than the simultaneous background levels in terms of particle number (N), alveolar-deposited surface area (S), and PM₁₀.

Date	Run	Ν	S	PM ₁₀
27-Jan	1	9 of 16	11 of 16	_
5	2	8 of 16	4 of 16	_
	3	3 of 16	5 of 16	_
	4	4 of 16	5 of 16	_
19-Feb	1	8 of 16	4 of 16	2 of 16
	2	2 of 16	3 of 16	2 of 16
Median Heating season		8 of 16	3 of 16	2 of 16
5-May	1	7 of 16	10 of 16	6 of 16
14-May	1	9 of 16	6 of 16	5 of 16
24-Jun	1	7 of 16	8 of 16	_
25-Jun	1	2 of 16	13 of 16	_
	2	8 of 16	12 of 16	_
29-Jun	1	9 of 16	8 of 16	-
Median Non-hea season	iting	6 of 16	10 of 16	5 of 16

Outdoor exposure

Incinerators vs. streets/roads

Emission of residential heating systems State-of-art & Open questions

- Biomass-burning emission in outdoors
- Indoors?
- Ultrafine Particles?
- Exposure assessment?
- Dose?
- Risk?

Aim of the research

- Indoor exposure
 - Open and closed fireplaces, pellet stoves
 - N, S, PM₁₀
 - Carcinogenic compounds
- Dose and risk estimate

Emission of residential heating systems Methodology

Measurment of the exposure in 30 houses (10 per each heating system)

- Apparatus hand-held monitors:
- diffusion charging counter (particle number & lung-deposited surface area)
- laser photometer (PM₁₀).
- Procedure:
 - 30-60 min of background concentrations (no other sources),
 - 2-4 h of measurement during the combustion phenomena (no other sources).

Carcinogenic compound on PM10

Quantification of di As, Cd, Ni, BaP (Group 1 IARC)

- \bullet Gravimetric sampling (PM_{10}) emitted by wood and pellet
- GC/MS for BaP
- INAA technique for heavy metals.

Emission of residential heating systems Results

Concentrations and «over-exposure»

Emission of residential heating systems Results

Extra-doses

Maximum

Emission of residential heating systems Results Toxicity and risk

$$SF_m = \sum_{i}^{n} SF_i \cdot \frac{m_i}{PM_{10}}$$

	Wood	Pellet
m _{BaP} /PM ₁₀	6.2±0.7×10 ⁻⁵	4.0±0.3×10 ⁻⁶
m _{As} /PM ₁₀	< LOD	9.0±1.8×10 ⁻⁵
m _{Cd} /PM ₁₀	2.4±0.5×10 ⁻⁴	4.3±0.9×10 ⁻⁴
m _{Ni} /PM ₁₀	7.2±1.4×10 ⁻³	1.2±0.2×10 ⁻²
SF _m	6.9±1.3×10 ⁻³	1.3±0.2×10 ⁻²
Contribution to the SF _m	BaP=4%, As<1%, Cd=2%, Ni=94%	BaP<1%, As=11%, Cd=2%, Ni=87%

	Open fireplaces	Closed fireplaces	Pellet stove
Lifetime ELCR _{extra}	9.0×10 ⁻³	1.1×10 ⁻³	1.4×10 ⁻³
LDSA contribution	99.97%	99.93%	99.93%
PM ₁₀ contribution	0.03%	0.07%	0.07%
tolerable risk EPA-WHO = 1×10 ⁻⁵ (1 new case per 100000 people)			

comparison		
Exposure scenario	Risk	
Italian not smoking pop.	≈2×10 ⁻²	
Smokers	≈1-5×10 ⁻¹	
Italian students (5 yrs)	≈2×10 ⁻⁴	
Downwind of incinerator	≈7×10 ⁻⁷	

Measurement at "personal" scale

- Portable counters (Italia, Ghana, Bhutan, Australia, Brasile, Egitto, Inghilterra, Svezia, Spagna, etc.)
- Children schools
- Adults

Measurement at "personal" scale

- Lifestyle effect
- Average exposure or housewives 30-40% higher than workers
- Cooking contribution to the exposure

Exposure in schools: emission vs. ventilation

- Measurements of PM₁₀, Number concentrations, CO₂
- Naturally-ventilated classrooms (pre-retrofit)

Diffusion Charger Particle Counter

DustTrak photometer Non-dispersive infrared 8534: PM₁₀ analyzer: CO₂, T & RH

Exposure in schools: emission vs. ventilation

- Measurements of PM₁₀, Number concentrations, CO₂
- Naturally-ventilated classrooms (post-retrofit)

Manual airing reduces CO₂ (and indoor-generated gaseous pollutants) but increases submicrometric particles (effect on PM₁₀ negligible)

Air Currents

Exposure in schools: emission vs. ventilation

- Measurements of PM₁₀, Number concentrations, CO₂
- Mechanical ventilated classrooms (post-retrofit)

Exposure in schools: emission vs. ventilation

• Measurements of PM₁₀, Number concentrations, CO₂

Mechanical ventilated classrooms (post-retrofit)

Exposure in schools: air purifiers School gyms in Barcelona

Dose estimate from personal monitoring

Dose

Dose estimate from personal monitoring

Age and activity effects

Dose estimate from personal monitoring

Different populations and lifestyles: western countries

City	Daily Dose (mm ²)
Cassino (Italy)	1114-1873
London (UK)	1083-1521
Barcelona (Spain)	606-763
Brisbane (Aus)	570-782
Lund (Sweden)	52-123

Dose estimate from personal monitoring

Different populations and lifestyles: western countries...and other countries (e.g. low-income

countries)

- Worse outdoor air quality
- Worse air quality while sleer in the sleer while sleer in the sleer
- Cooking & Eating (just 8%-1⁵

Total doses:

- 1300 mm² for Egyptians
- 1100 mm² for Ghanaians
- 750 mm² for Kazakhstanis
- 450 mm² for Brazilians

Lung cancer risk estimate (applying models) excess lifetime cancer risk (ELCR)

Dose

Cd

Ni

$c_f = 6.6 \times 10^{-13} \text{ mg nm}^{-2}$ (Sze-To *et al.*, 2012) Risk = Toxicity × Dose equivalent toxicity of the particle surface area metric expressed as particle mass Daily extra-doses in LDSA and PM₁₀ $ELCR_{extra} = \frac{1}{BW} \left(\sum_{i}^{n} SF_{i} \cdot \frac{m_{i}}{PM_{10}} \right) \cdot \left[c_{f} \cdot \delta_{Al\nu+TB} + \delta_{PM_{10}} \right] \cdot N_{day}$ Body weight (70 kg) Total exposure period (days per year) SF: inhalation slope factor (lifetime cancer potency) mass concentration of the *i*-th the percent increase in the risk of getting cancer associated with pollutant present on the PM₁₀ exposure to a unit concentration of a chemical every day for a lifetime, here assumed equal to 70 years $SF_m = \sum_i^n SF_i \cdot \frac{M_i}{PM_{10}}$ SF (kg day mg⁻¹) Chemical Response BaP 3.9 **SF of the mixture** of the *n* As 15.1 carcinogenic pollutants on PM₁₀

6.3

0.91
Lung cancer risk estimate (applying models) Italian population

WHO guideline: ELCR < 1×10⁻⁵ (one new case for 100 000 people)

Exposure	ELCR
Avarage Italian population	1.9×10 ⁻²
Avarage Italian population with air quality	1.5×10 ⁻²
Avarage Italian population with quality	1.3×10 ⁻⁴
Smokers	>1×10 ⁻¹
Vapers	1×10 ⁻⁴

Toxicity (In vitro) analysis of PM_{10} emitted by combustion

Different biomass sources (pellet, wood, charcoal)

- Heavy metals is crucial in inducing acute effects related to cytoxicity and genotoxicity
- PAHs are responsible for the induction of the xenobiotic metabolizing systems and the

Cardiovascular effects

Exposure to UFPs and heart rate

- 50 volunteers
- Measurement of exposure to UFPs
- Measurement of heart rate and activities (wearable H
- statistical linear mixed model to fit the experimental

Performances of athletes

Effect of the exposure to airborne particles on the physical performances achieved by athletes

Reduction of the mechanical efficiency (oxygen uptake, peak heart rate and required metabolic power)

Lung function & airways inflammation (Children)

• spirometry: an increase in daily alveolar deposited surface area dose was related to FEV₁ and FEF₂₅₋₇₅, respectively (i.e. *small airway obstruction*)

• eNO test : **eNO** increase with particle doses in allergic and asthmatic children

Effectiveness of eco-feedback in improving the indoor air quality in residential buildings: mitigation of the exposure to different airborne particle metrics State-of-art

- Occupants' behavior has a significant influence on Indoor Air Quality (IAQ) and vice-versa. Acting on behavioral change could improve the IAQ and reduce the exposure to airborne particles in indoor environments.
- A suitable approach to provoke a behavioral change is implementing "eco-feedback" strategies able to bridge the gap between the lack of awareness and the understanding how their behaviors affect the environment.
- Scientific questions on IAQ awareness to be addressed:
 - are the occupants aware of their exposure to airborne particles in their homes?
 - is it possible to make them aware through trustworthy information?
 - and, in case, are they able to mitigate their exposure to indoor-generated airborne particles?
 - how their mitigation strategies affect the different airborne particle metrics?

Effectiveness of eco-feedback in improving the indoor air quality in residential buildings: mitigation of the exposure to di Aims:

- Investigation of the IAQ awa
- Application of an eco-feec
 campaign and an experime behavioral changes of the concentrations, while source

estionnaire surveys;

th a **trustworthy information** the short-term the possible in reducing airborne particle

	Result
od	Effectiveness
reness onnaire of the aign)	Behavioral changes with respect to the baseline awareness survey
xposure netrics	Reduction of the exposure to airborne particles

an information campaign and an experimental

Effectiveness of eco-feedback in improving the indoor air quality in residential buildings: mitigation of the exposure to different airborne particle metric. Results:

- the investigated population **is not properly aware** of the IAQ in their homes and of their exposure to airborne particles; indeed, they perceive the indoor air quality mostly affected by the outdoor rather than possible indoor sources;
- the misperception of the IAQ also affects occupants' habits and intentions: they do not routinely use mitigation strategies while indoor sources are in operation, and, in case, their use is mainly governed by other reasons than air quality (i.e. reducing smells and relative humidity)

families involved in the eco-feedback strategy

Effectiveness of eco-feedback in improving the indoor air quality in residential buildings: mitigation of the exposure to different airborne particle metrics Results:

- the eco-feedback strategy adopted resulted successful both in terms of promoting behavioral changes of the occupants and reducing the concentration levels while airborne particle emitting sources (i.e. cooking) were in operation;
- the exposure to airborne particle metrics while cooking events measured during the experimental campaign carried out after the information campaign (follow-up period) resulted lower than the baseline exposure; relative reductions of 47% and 59% were obtained for PM₁₀ and PNC, respectively;

Relative reductions amongst median values measured during cooking activities performed within baseline and follow-up periods in the 10 homes as resulting from the quantitative analysis.

Thanks for your attention

Giorgio Buonanno

Department of Civil and Mechanical Engineering,

University of Cassino and Southern Lazio, Cassino (FR), It

Dipartimento di Ingegneria Civile e Meccanica Università di Cassino e del Lazio Meridionale