
Journal of Computational Physics 378 (2019) 686–707
Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

Physics-informed neural networks: A deep learning

framework for solving forward and inverse problems involving

nonlinear partial differential equations

M. Raissi a, P. Perdikaris b,∗, G.E. Karniadakis a

a Division of Applied Mathematics, Brown University, Providence, RI, 02912, USA
b Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA, 19104, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 13 June 2018
Received in revised form 26 October 2018
Accepted 28 October 2018
Available online 3 November 2018

Keywords:
Data-driven scientific computing
Machine learning
Predictive modeling
Runge–Kutta methods
Nonlinear dynamics

We introduce physics-informed neural networks – neural networks that are trained to solve
supervised learning tasks while respecting any given laws of physics described by general
nonlinear partial differential equations. In this work, we present our developments in the
context of solving two main classes of problems: data-driven solution and data-driven
discovery of partial differential equations. Depending on the nature and arrangement of
the available data, we devise two distinct types of algorithms, namely continuous time
and discrete time models. The first type of models forms a new family of data-efficient
spatio-temporal function approximators, while the latter type allows the use of arbitrarily
accurate implicit Runge–Kutta time stepping schemes with unlimited number of stages. The
effectiveness of the proposed framework is demonstrated through a collection of classical
problems in fluids, quantum mechanics, reaction–diffusion systems, and the propagation of
nonlinear shallow-water waves.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

With the explosive growth of available data and computing resources, recent advances in machine learning and data
analytics have yielded transformative results across diverse scientific disciplines, including image recognition [1], cognitive
science [2], and genomics [3]. However, more often than not, in the course of analyzing complex physical, biological or
engineering systems, the cost of data acquisition is prohibitive, and we are inevitably faced with the challenge of drawing
conclusions and making decisions under partial information. In this small data regime, the vast majority of state-of-the-art
machine learning techniques (e.g., deep/convolutional/recurrent neural networks) are lacking robustness and fail to provide
any guarantees of convergence.

At first sight, the task of training a deep learning algorithm to accurately identify a nonlinear map from a few – poten-
tially very high-dimensional – input and output data pairs seems at best naive. Coming to our rescue, for many cases
pertaining to the modeling of physical and biological systems, there exists a vast amount of prior knowledge that is
currently not being utilized in modern machine learning practice. Let it be the principled physical laws that govern the
time-dependent dynamics of a system, or some empirically validated rules or other domain expertise, this prior information
can act as a regularization agent that constrains the space of admissible solutions to a manageable size (e.g., in incompress-

* Corresponding author.
E-mail address: pgp@seas.upenn.edu (P. Perdikaris).
https://doi.org/10.1016/j.jcp.2018.10.045
0021-9991/© 2018 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jcp.2018.10.045
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
mailto:pgp@seas.upenn.edu
https://doi.org/10.1016/j.jcp.2018.10.045
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2018.10.045&domain=pdf

M. Raissi et al. / Journal of Computational Physics 378 (2019) 686–707 687
ible fluid dynamics problems by discarding any non realistic flow solutions that violate the conservation of mass principle).
In return, encoding such structured information into a learning algorithm results in amplifying the information content of
the data that the algorithm sees, enabling it to quickly steer itself towards the right solution and generalize well even when
only a few training examples are available.

The first glimpses of promise for exploiting structured prior information to construct data-efficient and physics-informed
learning machines have already been showcased in the recent studies of [4–6]. There, the authors employed Gaussian
process regression [7] to devise functional representations that are tailored to a given linear operator, and were able to
accurately infer solutions and provide uncertainty estimates for several prototype problems in mathematical physics. Ex-
tensions to nonlinear problems were proposed in subsequent studies by Raissi et al. [8,9] in the context of both inference
and systems identification. Despite the flexibility and mathematical elegance of Gaussian processes in encoding prior infor-
mation, the treatment of nonlinear problems introduces two important limitations. First, in [8,9] the authors had to locally
linearize any nonlinear terms in time, thus limiting the applicability of the proposed methods to discrete-time domains and
compromising the accuracy of their predictions in strongly nonlinear regimes. Secondly, the Bayesian nature of Gaussian
process regression requires certain prior assumptions that may limit the representation capacity of the model and give rise
to robustness/brittleness issues, especially for nonlinear problems [10].

2. Problem setup

In this work we take a different approach by employing deep neural networks and leverage their well known capability
as universal function approximators [11]. In this setting, we can directly tackle nonlinear problems without the need for
committing to any prior assumptions, linearization, or local time-stepping. We exploit recent developments in automatic
differentiation [12] – one of the most useful but perhaps under-utilized techniques in scientific computing – to differentiate
neural networks with respect to their input coordinates and model parameters to obtain physics-informed neural networks.
Such neural networks are constrained to respect any symmetries, invariances, or conservation principles originating from
the physical laws that govern the observed data, as modeled by general time-dependent and nonlinear partial differential
equations. This simple yet powerful construction allows us to tackle a wide range of problems in computational science and
introduces a potentially transformative technology leading to the development of new data-efficient and physics-informed
learning machines, new classes of numerical solvers for partial differential equations, as well as new data-driven approaches
for model inversion and systems identification.

The general aim of this work is to set the foundations for a new paradigm in modeling and computation that enriches
deep learning with the longstanding developments in mathematical physics. To this end, our manuscript is divided into
two parts that aim to present our developments in the context of two major classes of problems: data-driven solution
and data-driven discovery of partial differential equations. All code and data-sets accompanying this manuscript are avail-
able on GitHub at https://github .com /maziarraissi /PINNs. Throughout this work we have been using relatively simple deep
feed-forward neural networks architectures with hyperbolic tangent activation functions and no additional regularization
(e.g., L1/L2 penalties, dropout, etc.). Each numerical example in the manuscript is accompanied with a detailed discussion
about the neural network architecture we employed as well as details about its training process (e.g. optimizer, learning
rates, etc.). Finally, a comprehensive series of systematic studies that aims to demonstrate the performance of the proposed
methods is provided in Appendix A and Appendix B.

In this work, we consider parametrized and nonlinear partial differential equations of the general form

ut +N [u;λ] = 0, x ∈ �, t ∈ [0, T], (1)

where u(t, x) denotes the latent (hidden) solution, N [·; λ] is a nonlinear operator parametrized by λ, and � is a subset
of RD . This setup encapsulates a wide range of problems in mathematical physics including conservation laws, diffusion
processes, advection–diffusion–reaction systems, and kinetic equations. As a motivating example, the one dimensional Burg-
ers equation [13] corresponds to the case where N [u; λ] = λ1uux − λ2uxx and λ = (λ1, λ2). Here, the subscripts denote
partial differentiation in either time or space. Given noisy measurements of the system, we are interested in the solution
of two distinct problems. The first problem is that of inference, filtering and smoothing, or data-driven solutions of partial
differential equations [4,8] which states: given fixed model parameters λ what can be said about the unknown hidden state u(t, x)
of the system? The second problem is that of learning, system identification, or data-driven discovery of partial differential
equations [5,9,14] stating: what are the parameters λ that best describe the observed data?

3. Data-driven solutions of partial differential equations

Let us start by concentrating on the problem of computing data-driven solutions to partial differential equations (i.e., the
first problem outlined above) of the general form

ut +N [u] = 0, x ∈ �, t ∈ [0, T], (2)

where u(t, x) denotes the latent (hidden) solution, N [·] is a nonlinear differential operator, and � is a subset of RD . In
sections 3.1 and 3.2, we put forth two distinct types of algorithms, namely continuous and discrete time models, and

https://github.com/maziarraissi/PINNs

688 M. Raissi et al. / Journal of Computational Physics 378 (2019) 686–707
highlight their properties and performance through the lens of different benchmark problems. In the second part of our
study (see section 4), we shift our attention to the problem of data-driven discovery of partial differential equations [5,9,14].

3.1. Continuous time models

We define f (t, x) to be given by the left-hand-side of equation (2); i.e.,

f := ut +N [u], (3)

and proceed by approximating u(t, x) by a deep neural network. This assumption along with equation (3) result in a physics-
informed neural network f (t, x). This network can be derived by applying the chain rule for differentiating compositions of
functions using automatic differentiation [12], and has the same parameters as the network representing u(t, x), albeit with
different activation functions due to the action of the differential operator N . The shared parameters between the neural
networks u(t, x) and f (t, x) can be learned by minimizing the mean squared error loss

M S E = M S Eu + M S E f , (4)

where

M S Eu = 1

Nu

Nu∑
i=1

|u(ti
u, xi

u) − ui|2,

and

M S E f = 1

N f

N f∑
i=1

| f (ti
f , xi

f)|2.

Here, {ti
u, xi

u, ui}Nu
i=1 denote the initial and boundary training data on u(t, x) and {ti

f , x
i
f }

N f

i=1 specify the collocations points
for f (t, x). The loss M S Eu corresponds to the initial and boundary data while M S E f enforces the structure imposed by
equation (2) at a finite set of collocation points. Although similar ideas for constraining neural networks using physical laws
have been explored in previous studies [15,16], here we revisit them using modern computational tools, and apply them to
more challenging dynamic problems described by time-dependent nonlinear partial differential equations.

Here, we should underline an important distinction between this line of work and existing approaches in the literature
that elaborate on the use of machine learning in computational physics. The term physics-informed machine learning has
been also recently used by Wang et al. [17] in the context of turbulence modeling. Other examples of machine learning
approaches for predictive modeling of physical systems include [18–29]. All these approaches employ machine learning al-
gorithms like support vector machines, random forests, Gaussian processes, and feed-forward/convolutional/recurrent neural
networks merely as black-box tools. As described above, the proposed work aims to go one step further by revisiting the
construction of “custom” activation and loss functions that are tailored to the underlying differential operator. This allows
us to open the black-box by understanding and appreciating the key role played by automatic differentiation within the
deep learning field. Automatic differentiation in general, and the back-propagation algorithm in particular, is currently the
dominant approach for training deep models by taking their derivatives with respect to the parameters (e.g., weights and
biases) of the models. Here, we use the exact same automatic differentiation techniques, employed by the deep learning
community, to physics-inform neural networks by taking their derivatives with respect to their input coordinates (i.e., space
and time) where the physics is described by partial differential equations. We have empirically observed that this structured
approach introduces a regularization mechanism that allows us to use relatively simple feed-forward neural network archi-
tectures and train them with small amounts of data. The effectiveness of this simple idea may be related to the remarks
put forth by Lin, Tegmark and Rolnick [30] and raises many interesting questions to be quantitatively addressed in future
research. To this end, the proposed work draws inspiration from the early contributions of Psichogios and Ungar [16], Lagaris
et al. [15], as well as the contemporary works of Kondor [31,32], Hirn [33], and Mallat [34].

In all cases pertaining to data-driven solution of partial differential equations, the total number of training data Nu is
relatively small (a few hundred up to a few thousand points), and we chose to optimize all loss functions using L-BFGS,
a quasi-Newton, full-batch gradient-based optimization algorithm [35]. For larger data-sets, such as the data-driven model
discovery examples discussed in section 4, a more computationally efficient mini-batch setting can be readily employed
using stochastic gradient descent and its modern variants [36,37]. Despite the fact that there is no theoretical guarantee
that this procedure converges to a global minimum, our empirical evidence indicates that, if the given partial differential
equation is well-posed and its solution is unique, our method is capable of achieving good prediction accuracy given a
sufficiently expressive neural network architecture and a sufficient number of collocation points N f . This general observation
deeply relates to the resulting optimization landscape induced by the mean square error loss of equation (4), and defines
an open question for research that is in sync with recent theoretical developments in deep learning [38,39]. To this end, we
will test the robustness of the proposed methodology using a series of systematic sensitivity studies that are provided in
Appendix A and Appendix B.

M. Raissi et al. / Journal of Computational Physics 378 (2019) 686–707 689
3.1.1. Example (Schrodinger equation)
This example aims to highlight the ability of our method to handle periodic boundary conditions, complex-valued so-

lutions, as well as different types of nonlinearities in the governing partial differential equations. The one-dimensional
nonlinear Schrödinger equation is a classical field equation that is used to study quantum mechanical systems, including
nonlinear wave propagation in optical fibers and/or waveguides, Bose–Einstein condensates, and plasma waves. In optics,
the nonlinear term arises from the intensity dependent index of refraction of a given material. Similarly, the nonlinear term
for Bose–Einstein condensates is a result of the mean-field interactions of an interacting, N-body system. The nonlinear
Schrödinger equation along with periodic boundary conditions is given by

iht + 0.5hxx + |h|2h = 0, x ∈ [−5,5], t ∈ [0,π/2], (5)

h(0, x) = 2 sech(x),

h(t,−5) = h(t,5),

hx(t,−5) = hx(t,5),

where h(t, x) is the complex-valued solution. Let us define f (t, x) to be given by

f := iht + 0.5hxx + |h|2h,

and proceed by placing a complex-valued neural network prior on h(t, x). In fact, if u denotes the real part of h and v is
the imaginary part, we are placing a multi-out neural network prior on h(t, x) = [

u(t, x) v(t, x)
]
. This will result in the

complex-valued (multi-output) physic-informed neural network f (t, x). The shared parameters of the neural networks h(t, x)
and f (t, x) can be learned by minimizing the mean squared error loss

M S E = M S E0 + M S Eb + M S E f , (6)

where

M S E0 = 1

N0

N0∑
i=1

|h(0, xi
0) − hi

0|2,

M S Eb = 1

Nb

Nb∑
i=1

(
|hi(ti

b,−5) − hi(ti
b,5)|2 + |hi

x(t
i
b,−5) − hi

x(t
i
b,5)|2

)
,

and

M S E f = 1

N f

N f∑
i=1

| f (ti
f , xi

f)|2.

Here, {xi
0, h

i
0}N0

i=1 denotes the initial data, {ti
b}Nb

i=1 corresponds to the collocation points on the boundary, and {ti
f , x

i
f }

N f

i=1
represents the collocation points on f (t, x). Consequently, M S E0 corresponds to the loss on the initial data, M S Eb enforces
the periodic boundary conditions, and M S E f penalizes the Schrödinger equation not being satisfied on the collocation
points.

In order to assess the accuracy of our method, we have simulated equation (5) using conventional spectral methods
to create a high-resolution data set. Specifically, starting from an initial state h(0, x) = 2 sech(x) and assuming periodic
boundary conditions h(t, −5) = h(t, 5) and hx(t, −5) = hx(t, 5), we have integrated equation (5) up to a final time t = π/2
using the Chebfun package [40] with a spectral Fourier discretization with 256 modes and a fourth-order explicit Runge–
Kutta temporal integrator with time-step �t = π/2 · 10−6. Under our data-driven setting, all we observe are measurements
{xi

0, h
i
0}N0

i=1 of the latent function h(t, x) at time t = 0. In particular, the training set consists of a total of N0 = 50 data
points on h(0, x) randomly parsed from the full high-resolution data-set, as well as Nb = 50 randomly sampled collocation
points {ti

b}Nb
i=1 for enforcing the periodic boundaries. Moreover, we have assumed N f = 20,000 randomly sampled colloca-

tion points used to enforce equation (5) inside the solution domain. All randomly sampled point locations were generated
using a space filling Latin Hypercube Sampling strategy [41].

Here our goal is to infer the entire spatio-temporal solution h(t, x) of the Schrödinger equation (5). We chose to jointly
represent the latent function h(t, x) = [u(t, x) v(t, x)] using a 5-layer deep neural network with 100 neurons per layer and
a hyperbolic tangent activation function. In general, the neural network should be given sufficient approximation capacity
in order to accommodate the anticipated complexity of u(t, x). Although more systematic procedures such as Bayesian
optimization [42] can be employed in order to fine-tune the design of the neural network, in the absence of theoretical
error/convergence estimates, the interplay between the neural architecture/training procedure and the complexity of the
underlying differential equation is still poorly understood. One viable path towards assessing the accuracy of the predicted

690 M. Raissi et al. / Journal of Computational Physics 378 (2019) 686–707
Fig. 1. Schrodinger equation: Top: Predicted solution |h(t, x)| along with the initial and boundary training data. In addition we are using 20,000 collocation
points generated using a Latin Hypercube Sampling strategy. Bottom: Comparison of the predicted and exact solutions corresponding to the three temporal
snapshots depicted by the dashed vertical lines in the top panel. The relative L2 error for this case is 1.97 · 10−3.

solution could come by adopting a Bayesian approach and monitoring the variance of the predictive posterior distribution,
but this goes beyond the scope of the present work and will be investigated in future studies.

In this example, our setup aims to highlight the robustness of the proposed method with respect to the well known
issue of over-fitting. Specifically, the term in M S E f in equation (6) acts as a regularization mechanism that penalizes
solutions that do not satisfy equation (5). Therefore, a key property of physics-informed neural networks is that they can be
effectively trained using small data sets; a setting often encountered in the study of physical systems for which the cost
of data acquisition may be prohibitive. Fig. 1 summarizes the results of our experiment. Specifically, the top panel of Fig. 1
shows the magnitude of the predicted spatio-temporal solution |h(t, x)| = √

u2(t, x) + v2(t, x), along with the locations of
the initial and boundary training data. The resulting prediction error is validated against the test data for this problem, and
is measured at 1.97 · 10−3 in the relative L2-norm. A more detailed assessment of the predicted solution is presented in the
bottom panel of Fig. 1. In particular, we present a comparison between the exact and the predicted solutions at different
time instants t = 0.59, 0.79, 0.98. Using only a handful of initial data, the physics-informed neural network can accurately
capture the intricate nonlinear behavior of the Schrödinger equation.

One potential limitation of the continuous time neural network models considered so far stems from the need to use a
large number of collocation points N f in order to enforce physics-informed constraints in the entire spatio-temporal domain.
Although this poses no significant issues for problems in one or two spatial dimensions, it may introduce a severe bottleneck
in higher dimensional problems, as the total number of collocation points needed to globally enforce a physics-informed
constrain (i.e., in our case a partial differential equation) will increase exponentially. Although this limitation could be
addressed to some extend using sparse grid or quasi Monte-Carlo sampling schemes [43,44], in the next section, we put
forth a different approach that circumvents the need for collocation points by introducing a more structured neural network
representation leveraging the classical Runge–Kutta time-stepping schemes [45].

3.2. Discrete time models

Let us apply the general form of Runge–Kutta methods with q stages [45] to equation (2) and obtain

un+ci = un − �t
∑q

j=1 aijN [un+c j], i = 1, . . . ,q,

un+1 = un − �t
∑q

j=1 b jN [un+c j]. (7)

Here, un+c j (x) = u(tn + c j�t, x) for j = 1, . . . , q. This general form encapsulates both implicit and explicit time-stepping
schemes, depending on the choice of the parameters {aij, b j, c j}. Equations (7) can be equivalently expressed as

un = un
i , i = 1, . . . ,q,

un = un
q+1,

(8)

where

un
i := un+ci + �t

∑q
j=1 aijN [un+c j], i = 1, . . . ,q,

un := un+1 + �t
∑q b jN [un+c j]. (9)
q+1 j=1

M. Raissi et al. / Journal of Computational Physics 378 (2019) 686–707 691
We proceed by placing a multi-output neural network prior on
[

un+c1(x), . . . , un+cq (x), un+1(x)
]
. (10)

This prior assumption along with equations (9) result in a physics-informed neural network that takes x as an input and
outputs

[
un

1(x), . . . , un
q(x), un

q+1(x)
]
. (11)

3.2.1. Example (Allen–Cahn equation)
This example aims to highlight the ability of the proposed discrete time models to handle different types of nonlinearity

in the governing partial differential equation. To this end, let us consider the Allen–Cahn equation along with periodic
boundary conditions

ut − 0.0001uxx + 5u3 − 5u = 0, x ∈ [−1,1], t ∈ [0,1], (12)

u(0, x) = x2 cos(πx),

u(t,−1) = u(t,1),

ux(t,−1) = ux(t,1).

The Allen–Cahn equation is a well-known equation from the area of reaction–diffusion systems. It describes the process of
phase separation in multi-component alloy systems, including order-disorder transitions. For the Allen–Cahn equation, the
nonlinear operator in equation (9) is given by

N [un+c j] = −0.0001u
n+c j
xx + 5

(
un+c j

)3 − 5un+c j ,

and the shared parameters of the neural networks (10) and (11) can be learned by minimizing the sum of squared errors

S S E = S S En + S S Eb, (13)

where

S S En =
q+1∑
j=1

Nn∑
i=1

|un
j (xn,i) − un,i|2,

and

S S Eb =
q∑

i=1

|un+ci (−1) − un+ci (1)|2 + |un+1(−1) − un+1(1)|2

+
q∑

i=1

|un+ci
x (−1) − un+ci

x (1)|2 + |un+1
x (−1) − un+1

x (1)|2.

Here, {xn,i, un,i}Nn
i=1 corresponds to the data at time-step tn . In classical numerical analysis, these time-steps are usually

confined to be small due to stability constraints for explicit schemes or computational complexity constrains for implicit
formulations [45]. These constraints become more severe as the total number of Runge–Kutta stages q is increased, and, for
most problems of practical interest, one needs to take thousands to millions of such steps until the solution is resolved up
to a desired final time. In sharp contrast to classical methods, here we can employ implicit Runge–Kutta schemes with an
arbitrarily large number of stages at effectively very little extra cost.1 This enables us to take very large time steps while
retaining stability and high predictive accuracy, therefore allowing us to resolve the entire spatio-temporal solution in a
single step.

In this example, we have generated a training and test data-set set by simulating the Allen–Cahn equation (12) using
conventional spectral methods. Specifically, starting from an initial condition u(0, x) = x2 cos(πx) and assuming periodic
boundary conditions u(t, −1) = u(t, 1) and ux(t, −1) = ux(t, 1), we have integrated equation (12) up to a final time t = 1.0
using the Chebfun package [40] with a spectral Fourier discretization with 512 modes and a fourth-order explicit Runge–
Kutta temporal integrator with time-step �t = 10−5.

Our training data-set consists of Nn = 200 initial data points that are randomly sub-sampled from the exact solution at
time t = 0.1, and our goal is to predict the solution at time t = 0.9 using a single time-step with size �t = 0.8. To this
end, we employ a discrete time physics-informed neural network with 4 hidden layers and 200 neurons per layer, while the

1 To be precise, it is only the number of parameters in the last layer of the neural network that increases linearly with the total number of stages.

692 M. Raissi et al. / Journal of Computational Physics 378 (2019) 686–707
Fig. 2. Allen–Cahn equation: Top: Solution u(t, x) along with the location of the initial training snapshot at t = 0.1 and the final prediction snapshot at
t = 0.9. Bottom: Initial training data and final prediction at the snapshots depicted by the white vertical lines in the top panel. The relative L2 error for this
case is 6.99 · 10−3. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

output layer predicts 101 quantities of interest corresponding to the q = 100 Runge–Kutta stages un+ci (x), i = 1, . . . , q, and
the solution at final time un+1(x). The theoretical error estimates for this scheme predict a temporal error accumulation of
O(�t2q) [45], which in our case translates into an error way below machine precision, i.e., �t2q = 0.8200 ≈ 10−20. To our
knowledge, this is the first time that an implicit Runge–Kutta scheme of that high-order has ever been used. Remarkably,
starting from smooth initial data at t = 0.1 we can predict the nearly discontinuous solution at t = 0.9 in a single time-step
with a relative L2 error of 6.99 ·10−3, as illustrated in Fig. 2. This error is entirely attributed to the neural network’s capacity
to approximate u(t, x), as well as to the degree that the sum of squared errors loss allows interpolation of the training data.

The key parameters controlling the performance of our discrete time algorithm are the total number of Runge–Kutta
stages q and the time-step size �t . As we demonstrate in the systematic studies provided in Appendix A and Appendix B,
low-order methods, such as the case q = 1 corresponding to the classical trapezoidal rule, and the case q = 2 corresponding
to the 4th-order Gauss–Legendre method, cannot retain their predictive accuracy for large time-steps, thus mandating a
solution strategy with multiple time-steps of small size. On the other hand, the ability to push the number of Runge–Kutta
stages to 32 and even higher allows us to take very large time steps, and effectively resolve the solution in a single step
without sacrificing the accuracy of our predictions. Moreover, numerical stability is not sacrificed either as implicit Gauss–
Legendre is the only family of time-stepping schemes that remain A-stable regardless of their order, thus making them
ideal for stiff problems [45]. These properties are unprecedented for an algorithm of such implementation simplicity, and
illustrate one of the key highlights of our discrete time approach.

4. Data-driven discovery of partial differential equations

In the current part of our study, we shift our attention to the problem of data-driven discovery of partial differential
equations [5,9,14]. In sections 4.1 and 4.2, we put forth two distinct types of algorithms, namely continuous and discrete
time models, and highlight their properties and performance through the lens of various canonical problems.

4.1. Continuous time models

Let us recall equation (1) and similar to section 3.1 define f (t, x) to be given by the left-hand-side of equation (1); i.e.,

f := ut +N [u;λ]. (14)

We proceed by approximating u(t, x) by a deep neural network. This assumption along with equation (14) result in a physics-
informed neural network f (t, x). This network can be derived by applying the chain rule for differentiating compositions of

M. Raissi et al. / Journal of Computational Physics 378 (2019) 686–707 693
functions using automatic differentiation [12]. It is worth highlighting that the parameters of the differential operator λ turn
into parameters of the physics-informed neural network f (t, x).

4.1.1. Example (Navier–Stokes equation)
Our next example involves a realistic scenario of incompressible fluid flow described by the ubiquitous Navier–Stokes

equations. Navier–Stokes equations describe the physics of many phenomena of scientific and engineering interest. They
may be used to model the weather, ocean currents, water flow in a pipe and air flow around a wing. The Navier–Stokes
equations in their full and simplified forms help with the design of aircrafts and cars, the study of blood flow, the design of
power stations, the analysis of the dispersion of pollutants, and many other applications. Let us consider the Navier–Stokes
equations in two dimensions2 (2D) given explicitly by

ut + λ1(uux + vu y) = −px + λ2(uxx + u yy),

vt + λ1(uvx + v v y) = −p y + λ2(vxx + v yy),
(15)

where u(t, x, y) denotes the x-component of the velocity field, v(t, x, y) the y-component, and p(t, x, y) the pressure. Here,
λ = (λ1, λ2) are the unknown parameters. Solutions to the Navier–Stokes equations are searched in the set of divergence-free
functions; i.e.,

ux + v y = 0. (16)

This extra equation is the continuity equation for incompressible fluids that describes the conservation of mass of the fluid.
We make the assumption that

u = ψy, v = −ψx, (17)

for some latent function ψ(t, x, y).3 Under this assumption, the continuity equation (16) will be automatically satisfied.
Given noisy measurements

{ti, xi, yi, ui, vi}N
i=1

of the velocity field, we are interested in learning the parameters λ as well as the pressure p(t, x, y). We define f (t, x, y)

and g(t, x, y) to be given by

f := ut + λ1(uux + vu y) + px − λ2(uxx + u yy),

g := vt + λ1(uvx + v v y) + p y − λ2(vxx + v yy),
(18)

and proceed by jointly approximating
[
ψ(t, x, y) p(t, x, y)

]
using a single neural network with two outputs. This prior

assumption along with equations (17) and (18) results into a physics-informed neural network
[

f (t, x, y) g(t, x, y)
]
. The

parameters λ of the Navier–Stokes operator as well as the parameters of the neural networks
[
ψ(t, x, y) p(t, x, y)

]
and [

f (t, x, y) g(t, x, y)
]

can be trained by minimizing the mean squared error loss

M S E := 1

N

N∑
i=1

(
|u(ti, xi, yi) − ui|2 + |v(ti, xi, yi) − vi |2

)
+ 1

N

N∑
i=1

(
| f (ti, xi, yi)|2 + |g(ti, xi, yi)|2

)
. (19)

Here we consider the prototype problem of incompressible flow past a circular cylinder; a problem known to exhibit rich
dynamic behavior and transitions for different regimes of the Reynolds number Re = u∞D/ν . Assuming a non-dimensional
free stream velocity u∞ = 1, cylinder diameter D = 1, and kinematic viscosity ν = 0.01, the system exhibits a periodic
steady state behavior characterized by a asymmetrical vortex shedding pattern in the cylinder wake, known as the Kármán
vortex street [46].

To generate a high-resolution data set for this problem we have employed the spectral/hp-element solver NekTar [47].
Specifically, the solution domain is discretized in space by a tessellation consisting of 412 triangular elements, and within
each element the solution is approximated as a linear combination of a tenth-order hierarchical, semi-orthogonal Jacobi
polynomial expansion [47]. We have assumed a uniform free stream velocity profile imposed at the left boundary, a zero
pressure outflow condition imposed at the right boundary located 25 diameters downstream of the cylinder, and periodicity
for the top and bottom boundaries of the [−15, 25] × [−8, 8] domain. We integrate equation (15) using a third-order stiffly
stable scheme [47] until the system reaches a periodic steady state, as depicted in Fig. 3(a). In what follows, a small portion
of the resulting data-set corresponding to this steady state solution will be used for model training, while the remaining
data will be used to validate our predictions. For simplicity, we have chosen to confine our sampling in a rectangular region
downstream of cylinder as shown in Fig. 3(a).

2 It is straightforward to generalize the proposed framework to the Navier–Stokes equations in three dimensions (3D).
3 This construction can be generalized to three dimensional problems by employing the notion of vector potentials.

694 M. Raissi et al. / Journal of Computational Physics 378 (2019) 686–707
Fig. 3. Navier–Stokes equation: Top: Incompressible flow and dynamic vortex shedding past a circular cylinder at Re = 100. The spatio-temporal training data
correspond to the depicted rectangular region in the cylinder wake. Bottom: Locations of training data-points for the stream-wise and transverse velocity
components, u(t, x, y) and v(t, x, t), respectively.

Given scattered and potentially noisy data on the stream-wise u(t, x, y) and transverse v(t, x, y) velocity components,
our goal is to identify the unknown parameters λ1 and λ2, as well as to obtain a qualitatively accurate reconstruction of the
entire pressure field p(t, x, y) in the cylinder wake, which by definition can only be identified up to a constant. To this end,
we have created a training data-set by randomly sub-sampling the full high-resolution data-set. To highlight the ability of
our method to learn from scattered and scarce training data, we have chosen N = 5,000, corresponding to a mere 1% of the
total available data as illustrated in Fig. 3(b). Also plotted are representative snapshots of the predicted velocity components
u(t, x, y) and v(t, x, y) after the model was trained. The neural network architecture used here consists of 9 layers with 20
neurons in each layer.

A summary of our results for this example is presented in Fig. 4. We observe that the physics-informed neural network
is able to correctly identify the unknown parameters λ1 and λ2 with very high accuracy even when the training data was
corrupted with noise. Specifically, for the case of noise-free training data, the error in estimating λ1 and λ2 is 0.078%, and
4.67%, respectively. The predictions remain robust even when the training data are corrupted with 1% uncorrelated Gaussian
noise, returning an error of 0.17%, and 5.70%, for λ1 and λ2, respectively.

A more intriguing result stems from the network’s ability to provide a qualitatively accurate prediction of the entire
pressure field p(t, x, y) in the absence of any training data on the pressure itself. A visual comparison against the exact
pressure solution is presented in Fig. 4 for a representative pressure snapshot. Notice that the difference in magnitude
between the exact and the predicted pressure is justified by the very nature of the incompressible Navier–Stokes system, as
the pressure field is only identifiable up to a constant. This result of inferring a continuous quantity of interest from auxiliary
measurements by leveraging the underlying physics is a great example of the enhanced capabilities that physics-informed
neural networks have to offer, and highlights their potential in solving high-dimensional inverse problems.

Our approach so far assumes availability of scattered data throughout the entire spatio-temporal domain. However, in
many cases of practical interest, one may only be able to observe the system at distinct time instants. In the next section,
we introduce a different approach that tackles the data-driven discovery problem using only two data snapshots. We will
see how, by leveraging the classical Runge–Kutta time-stepping schemes, one can construct discrete time physics-informed
neural networks that can retain high predictive accuracy even when the temporal gap between the data snapshots is very
large.

4.2. Discrete time models

We begin by applying the general form of Runge–Kutta methods [45] with q stages to equation (1) and obtain

un+ci = un − �t
∑q

j=1 aijN [un+c j ;λ], i = 1, . . . ,q,

un+1 = un − �t
∑q b jN [un+c j ;λ]. (20)
j=1

M. Raissi et al. / Journal of Computational Physics 378 (2019) 686–707 695
Fig. 4. Navier–Stokes equation: Top: Predicted versus exact instantaneous pressure field p(t, x, y) at a representative time instant. By definition, the pressure
can be recovered up to a constant, hence justifying the different magnitude between the two plots. This remarkable qualitative agreement highlights the
ability of physics-informed neural networks to identify the entire pressure field, despite the fact that no data on the pressure are used during model training.
Bottom: Correct partial differential equation along with the identified one obtained by learning λ1, λ2 and p(t, x, y).

Here, un+c j (x) = u(tn + c j�t, x) is the hidden state of the system at time tn + c j�t for j = 1, . . . , q. This general form encap-
sulates both implicit and explicit time-stepping schemes, depending on the choice of the parameters {aij , b j, c j}. Equations
(20) can be equivalently expressed as

un = un
i , i = 1, . . . ,q,

un+1 = un+1
i , i = 1, . . . ,q,

(21)

where

un
i := un+ci + �t

∑q
j=1 aijN [un+c j ;λ], i = 1, . . . ,q,

un+1
i := un+ci + �t

∑q
j=1(aij − b j)N [un+c j ;λ], i = 1, . . . ,q.

(22)

We proceed by placing a multi-output neural network prior on

[
un+c1(x), . . . , un+cq (x)

]
. (23)

This prior assumption along with equations (22) result in two physics-informed neural networks

[
un

1(x), . . . , un
q(x), un

q+1(x)
]
, (24)

and

[
un+1

1 (x), . . . , un+1
q (x), un+1

q+1(x)
]
. (25)

Given noisy measurements at two distinct temporal snapshots {xn, un} and {xn+1, un+1} of the system at times tn and
tn+1, respectively, the shared parameters of the neural networks (23), (24), and (25) along with the parameters λ of the
differential operator can be trained by minimizing the sum of squared errors

S S E = S S En + S S En+1, (26)

where

S S En :=
q∑

j=1

Nn∑
i=1

|un
j (xn,i) − un,i |2,

and

S S En+1 :=
q∑

j=1

Nn+1∑
i=1

|un+1
j (xn+1,i) − un+1,i|2.

Here, xn = {
xn,i

}Nn , un = {
un,i

}Nn , xn+1 = {
xn+1,i

}Nn+1 , and un+1 = {
un+1,i

}Nn+1 .
i=1 i=1 i=1 i=1

696 M. Raissi et al. / Journal of Computational Physics 378 (2019) 686–707
4.2.1. Example (Korteweg–de Vries equation)
Our final example aims to highlight the ability of the proposed framework to handle governing partial differential equa-

tions involving higher order derivatives. Here, we consider a mathematical model of waves on shallow water surfaces; the
Korteweg–de Vries (KdV) equation. This equation can also be viewed as Burgers equation with an added dispersive term.
The KdV equation has several connections to physical problems. It describes the evolution of long one-dimensional waves in
many physical settings. Such physical settings include shallow-water waves with weakly non-linear restoring forces, long in-
ternal waves in a density-stratified ocean, ion acoustic waves in a plasma, and acoustic waves on a crystal lattice. Moreover,
the KdV equation is the governing equation of the string in the Fermi–Pasta–Ulam problem [48] in the continuum limit. The
KdV equation reads as

ut + λ1uux + λ2uxxx = 0, (27)

with (λ1, λ2) being the unknown parameters. For the KdV equation, the nonlinear operator in equations (22) is given by

N [un+c j] = λ1un+c j u
n+c j
x − λ2u

n+c j
xxx

and the shared parameters of the neural networks (23), (24), and (25) along with the parameters λ = (λ1, λ2) of the KdV
equation can be learned by minimizing the sum of squared errors (26).

To obtain a set of training and test data we simulated (27) using conventional spectral methods. Specifically, starting
from an initial condition u(0, x) = cos(πx) and assuming periodic boundary conditions, we have integrated equation (27)
up to a final time t = 1.0 using the Chebfun package [40] with a spectral Fourier discretization with 512 modes and a
fourth-order explicit Runge–Kutta temporal integrator with time-step �t = 10−6. Using this data-set, we then extract two
solution snapshots at time tn = 0.2 and tn+1 = 0.8, and randomly sub-sample them using Nn = 199 and Nn+1 = 201 to
generate a training data-set. We then use these data to train a discrete time physics-informed neural network by minimizing
the sum of squared error loss of equation (26) using L-BFGS [35]. The network architecture used here comprises of 4
hidden layers, 50 neurons per layer, and an output layer predicting the solution at the q Runge–Kutta stages, i.e., un+c j (x),
j = 1, . . . , q, where q is empirically chosen to yield a temporal error accumulation of the order of machine precision ε by
setting4

q = 0.5 logε/ log(�t), (28)

where the time-step for this example is �t = 0.6.
The results of this experiment are summarized in Fig. 5. In the top panel, we present the exact solution u(t, x), along

with the locations of the two data snapshots used for training. A more detailed overview of the exact solution and the
training data is given in the middle panel. It is worth noticing how the complex nonlinear dynamics of equation (27) causes
dramatic differences in the form of the solution between the two reported snapshots. Despite these differences, and the
large temporal gap between the two training snapshots, our method is able to correctly identify the unknown parameters
regardless of whether the training data is corrupted with noise or not. Specifically, for the case of noise-free training data,
the error in estimating λ1 and λ2 is 0.023%, and 0.006%, respectively, while the case with 1% noise in the training data
returns errors of 0.057%, and 0.017%, respectively.

5. Conclusions

We have introduced physics-informed neural networks, a new class of universal function approximators that is capable of
encoding any underlying physical laws that govern a given data-set, and can be described by partial differential equations.
In this work, we design data-driven algorithms for inferring solutions to general nonlinear partial differential equations,
and constructing computationally efficient physics-informed surrogate models. The resulting methods showcase a series of
promising results for a diverse collection of problems in computational science, and open the path for endowing deep
learning with the powerful capacity of mathematical physics to model the world around us. As deep learning technology is
continuing to grow rapidly both in terms of methodological and algorithmic developments, we believe that this is a timely
contribution that can benefit practitioners across a wide range of scientific domains. Specific applications that can readily
enjoy these benefits include, but are not limited to, data-driven forecasting of physical processes, model predictive control,
multi-physics/multi-scale modeling and simulation.

We must note however that the proposed methods should not be viewed as replacements of classical numerical methods
for solving partial differential equations (e.g., finite elements, spectral methods, etc.). Such methods have matured over
the last 50 years and, in many cases, meet the robustness and computational efficiency standards required in practice.
Our message here, as advocated in Section 3.2, is that classical methods such as the Runge–Kutta time-stepping schemes
can coexist in harmony with deep neural networks, and offer invaluable intuition in constructing structured predictive

4 This is motivated by the theoretical error estimates for implicit Runge–Kutta schemes suggesting a truncation error of O(�t2q) [45].

M. Raissi et al. / Journal of Computational Physics 378 (2019) 686–707 697
Fig. 5. KdV equation: Top: Solution u(t, x) along with the temporal locations of the two training snapshots. Middle: Training data and exact solution corre-
sponding to the two temporal snapshots depicted by the dashed vertical lines in the top panel. Bottom: Correct partial differential equation along with the
identified one obtained by learning λ1, λ2.

algorithms. Moreover, the implementation simplicity of the latter greatly favors rapid development and testing of new
ideas, potentially opening the path for a new era in data-driven scientific computing.

Although a series of promising results was presented, the reader may perhaps agree this work creates more questions
than it answers. How deep/wide should the neural network be? How much data is really needed? Why does the algorithm
converge to unique values for the parameters of the differential operators, i.e., why is the algorithm not suffering from
local optima for the parameters of the differential operator? Does the network suffer from vanishing gradients for deeper
architectures and higher order differential operators? Could this be mitigated by using different activation functions? Can we
improve on initializing the network weights or normalizing the data? Are the mean square error and the sum of squared
errors the appropriate loss functions? Why are these methods seemingly so robust to noise in the data? How can we
quantify the uncertainty associated with our predictions? Throughout this work, we have attempted to answer some of
these questions, but we have observed that specific settings that yielded impressive results for one equation could fail for
another. Admittedly, more work is needed collectively to set the foundations in this field.

In a broader context, and along the way of seeking answers to those questions, we believe that this work advocates a
fruitful synergy between machine learning and classical computational physics that has the potential to enrich both fields
and lead to high-impact developments.

Acknowledgements

This work received support by the DARPA EQUiPS grant N66001-15-2-4055 and the AFOSR grant FA9550-17-1-0013. P.
Perdikaris would also like to acknowledge support from DOE grant DE-SC0019116.

Appendix A. Data-driven solution of partial differential equations

This Appendix accompanies the main manuscript, and contains a series of systematic studies that aim to demonstrate
the performance of the proposed algorithms for problems pertaining to data-driven solution of partial differential equations.
Throughout this document, we will use the Burgers’ equation as a canonical example.

698 M. Raissi et al. / Journal of Computational Physics 378 (2019) 686–707
A.1. Continuous time models

In one space dimension, the Burger’s equation along with Dirichlet boundary conditions reads as

ut + uux − (0.01/π)uxx = 0, x ∈ [−1,1], t ∈ [0,1], (A.1)

u(0, x) = − sin(πx),

u(t,−1) = u(t,1) = 0.

Let us define f (t, x) to be given by

f := ut + uux − (0.01/π)uxx,

and proceed by approximating u(t, x) by a deep neural network. To highlight the simplicity in implementing this idea we
have included a Python code snippet using Tensorflow [49]; currently one of the most popular and well documented open
source libraries for machine learning computations. To this end, u(t, x) can be simply defined as

def u(t , x) :
u = neural_net (t f . concat ([t , x] , 1) , weights , biases)
return u

Correspondingly, the physics-informed neural network f (t, x) takes the form

def f (t , x) :
u = u(t , x)
u_t = t f . gradients (u , t) [0]
u_x = t f . gradients (u , x) [0]
u_xx = t f . gradients (u_x , x) [0]
f = u_t + u∗u_x − (0 . 0 1 / t f . pi)∗u_xx
return f

The shared parameters between the neural networks u(t, x) and f (t, x) can be learned by minimizing the mean squared
error loss

M S E = M S Eu + M S E f , (A.2)

where

M S Eu = 1

Nu

Nu∑
i=1

|u(ti
u, xi

u) − ui|2,

and

M S E f = 1

N f

N f∑
i=1

| f (ti
f , xi

f)|2.

Here, {ti
u, xi

u, ui}Nu
i=1 denote the initial and boundary training data on u(t, x) and {ti

f , x
i
f }

N f

i=1 specify the collocations points
for f (t, x). The loss M S Eu corresponds to the initial and boundary data while M S E f enforces the structure imposed by
equation (A.1) at a finite set of collocation points. Although similar ideas for constraining neural networks using physical
laws have been explored in previous studies [15,16], here we revisit them using modern computational tools, and apply
them to more challenging dynamic problems described by time-dependent nonlinear partial differential equations.

The Burgers equation is often considered as a prototype example of a hyperbolic conservation law (as ν → 0). Notice that
if we want to “fabricate” an “exact” solution to this equation we would select a solution u(t, x) (e.g., e−t sin(πx)) and obtain
the corresponding right hand side f (t, x) by differentiation. The resulting u(t, x) and f (t, x) are “guaranteed” to satisfy
the Burgers equation and conserve all associated invariances by construction. In our work, we replace u(t, x) by a neural
network u(t, x; W , b) and obtain a physics-informed neural network f (t, x; W , b) by automatic differentiation. Consequently,
the resulting pair u(t, x; W , b) and f (t, x; W , b) must satisfy the Burgers equation regardless of the choice of the weights
W and bias b parameters. Hence, at this “prior” level, i.e. before we train the networks on a given set of data, our model
should exactly preserves the continuity and momentum equations by construction. During training, given a data-set ti , xi, ui
and t j, x j, f j , we then try to find the “correct” parameters W ∗ and b∗ such that we get as good a fit as possible to both
the observed data and the differential equation residual. During this process the residual, albeit small, will not be exactly
zero, and therefore our approximation will conserve mass and momentum within the accuracy of the residual loss. Similar
behavior is observed in classical Galerkin finite element methods, while the only numerical methods that are known to have
exact conservation properties in this setting are discontinuous Galerkin and finite volumes.

M. Raissi et al. / Journal of Computational Physics 378 (2019) 686–707 699
Fig. A.6. Burgers’ equation: Top: Predicted solution u(t, x) along with the initial and boundary training data. In addition we are using 10,000 collocation
points generated using a Latin Hypercube Sampling strategy. Bottom: Comparison of the predicted and exact solutions corresponding to the three temporal
snapshots depicted by the white vertical lines in the top panel. The relative L2 error for this case is 6.7 ·10−4. Model training took approximately 60 seconds
on a single NVIDIA Titan X GPU card.

In all benchmarks considered in this work, the total number of training data Nu is relatively small (a few hundred up
to a few thousand points), and we chose to optimize all loss functions using L-BFGS a quasi-Newton, full-batch gradient-
based optimization algorithm [35]. For larger data-sets a more computationally efficient mini-batch setting can be readily
employed using stochastic gradient descent and its modern variants [36,37]. Despite the fact that there is no theoretical
guarantee that this procedure converges to a global minimum, our empirical evidence indicates that, if the given partial
differential equation is well-posed and its solution is unique, our method is capable of achieving good prediction accuracy
given a sufficiently expressive neural network architecture and a sufficient number of collocation points N f . This general ob-
servation deeply relates to the resulting optimization landscape induced by the mean square error loss of equation (4), and
defines an open question for research that is in sync with recent theoretical developments in deep learning [38,39]. Here,
we will test the robustness of the proposed methodology using a series of systematic sensitivity studies that accompany the
numerical results presented in the following.

Fig. A.6 summarizes our results for the data-driven solution of the Burgers equation. Specifically, given a set of Nu = 100
randomly distributed initial and boundary data, we learn the latent solution u(t, x) by training all 3021 parameters of a
9-layer deep neural network using the mean squared error loss of (A.2). Each hidden layer contained 20 neurons and a
hyperbolic tangent activation function. The top panel of Fig. A.6 shows the predicted spatio-temporal solution u(t, x), along
with the locations of the initial and boundary training data. We must underline that, unlike any classical numerical method
for solving partial differential equations, this prediction is obtained without any sort of discretization of the spatio-temporal
domain. The exact solution for this problem is analytically available [13], and the resulting prediction error is measured
at 6.7 · 10−4 in the relative L2-norm. Note that this error is about two orders of magnitude lower than the one reported
in our previous work on data-driven solution of partial differential equation using Gaussian processes [8]. A more detailed
assessment of the predicted solution is presented in the bottom panel of Fig. A.6. In particular, we present a comparison be-
tween the exact and the predicted solutions at different time instants t = 0.25, 0.50, 0.75. Using only a handful of initial and
boundary data, the physics-informed neural network can accurately capture the intricate nonlinear behavior of the Burgers’
equation that leads to the development of a sharp internal layer around t = 0.4. The latter is notoriously hard to accurately
resolve with classical numerical methods and requires a laborious spatio-temporal discretization of equation (A.1).

To further analyze the performance of our method, we have performed the following systematic studies to quantify its
predictive accuracy for different number of training and collocation points, as well as for different neural network archi-
tectures. In Table A.1 we report the resulting relative L2 error for different number of initial and boundary training data
Nu and different number of collocation points N f , while keeping the 9-layer network architecture fixed. The general trend
shows increased prediction accuracy as the total number of training data Nu is increased, given a sufficient number of col-
location points N f . This observation highlights a key strength of physics-informed neural networks: by encoding the structure
of the underlying physical law through the collocation points N f , one can obtain a more accurate and data-efficient learning

700 M. Raissi et al. / Journal of Computational Physics 378 (2019) 686–707
Table A.1
Burgers’ equation: Relative L2 error between the predicted and the exact solution u(t, x) for
different number of initial and boundary training data Nu , and different number of collocation
points N f . Here, the network architecture is fixed to 9 layers with 20 neurons per hidden
layer.

Nu

N f 2000 4000 6000 7000 8000 10000

20 2.9e−01 4.4e−01 8.9e−01 1.2e+00 9.9e−02 4.2e−02
40 6.5e−02 1.1e−02 5.0e−01 9.6e−03 4.6e−01 7.5e−02
60 3.6e−01 1.2e−02 1.7e−01 5.9e−03 1.9e−03 8.2e−03
80 5.5e−03 1.0e−03 3.2e−03 7.8e−03 4.9e−02 4.5e−03
100 6.6e−02 2.7e−01 7.2e−03 6.8e−04 2.2e−03 6.7e−04
200 1.5e−01 2.3e−03 8.2e−04 8.9e−04 6.1e−04 4.9e−04

Table A.2
Burgers’ equation: Relative L2 error between the predicted and the ex-
act solution u(t, x) for different number of hidden layers and different
number of neurons per layer. Here, the total number of training and
collocation points is fixed to Nu = 100 and N f = 10,000, respectively.

Layers
Neurons

10 20 40

2 7.4e−02 5.3e−02 1.0e−01
4 3.0e−03 9.4e−04 6.4e−04
6 9.6e−03 1.3e−03 6.1e−04
8 2.5e−03 9.6e−04 5.6e−04

algorithm.5 Finally, Table A.2 shows the resulting relative L2 for different number of hidden layers, and different number
of neurons per layer, while the total number of training and collocation points is kept fixed to Nu = 100 and N f = 10,000,
respectively. As expected, we observe that as the number of layers and neurons is increased (hence the capacity of the
neural network to approximate more complex functions), the predictive accuracy is increased.

A.2. Discrete time models

Let us apply the general form of Runge–Kutta methods with q stages [45] to a general equation of the form

ut +N [u] = 0, x ∈ �, t ∈ [0, T], (A.3)

and obtain

un+ci = un − �t
∑q

j=1 aijN [un+c j], i = 1, . . . ,q,

un+1 = un − �t
∑q

j=1 b jN [un+c j]. (A.4)

Here, un+c j (x) = u(tn + c j�t, x) for j = 1, . . . , q. This general form encapsulates both implicit and explicit time-stepping
schemes, depending on the choice of the parameters {aij, b j, c j}. Equations (7) can be equivalently expressed as

un = un
i , i = 1, . . . ,q,

un = un
q+1,

(A.5)

where

un
i := un+ci + �t

∑q
j=1 aijN [un+c j], i = 1, . . . ,q,

un
q+1 := un+1 + �t

∑q
j=1 b jN [un+c j]. (A.6)

We proceed by placing a multi-output neural network prior on

[
un+c1(x), . . . , un+cq (x), un+1(x)

]
. (A.7)

This prior assumption along with equations (A.6) result in a physics-informed neural network that takes x as an input and
outputs

[
un

1(x), . . . , un
q(x), un

q+1(x)
]
. (A.8)

5 Note that the case N f = 0 corresponds to a standard neural network model, i.e., a neural network that does not take into account the underlying
governing equation.

M. Raissi et al. / Journal of Computational Physics 378 (2019) 686–707 701
Table A.3
Burgers’ equation: Relative final prediction error measure in the L2

norm for different number of hidden layers and neurons in each layer.
Here, the number of Runge–Kutta stages is fixed to 500 and the time-
step size to �t = 0.8.

Layers
Neurons

10 25 50

1 4.1e−02 4.1e−02 1.5e−01
2 2.7e−03 5.0e−03 2.4e−03
3 3.6e−03 1.9e−03 9.5e−04

To highlight the key features of the discrete time representation we revisit the problem of data-driven solution of the
Burgers’ equation. For this case, the nonlinear operator in equation (A.6) is given by

N [un+c j] = un+c j u
n+c j
x − (0.01/π)u

n+c j
xx ,

and the shared parameters of the neural networks (A.7) and (A.8) can be learned by minimizing the sum of squared errors

S S E = S S En + S S Eb, (A.9)

where

S S En =
q+1∑
j=1

Nn∑
i=1

|un
j (xn,i) − un,i|2,

and

S S Eb =
q∑

i=1

(
|un+ci (−1)|2 + |un+ci (1)|2

)
+ |un+1(−1)|2 + |un+1(1)|2.

Here, {xn,i, un,i}Nn
i=1 corresponds to the data at time tn . The Runge–Kutta scheme now allows us to infer the latent solution

u(t, x) in a sequential fashion. Starting from initial data {xn,i , un,i}Nn
i=1 at time tn and data at the domain boundaries x = −1

and x = 1, we can use the aforementioned loss function (A.9) to train the networks of (A.7), (A.8), and predict the solution
at time tn+1. A Runge–Kutta time-stepping scheme would then use this prediction as initial data for the next step and
proceed to train again and predict u(tn+2, x), u(tn+3, x), etc., one step at a time.

The result of applying this process to the Burgers’ equation is presented in Fig. A.7. For illustration purposes, we start
with a set of Nn = 250 initial data at t = 0.1, and employ a physics-informed neural network induced by an implicit Runge–
Kutta scheme with 500 stages to predict the solution at time t = 0.9 in a single step. The theoretical error estimates for
this scheme predict a temporal error accumulation of O(�t2q) [45], which in our case translates into an error way below
machine precision, i.e., �t2q = 0.81000 ≈ 10−97. To our knowledge, this is the first time that an implicit Runge–Kutta scheme
of that high-order has ever been used. Remarkably, starting from smooth initial data at t = 0.1 we can predict the nearly
discontinuous solution at t = 0.9 in a single time-step with a relative L2 error of 8.2 · 10−4. This error is two orders of
magnitude lower that the one reported in [8], and it is entirely attributed to the neural network’s capacity to approximate
u(t, x), as well as to the degree that the sum of squared errors loss allows interpolation of the training data. The network
architecture used here consists of 4 layers with 50 neurons in each hidden layer.

A detailed systematic study to quantify the effect of different network architectures is presented in Table A.3. By keeping
the number of Runge–Kutta stages fixed to q = 500 and the time-step size to �t = 0.8, we have varied the number of
hidden layers and the number of neurons per layer, and monitored the resulting relative L2 error for the predicted solution
at time t = 0.9. Evidently, as the neural network capacity is increased the predictive accuracy is enhanced.

The key parameters controlling the performance of our discrete time algorithm are the total number of Runge–Kutta
stages q and the time-step size �t . In Table A.4 we summarize the results of an extensive systematic study where we
fix the network architecture to 4 hidden layers with 50 neurons per layer, and vary the number of Runge–Kutta stages q
and the time-step size �t . Specifically, we see how cases with low numbers of stages fail to yield accurate results when
the time-step size is large. For instance, the case q = 1 corresponding to the classical trapezoidal rule, and the case q = 2
corresponding to the 4th-order Gauss–Legendre method, cannot retain their predictive accuracy for time-steps larger than
0.2, thus mandating a solution strategy with multiple time-steps of small size. On the other hand, the ability to push the
number of Runge–Kutta stages to 32 and even higher allows us to take very large time steps, and effectively resolve the
solution in a single step without sacrificing the accuracy of our predictions. Moreover, numerical stability is not sacrificed
either as implicit Gauss–Legendre is the only family of time-stepping schemes that remain A-stable regardless of their order,
thus making them ideal for stiff problems [45]. These properties are unprecedented for an algorithm of such implementation
simplicity, and illustrate one of the key highlights of our discrete time approach.

702 M. Raissi et al. / Journal of Computational Physics 378 (2019) 686–707
Fig. A.7. Burgers equation: Top: Solution u(t, x) along with the location of the initial training snapshot at t = 0.1 and the final prediction snapshot at t = 0.9.
Bottom: Initial training data and final prediction at the snapshots depicted by the white vertical lines in the top panel. The relative L2 error for this case is
8.2 · 10−4.

Table A.4
Burgers’ equation: Relative final prediction error measured in the L2

norm for different number of Runge–Kutta stages q and time-step sizes
�t . Here, the network architecture is fixed to 4 hidden layers with 50
neurons in each layer.

q
�t

0.2 0.4 0.6 0.8

1 3.5e−02 1.1e−01 2.3e−01 3.8e−01
2 5.4e−03 5.1e−02 9.3e−02 2.2e−01
4 1.2e−03 1.5e−02 3.6e−02 5.4e−02
8 6.7e−04 1.8e−03 8.7e−03 5.8e−02
16 5.1e−04 7.6e−02 8.4e−04 1.1e−03
32 7.4e−04 5.2e−04 4.2e−04 7.0e−04
64 4.5e−04 4.8e−04 1.2e−03 7.8e−04
100 5.1e−04 5.7e−04 1.8e−02 1.2e−03
500 4.1e−04 3.8e−04 4.2e−04 8.2e−04

Table A.5
Burgers equation: Relative L2 error between the predicted and the exact solution
u(t, x) for different number of training data Nn . Here, we have fixed q = 500, and
used a neural network architecture with 3 hidden layers and 50 neurons per hidden
layer.

N 250 200 150 100 50 10

Error 4.02e−4 2.93e−3 9.39e−3 5.54e−2 1.77e−2 7.58e−1

Finally, in Table A.5 we provide a systematic study to quantify the accuracy of the predicted solution as we vary the
spatial resolution of the input data. As expected, increasing the total number of training data results in enhanced prediction
accuracy.

Appendix B. Data-driven discovery of partial differential equations

This Appendix accompanies the main manuscript, and contains a series of systematic studies that aim to demonstrate
the performance of the proposed algorithms for problems pertaining to data-driven discovery of partial differential equations.
Throughout this document, we will use the Burgers’ equation as a canonical example.

M. Raissi et al. / Journal of Computational Physics 378 (2019) 686–707 703
B.1. Continuous time models

As a first example, let us consider the Burgers’ equation. This equation arises in various areas of applied mathematics,
including fluid mechanics, nonlinear acoustics, gas dynamics, and traffic flow [13]. It is a fundamental partial differential
equation and can be derived from the Navier–Stokes equations for the velocity field by dropping the pressure gradient
term. For small values of the viscosity parameters, Burgers’ equation can lead to shock formation that is notoriously hard to
resolve by classical numerical methods. In one space dimension the equation reads as

ut + λ1uux − λ2uxx = 0. (B.1)

Let us define f (t, x) to be given by

f := ut + λ1uux − λ2uxx, (B.2)

and proceed by approximating u(t, x) by a deep neural network. This will result in the physics-informed neural network
f (t, x). The shared parameters of the neural networks u(t, x) and f (t, x) along with the parameters λ = (λ1, λ2) of the
differential operator can be learned by minimizing the mean squared error loss

M S E = M S Eu + M S E f , (B.3)

where

M S Eu = 1

N

N∑
i=1

|u(ti
u, xi

u) − ui |2,

and

M S E f = 1

N

N∑
i=1

| f (ti
u, xi

u)|2.

Here, {ti
u, xi

u, ui}N
i=1 denote the training data on u(t, x). The loss M S Eu corresponds to the training data on u(t, x) while

M S E f enforces the structure imposed by equation (B.1) at a finite set of collocation points, whose number and location is
taken to be the same as the training data.

To illustrate the effectiveness of our approach, we have created a training data-set by randomly generating N = 2,000
points across the entire spatio-temporal domain from the exact solution corresponding to λ1 = 1.0 and λ2 = 0.01/π . The
locations of the training points are illustrated in the top panel of Fig. B.8. This data-set is then used to train a 9-layer
deep neural network with 20 neurons per hidden layer by minimizing the mean square error loss of (B.3) using the L-
BFGS optimizer [35]. Upon training, the network is calibrated to predict the entire solution u(t, x), as well as the unknown
parameters λ = (λ1, λ2) that define the underlying dynamics. A visual assessment of the predictive accuracy of the physics-
informed neural network is given in the middle and bottom panels of Fig. B.8. The network is able to identify the underlying
partial differential equation with remarkable accuracy, even in the case where the scattered training data is corrupted with
1% uncorrelated noise.

To further scrutinize the performance of our algorithm, we have performed a systematic study with respect to the total
number of training data, the noise corruption levels, and the neural network architecture. The results are summarized in
Tables B.6 and B.7. The key observation here is that the proposed methodology appears to be very robust with respect to
noise levels in the data, and yields a reasonable identification accuracy even for noise corruption up to 10%. This enhanced
robustness seems to greatly outperform competing approaches using Gaussian process regression as previously reported in
[9] as well as approaches relying on sparse regression that require relatively clean data for accurately computing numerical
gradients [50]. We also observe some variability and non monotonic trends in Tables B.6 and B.7 as the network architecture
and total number of training points are changed. This variability could be potentially attributed to different factors pertaining
to the equation itself as well as the particular neural network setup, and gives rise to a series of questions that require
further investigation, as discussed in the concluding remarks section of this paper.

B.2. Discrete time models

Our starting point here is similar to as described in section 3.2. Now equations (7) can be equivalently expressed as

un = un
i , i = 1, . . . ,q,

un+1 = un+1
i , i = 1, . . . ,q,

(B.4)

where

704 M. Raissi et al. / Journal of Computational Physics 378 (2019) 686–707
Fig. B.8. Burgers equation: Top: Predicted solution u(t, x) along with the training data. Middle: Comparison of the predicted and exact solutions corresponding
to the three temporal snapshots depicted by the dashed vertical lines in the top panel. Bottom: Correct partial differential equation along with the identified
one obtained by learning λ1 and λ2.

Table B.6
Burgers’ equation: Percentage error in the identified parameters λ1 and λ2 for different number of
training data N corrupted by different noise levels. Here, the neural network architecture is kept fixed
to 9 layers and 20 neurons per layer.

% error in λ1 % error in λ2

Nu

Noise
0% 1% 5% 10% 0% 1% 5% 10%

500 0.131 0.518 0.118 1.319 13.885 0.483 1.708 4.058
1000 0.186 0.533 0.157 1.869 3.719 8.262 3.481 14.544
1500 0.432 0.033 0.706 0.725 3.093 1.423 0.502 3.156
2000 0.096 0.039 0.190 0.101 0.469 0.008 6.216 6.391

Table B.7
Burgers’ equation: Percentage error in the identified parameters λ1 and λ2 for different num-
ber of hidden layers and neurons per layer. Here, the training data is considered to be
noise-free and fixed to N = 2,000.

% error in λ1 % error in λ2

Layers
Neurons

10 20 40 10 20 40

2 11.696 2.837 1.679 103.919 67.055 49.186
4 0.332 0.109 0.428 4.721 1.234 6.170
6 0.668 0.629 0.118 3.144 3.123 1.158
8 0.414 0.141 0.266 8.459 1.902 1.552

un
i := un+ci + �t

∑q
j=1 aijN [un+c j ;λ], i = 1, . . . ,q,

un+1
i := un+ci + �t

∑q
j=1(aij − b j)N [un+c j ;λ], i = 1, . . . ,q.

(B.5)

We proceed by placing a multi-output neural network prior on

[
un+c1(x), . . . , un+cq (x)

]
. (B.6)

This prior assumption along with equations (22) result in two physics-informed neural networks

M. Raissi et al. / Journal of Computational Physics 378 (2019) 686–707 705
[
un

1(x), . . . , un
q(x), un

q+1(x)
]
, (B.7)

and
[

un+1
1 (x), . . . , un+1

q (x), un+1
q+1(x)

]
. (B.8)

Given noisy measurements at two distinct temporal snapshots {xn, un} and {xn+1, un+1} of the system at times tn and
tn+1, respectively, the shared parameters of the neural networks (B.6), (B.7), and (B.8) along with the parameters λ of the
differential operator can be trained by minimizing the sum of squared errors

S S E = S S En + S S En+1, (B.9)

where

S S En :=
q∑

j=1

Nn∑
i=1

|un
j (xn,i) − un,i |2,

and

S S En+1 :=
q∑

j=1

Nn+1∑
i=1

|un+1
j (xn+1,i) − un+1,i|2.

Here, xn = {
xn,i

}Nn

i=1, un = {
un,i

}Nn

i=1, xn+1 = {
xn+1,i

}Nn+1

i=1 , and un+1 = {
un+1,i

}Nn+1

i=1 .

B.3. Example (Burgers’ equation)

Let us illustrate the key features of this method through the lens of the Burgers’ equation. Recall the equation’s form

ut + λ1uux − λ2uxx = 0, (B.10)

and notice that the nonlinear spatial operator in equation (B.5) is given by

N [un+c j] = λ1un+c j u
n+c j
x − λ2u

n+c j
xx .

Given merely two training data snapshots, the shared parameters of the neural networks (B.6), (B.7), and (B.8) along with the
parameters λ = (λ1, λ2) of the Burgers’ equation can be learned by minimizing the sum of squared errors in equation (B.9).
Here, we have created a training data-set comprising of Nn = 199 and Nn+1 = 201 spatial points by randomly sampling the
exact solution at time instants tn = 0.1 and tn+1 = 0.9, respectively. The training data are shown in the top and middle panel
of Fig. B.9. The neural network architecture used here consists of 4 hidden layers with 50 neurons each, while the number
of Runge–Kutta stages is empirically chosen to yield a temporal error accumulation of the order of machine precision ε by
setting6

q = 0.5 logε/ log(�t), (B.11)

where the time-step for this example is �t = 0.8. The bottom panel of Fig. B.9 summarizes the identified parameters
λ = (λ1, λ2) for the cases of noise-free data, as well as noisy data with 1% of Gaussian uncorrelated noise corruption. For
both cases, the proposed algorithm is able to learn the correct parameter values λ1 = 1.0 and λ2 = 0.01/π with remarkable
accuracy, despite the fact that the two data snapshots used for training are very far apart, and potentially describe different
regimes of the underlying dynamics.

A sensitivity analysis is performed to quantify the accuracy of our predictions with respect to the gap between the
training snapshots �t , the noise levels in the training data, and the physics-informed neural network architecture. As shown
in Table B.8, the proposed algorithm is quite robust to both �t and the noise corruption levels, and it returns reasonable
estimates for the unknown parameters. This robustness is mainly attributed to the flexibility of the underlying implicit
Runge–Kutta scheme to admit an arbitrarily high number of stages, allowing the data snapshots to be very far apart in time,
while not compromising the accuracy with which the nonlinear dynamics of equation (B.10) are resolved. This is the key
highlight of our discrete time formulation for identification problems, setting it apart from competing approaches [9,50].
Lastly, Table B.9 presents the percentage error in the identified parameters, demonstrating the robustness of our estimates
with respect to the underlying neural network architecture. Despite the overall positive results, the variability observed
in Tables B.8 and B.9 is still largely unexplained and naturally motivates a series of questions provided in the concluding
remarks section of this paper.

6 This is motivated by the theoretical error estimates for implicit Runge–Kutta schemes suggesting a truncation error of O(�t2q) [45].

706 M. Raissi et al. / Journal of Computational Physics 378 (2019) 686–707
Fig. B.9. Burgers equation: Top: Solution u(t, x) along with the temporal locations of the two training snapshots. Middle: Training data and exact solution
corresponding to the two temporal snapshots depicted by the dashed vertical lines in the top panel. Bottom: Correct partial differential equation along with
the identified one obtained by learning λ1, λ2.

Table B.8
Burgers’ equation: Percentage error in the identified parameters λ1 and λ2 for different gap size �t
between two different snapshots and for different noise levels.

% error in λ1 % error in λ2

�t
Noise

0% 1% 5% 10% 0% 1% 5% 10%

0.2 0.002 0.435 6.073 3.273 0.151 4.982 59.314 83.969
0.4 0.001 0.119 1.679 2.985 0.088 2.816 8.396 8.377
0.6 0.002 0.064 2.096 1.383 0.090 0.068 3.493 24.321
0.8 0.010 0.221 0.097 1.233 1.918 3.215 13.479 1.621

Table B.9
Burgers’ equation: Percentage error in the identified parameters λ1 and λ2 for different number
of hidden layers and neurons in each layer.

% error in λ1 % error in λ2

Layers
Neurons

10 25 50 10 25 50

1 1.868 4.868 1.960 180.373 237.463 123.539
2 0.443 0.037 0.015 29.474 2.676 1.561
3 0.123 0.012 0.004 7.991 1.906 0.586
4 0.012 0.020 0.011 1.125 4.448 2.014

Appendix C. Supplementary material

Supplementary material related to this article can be found online at https://doi .org /10 .1016 /j .jcp .2018 .10 .045.

References

[1] A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep convolutional neural networks, in: Advances in Neural Information Processing
Systems, 2012, pp. 1097–1105.

https://doi.org/10.1016/j.jcp.2018.10.045
http://refhub.elsevier.com/S0021-9991(18)30712-5/bib6B72697A686576736B7932303132696D6167656E6574s1
http://refhub.elsevier.com/S0021-9991(18)30712-5/bib6B72697A686576736B7932303132696D6167656E6574s1

M. Raissi et al. / Journal of Computational Physics 378 (2019) 686–707 707
[2] B.M. Lake, R. Salakhutdinov, J.B. Tenenbaum, Human-level concept learning through probabilistic program induction, Science 350 (2015) 1332–1338.
[3] B. Alipanahi, A. Delong, M.T. Weirauch, B.J. Frey, Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning, Nat. Biotech-

nol. 33 (2015) 831–838.
[4] M. Raissi, P. Perdikaris, G.E. Karniadakis, Inferring solutions of differential equations using noisy multi-fidelity data, J. Comput. Phys. 335 (2017)

736–746.
[5] M. Raissi, P. Perdikaris, G.E. Karniadakis, Machine learning of linear differential equations using Gaussian processes, J. Comput. Phys. 348 (2017)

683–693.
[6] H. Owhadi, Bayesian numerical homogenization, Multiscale Model. Simul. 13 (2015) 812–828.
[7] C.E. Rasmussen, C.K. Williams, Gaussian Processes for Machine Learning, vol. 1, MIT Press, Cambridge, 2006.
[8] M. Raissi, P. Perdikaris, G.E. Karniadakis, Numerical Gaussian processes for time-dependent and non-linear partial differential equations, 2017, arXiv:

1703 .10230.
[9] M. Raissi, G.E. Karniadakis, Hidden physics models: machine learning of nonlinear partial differential equations, 2017, arXiv:1708 .00588.

[10] H. Owhadi, C. Scovel, T. Sullivan, et al., Brittleness of Bayesian inference under finite information in a continuous world, Electron. J. Stat. 9 (2015) 1–79.
[11] K. Hornik, M. Stinchcombe, H. White, Multilayer feedforward networks are universal approximators, Neural Netw. 2 (1989) 359–366.
[12] A.G. Baydin, B.A. Pearlmutter, A.A. Radul, J.M. Siskind, Automatic differentiation in machine learning: a survey, 2015, arXiv:1502 .05767.
[13] C. Basdevant, M. Deville, P. Haldenwang, J. Lacroix, J. Ouazzani, R. Peyret, P. Orlandi, A. Patera, Spectral and finite difference solutions of the Burgers

equation, Comput. Fluids 14 (1986) 23–41.
[14] S.H. Rudy, S.L. Brunton, J.L. Proctor, J.N. Kutz, Data-driven discovery of partial differential equations, Sci. Adv. 3 (2017).
[15] I.E. Lagaris, A. Likas, D.I. Fotiadis, Artificial neural networks for solving ordinary and partial differential equations, IEEE Trans. Neural Netw. 9 (1998)

987–1000.
[16] D.C. Psichogios, L.H. Ungar, A hybrid neural network-first principles approach to process modeling, AIChE J. 38 (1992) 1499–1511.
[17] J.-X. Wang, J. Wu, J. Ling, G. Iaccarino, H. Xiao, A comprehensive physics-informed machine learning framework for predictive turbulence modeling,

2017, arXiv:1701.07102.
[18] Y. Zhu, N. Zabaras, Bayesian deep convolutional encoder-decoder networks for surrogate modeling and uncertainty quantification, 2018, arXiv:1801.

06879.
[19] T. Hagge, P. Stinis, E. Yeung, A.M. Tartakovsky, Solving differential equations with unknown constitutive relations as recurrent neural networks, 2017,

arXiv:1710 .02242.
[20] R. Tripathy, I. Bilionis, Deep UQ: learning deep neural network surrogate models for high dimensional uncertainty quantification, 2018, arXiv:1802 .

00850.
[21] P.R. Vlachas, W. Byeon, Z.Y. Wan, T.P. Sapsis, P. Koumoutsakos, Data-driven forecasting of high-dimensional chaotic systems with long-short term

memory networks, 2018, arXiv:1802 .07486.
[22] E.J. Parish, K. Duraisamy, A paradigm for data-driven predictive modeling using field inversion and machine learning, J. Comput. Phys. 305 (2016)

758–774.
[23] K. Duraisamy, Z.J. Zhang, A.P. Singh, New approaches in turbulence and transition modeling using data-driven techniques, in: 53rd AIAA Aerospace

Sciences Meeting, 2018, p. 1284.
[24] J. Ling, A. Kurzawski, J. Templeton, Reynolds averaged turbulence modelling using deep neural networks with embedded invariance, J. Fluid Mech. 807

(2016) 155–166.
[25] Z.J. Zhang, K. Duraisamy, Machine learning methods for data-driven turbulence modeling, in: 22nd AIAA Computational Fluid Dynamics Conference,

2015, p. 2460.
[26] M. Milano, P. Koumoutsakos, Neural network modeling for near wall turbulent flow, J. Comput. Phys. 182 (2002) 1–26.
[27] P. Perdikaris, D. Venturi, G.E. Karniadakis, Multifidelity information fusion algorithms for high-dimensional systems and massive data sets, SIAM J. Sci.

Comput. 38 (2016) B521–B538.
[28] R. Rico-Martinez, J. Anderson, I. Kevrekidis, Continuous-time nonlinear signal processing: a neural network based approach for gray box identification,

in: Neural Networks for Signal Processing IV. Proceedings of the 1994 IEEE Workshop, IEEE, 1994, pp. 596–605.
[29] J. Ling, J. Templeton, Evaluation of machine learning algorithms for prediction of regions of high Reynolds averaged Navier Stokes uncertainty, Phys.

Fluids 27 (2015) 085103.
[30] H.W. Lin, M. Tegmark, D. Rolnick, Why does deep and cheap learning work so well? J. Stat. Phys. 168 (2017) 1223–1247.
[31] R. Kondor, N-body networks: a covariant hierarchical neural network architecture for learning atomic potentials, 2018, arXiv:1803 .01588.
[32] R. Kondor, S. Trivedi, On the generalization of equivariance and convolution in neural networks to the action of compact groups, 2018, arXiv:1802 .

03690.
[33] M. Hirn, S. Mallat, N. Poilvert, Wavelet scattering regression of quantum chemical energies, Multiscale Model. Simul. 15 (2017) 827–863.
[34] S. Mallat, Understanding deep convolutional networks, Philos. Trans. R. Soc. A 374 (2016) 20150203.
[35] D.C. Liu, J. Nocedal, On the limited memory BFGS method for large scale optimization, Math. Program. 45 (1989) 503–528.
[36] I. Goodfellow, Y. Bengio, A. Courville, Deep Learning, MIT Press, 2016.
[37] D. Kingma, J. Ba, Adam: a method for stochastic optimization, 2014, arXiv:1412 .6980.
[38] A. Choromanska, M. Henaff, M. Mathieu, G.B. Arous, Y. LeCun, The loss surfaces of multilayer networks, in: Artificial Intelligence and Statistics,

pp. 192–204.
[39] R. Shwartz-Ziv, N. Tishby, Opening the black box of deep neural networks via information, 2017, arXiv:1703 .00810.
[40] T.A. Driscoll, N. Hale, L.N. Trefethen, Chebfun Guide, 2014.
[41] M. Stein, Large sample properties of simulations using Latin hypercube sampling, Technometrics 29 (1987) 143–151.
[42] J. Snoek, H. Larochelle, R.P. Adams, Practical bayesian optimization of machine learning algorithms, in: Advances in Neural Information Processing

Systems, 2012, pp. 2951–2959.
[43] H.-J. Bungartz, M. Griebel, Sparse grids, Acta Numer. 13 (2004) 147–269.
[44] I.H. Sloan, H. Woźniakowski, When are quasi-Monte Carlo algorithms efficient for high dimensional integrals? J. Complex. 14 (1998) 1–33.
[45] A. Iserles, A First Course in the Numerical Analysis of Differential Equations, vol. 44, Cambridge University Press, 2009.
[46] T. Von Kármán, Aerodynamics, vol. 9, McGraw-Hill, New York, 1963.
[47] G. Karniadakis, S. Sherwin, Spectral/hp Element Methods for Computational Fluid Dynamics, Oxford University Press, 2013.
[48] T. Dauxois, Fermi, Pasta, Ulam and a mysterious lady, 2008, arXiv:0801.1590.
[49] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G.S. Corrado, A. Davis, J. Dean, M. Devin, et al., Tensorflow: large-scale machine learning

on heterogeneous distributed systems, 2016, arXiv:1603 .04467.
[50] S.L. Brunton, J.L. Proctor, J.N. Kutz, Discovering governing equations from data by sparse identification of nonlinear dynamical systems, Proc. Natl. Acad.

Sci. 113 (2016) 3932–3937.

http://refhub.elsevier.com/S0021-9991(18)30712-5/bib6C616B653230313568756D616Es1
http://refhub.elsevier.com/S0021-9991(18)30712-5/bib616C6970616E6168693230313570726564696374696E67s1
http://refhub.elsevier.com/S0021-9991(18)30712-5/bib616C6970616E6168693230313570726564696374696E67s1
http://refhub.elsevier.com/S0021-9991(18)30712-5/bib72616973736932303137696E66657272696E67s1
http://refhub.elsevier.com/S0021-9991(18)30712-5/bib72616973736932303137696E66657272696E67s1
http://refhub.elsevier.com/S0021-9991(18)30712-5/bib726169737369323031376D616368696E65s1
http://refhub.elsevier.com/S0021-9991(18)30712-5/bib726169737369323031376D616368696E65s1
http://refhub.elsevier.com/S0021-9991(18)30712-5/bib6F776861646932303135626179657369616Es1
http://refhub.elsevier.com/S0021-9991(18)30712-5/bib5261736D757373656E3036676175737369616E70726F636573736573s1
http://refhub.elsevier.com/S0021-9991(18)30712-5/bib726169737369323031376E756D65726963616Cs1
http://refhub.elsevier.com/S0021-9991(18)30712-5/bib726169737369323031376E756D65726963616Cs1
http://refhub.elsevier.com/S0021-9991(18)30712-5/bib7261697373693230313768696464656Es1
http://refhub.elsevier.com/S0021-9991(18)30712-5/bib6F77686164693230313562726974746C656E657373s1
http://refhub.elsevier.com/S0021-9991(18)30712-5/bib686F726E696B313938396D756C74696C61796572s1
http://refhub.elsevier.com/S0021-9991(18)30712-5/bib62617964696E323031356175746F6D61746963s1
http://refhub.elsevier.com/S0021-9991(18)30712-5/bib626173646576616E7431393836737065637472616Cs1
http://refhub.elsevier.com/S0021-9991(18)30712-5/bib626173646576616E7431393836737065637472616Cs1
http://refhub.elsevier.com/S0021-9991(18)30712-5/bib527564796531363032363134s1
http://refhub.elsevier.com/S0021-9991(18)30712-5/bib6C616761726973313939386172746966696369616Cs1
http://refhub.elsevier.com/S0021-9991(18)30712-5/bib6C616761726973313939386172746966696369616Cs1
http://refhub.elsevier.com/S0021-9991(18)30712-5/bib70736963686F67696F7331393932687962726964s1
http://refhub.elsevier.com/S0021-9991(18)30712-5/bib77616E6732303137636F6D70726568656E73697665s1
http://refhub.elsevier.com/S0021-9991(18)30712-5/bib77616E6732303137636F6D70726568656E73697665s1
http://refhub.elsevier.com/S0021-9991(18)30712-5/bib7A687532303138626179657369616Es1
http://refhub.elsevier.com/S0021-9991(18)30712-5/bib7A687532303138626179657369616Es1
http://refhub.elsevier.com/S0021-9991(18)30712-5/bib686167676532303137736F6C76696E67s1
http://refhub.elsevier.com/S0021-9991(18)30712-5/bib686167676532303137736F6C76696E67s1
http://refhub.elsevier.com/S0021-9991(18)30712-5/bib74726970617468793230313864656570s1
http://refhub.elsevier.com/S0021-9991(18)30712-5/bib74726970617468793230313864656570s1
http://refhub.elsevier.com/S0021-9991(18)30712-5/bib766C61636861733230313864617461s1
http://refhub.elsevier.com/S0021-9991(18)30712-5/bib766C61636861733230313864617461s1
http://refhub.elsevier.com/S0021-9991(18)30712-5/bib70617269736832303136706172616469676Ds1
http://refhub.elsevier.com/S0021-9991(18)30712-5/bib70617269736832303136706172616469676Ds1
http://refhub.elsevier.com/S0021-9991(18)30712-5/bib647572616973616D79323031356E6577s1
http://refhub.elsevier.com/S0021-9991(18)30712-5/bib647572616973616D79323031356E6577s1
http://refhub.elsevier.com/S0021-9991(18)30712-5/bib6C696E67323031367265796E6F6C6473s1
http://refhub.elsevier.com/S0021-9991(18)30712-5/bib6C696E67323031367265796E6F6C6473s1
http://refhub.elsevier.com/S0021-9991(18)30712-5/bib7A68616E67323031356D616368696E65s1
http://refhub.elsevier.com/S0021-9991(18)30712-5/bib7A68616E67323031356D616368696E65s1
http://refhub.elsevier.com/S0021-9991(18)30712-5/bib6D696C616E6F323030326E657572616Cs1
http://refhub.elsevier.com/S0021-9991(18)30712-5/bib70657264696B61726973323031366D756C7469666964656C697479s1
http://refhub.elsevier.com/S0021-9991(18)30712-5/bib70657264696B61726973323031366D756C7469666964656C697479s1
http://refhub.elsevier.com/S0021-9991(18)30712-5/bib7269636F31393934636F6E74696E756F7573s1
http://refhub.elsevier.com/S0021-9991(18)30712-5/bib7269636F31393934636F6E74696E756F7573s1
http://refhub.elsevier.com/S0021-9991(18)30712-5/bib6C696E67323031356576616C756174696F6Es1
http://refhub.elsevier.com/S0021-9991(18)30712-5/bib6C696E67323031356576616C756174696F6Es1
http://refhub.elsevier.com/S0021-9991(18)30712-5/bib6C696E32303137646F6573s1
http://refhub.elsevier.com/S0021-9991(18)30712-5/bib6B6F6E646F72323031386Es1
http://refhub.elsevier.com/S0021-9991(18)30712-5/bib6B6F6E646F723230313867656E6572616C697A6174696F6Es1
http://refhub.elsevier.com/S0021-9991(18)30712-5/bib6B6F6E646F723230313867656E6572616C697A6174696F6Es1
http://refhub.elsevier.com/S0021-9991(18)30712-5/bib6869726E32303137776176656C6574s1
http://refhub.elsevier.com/S0021-9991(18)30712-5/bib6D616C6C617432303136756E6465727374616E64696E67s1
http://refhub.elsevier.com/S0021-9991(18)30712-5/bib6C6975313938396C696D69746564s1
http://refhub.elsevier.com/S0021-9991(18)30712-5/bib676F6F6466656C6C6F773230313664656570s1
http://refhub.elsevier.com/S0021-9991(18)30712-5/bib6B696E676D61323031346164616Ds1
http://refhub.elsevier.com/S0021-9991(18)30712-5/bib7368776172747A323031376F70656E696E67s1
http://refhub.elsevier.com/S0021-9991(18)30712-5/bib64726973636F6C6C323031346368656266756Es1
http://refhub.elsevier.com/S0021-9991(18)30712-5/bib737465696E313938376C61726765s1
http://refhub.elsevier.com/S0021-9991(18)30712-5/bib736E6F656B3230313270726163746963616Cs1
http://refhub.elsevier.com/S0021-9991(18)30712-5/bib736E6F656B3230313270726163746963616Cs1
http://refhub.elsevier.com/S0021-9991(18)30712-5/bib62756E676172747A32303034737061727365s1
http://refhub.elsevier.com/S0021-9991(18)30712-5/bib736C6F616E313939387175617369s1
http://refhub.elsevier.com/S0021-9991(18)30712-5/bib697365726C6573323030396669727374s1
http://refhub.elsevier.com/S0021-9991(18)30712-5/bib766F6E313936336165726F64796E616D696373s1
http://refhub.elsevier.com/S0021-9991(18)30712-5/bib6B61726E696164616B697332303133737065637472616Cs1
http://refhub.elsevier.com/S0021-9991(18)30712-5/bib646175786F6973323030386665726D69s1
http://refhub.elsevier.com/S0021-9991(18)30712-5/bib61626164693230313674656E736F72666C6F77s1
http://refhub.elsevier.com/S0021-9991(18)30712-5/bib61626164693230313674656E736F72666C6F77s1
http://refhub.elsevier.com/S0021-9991(18)30712-5/bib6272756E746F6E32303136646973636F766572696E67s1
http://refhub.elsevier.com/S0021-9991(18)30712-5/bib6272756E746F6E32303136646973636F766572696E67s1

	Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
	1 Introduction
	2 Problem setup
	3 Data-driven solutions of partial differential equations
	3.1 Continuous time models
	3.1.1 Example (Schrodinger equation)

	3.2 Discrete time models
	3.2.1 Example (Allen-Cahn equation)

	4 Data-driven discovery of partial differential equations
	4.1 Continuous time models
	4.1.1 Example (Navier-Stokes equation)

	4.2 Discrete time models
	4.2.1 Example (Korteweg-de Vries equation)

	5 Conclusions
	Acknowledgements
	Appendix A Data-driven solution of partial differential equations
	A.1 Continuous time models
	A.2 Discrete time models

	Appendix B Data-driven discovery of partial differential equations
	B.1 Continuous time models
	B.2 Discrete time models
	B.3 Example (Burgers' equation)

	Appendix C Supplementary material
	References

