
Journal of Computational Physics 378 (2019) 686–707
Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

Physics-informed neural networks: A deep learning 

framework for solving forward and inverse problems involving 

nonlinear partial differential equations

M. Raissi a, P. Perdikaris b,∗, G.E. Karniadakis a

a Division of Applied Mathematics, Brown University, Providence, RI, 02912, USA
b Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA, 19104, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 13 June 2018
Received in revised form 26 October 2018
Accepted 28 October 2018
Available online 3 November 2018

Keywords:
Data-driven scientific computing
Machine learning
Predictive modeling
Runge–Kutta methods
Nonlinear dynamics

We introduce physics-informed neural networks – neural networks that are trained to solve 
supervised learning tasks while respecting any given laws of physics described by general 
nonlinear partial differential equations. In this work, we present our developments in the 
context of solving two main classes of problems: data-driven solution and data-driven 
discovery of partial differential equations. Depending on the nature and arrangement of 
the available data, we devise two distinct types of algorithms, namely continuous time 
and discrete time models. The first type of models forms a new family of data-efficient
spatio-temporal function approximators, while the latter type allows the use of arbitrarily 
accurate implicit Runge–Kutta time stepping schemes with unlimited number of stages. The 
effectiveness of the proposed framework is demonstrated through a collection of classical 
problems in fluids, quantum mechanics, reaction–diffusion systems, and the propagation of 
nonlinear shallow-water waves.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

With the explosive growth of available data and computing resources, recent advances in machine learning and data 
analytics have yielded transformative results across diverse scientific disciplines, including image recognition [1], cognitive 
science [2], and genomics [3]. However, more often than not, in the course of analyzing complex physical, biological or 
engineering systems, the cost of data acquisition is prohibitive, and we are inevitably faced with the challenge of drawing 
conclusions and making decisions under partial information. In this small data regime, the vast majority of state-of-the-art 
machine learning techniques (e.g., deep/convolutional/recurrent neural networks) are lacking robustness and fail to provide 
any guarantees of convergence.

At first sight, the task of training a deep learning algorithm to accurately identify a nonlinear map from a few – poten-
tially very high-dimensional – input and output data pairs seems at best naive. Coming to our rescue, for many cases 
pertaining to the modeling of physical and biological systems, there exists a vast amount of prior knowledge that is 
currently not being utilized in modern machine learning practice. Let it be the principled physical laws that govern the 
time-dependent dynamics of a system, or some empirically validated rules or other domain expertise, this prior information 
can act as a regularization agent that constrains the space of admissible solutions to a manageable size (e.g., in incompress-
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ible fluid dynamics problems by discarding any non realistic flow solutions that violate the conservation of mass principle). 
In return, encoding such structured information into a learning algorithm results in amplifying the information content of 
the data that the algorithm sees, enabling it to quickly steer itself towards the right solution and generalize well even when 
only a few training examples are available.

The first glimpses of promise for exploiting structured prior information to construct data-efficient and physics-informed 
learning machines have already been showcased in the recent studies of [4–6]. There, the authors employed Gaussian 
process regression [7] to devise functional representations that are tailored to a given linear operator, and were able to 
accurately infer solutions and provide uncertainty estimates for several prototype problems in mathematical physics. Ex-
tensions to nonlinear problems were proposed in subsequent studies by Raissi et al. [8,9] in the context of both inference 
and systems identification. Despite the flexibility and mathematical elegance of Gaussian processes in encoding prior infor-
mation, the treatment of nonlinear problems introduces two important limitations. First, in [8,9] the authors had to locally 
linearize any nonlinear terms in time, thus limiting the applicability of the proposed methods to discrete-time domains and 
compromising the accuracy of their predictions in strongly nonlinear regimes. Secondly, the Bayesian nature of Gaussian 
process regression requires certain prior assumptions that may limit the representation capacity of the model and give rise 
to robustness/brittleness issues, especially for nonlinear problems [10].

2. Problem setup

In this work we take a different approach by employing deep neural networks and leverage their well known capability 
as universal function approximators [11]. In this setting, we can directly tackle nonlinear problems without the need for 
committing to any prior assumptions, linearization, or local time-stepping. We exploit recent developments in automatic 
differentiation [12] – one of the most useful but perhaps under-utilized techniques in scientific computing – to differentiate 
neural networks with respect to their input coordinates and model parameters to obtain physics-informed neural networks. 
Such neural networks are constrained to respect any symmetries, invariances, or conservation principles originating from 
the physical laws that govern the observed data, as modeled by general time-dependent and nonlinear partial differential 
equations. This simple yet powerful construction allows us to tackle a wide range of problems in computational science and 
introduces a potentially transformative technology leading to the development of new data-efficient and physics-informed 
learning machines, new classes of numerical solvers for partial differential equations, as well as new data-driven approaches 
for model inversion and systems identification.

The general aim of this work is to set the foundations for a new paradigm in modeling and computation that enriches 
deep learning with the longstanding developments in mathematical physics. To this end, our manuscript is divided into 
two parts that aim to present our developments in the context of two major classes of problems: data-driven solution 
and data-driven discovery of partial differential equations. All code and data-sets accompanying this manuscript are avail-
able on GitHub at https://github .com /maziarraissi /PINNs. Throughout this work we have been using relatively simple deep 
feed-forward neural networks architectures with hyperbolic tangent activation functions and no additional regularization 
(e.g., L1/L2 penalties, dropout, etc.). Each numerical example in the manuscript is accompanied with a detailed discussion 
about the neural network architecture we employed as well as details about its training process (e.g. optimizer, learning 
rates, etc.). Finally, a comprehensive series of systematic studies that aims to demonstrate the performance of the proposed 
methods is provided in Appendix A and Appendix B.

In this work, we consider parametrized and nonlinear partial differential equations of the general form

ut +N [u;λ] = 0, x ∈ �, t ∈ [0, T ], (1)

where u(t, x) denotes the latent (hidden) solution, N [·; λ] is a nonlinear operator parametrized by λ, and � is a subset 
of RD . This setup encapsulates a wide range of problems in mathematical physics including conservation laws, diffusion 
processes, advection–diffusion–reaction systems, and kinetic equations. As a motivating example, the one dimensional Burg-
ers equation [13] corresponds to the case where N [u; λ] = λ1uux − λ2uxx and λ = (λ1, λ2). Here, the subscripts denote 
partial differentiation in either time or space. Given noisy measurements of the system, we are interested in the solution 
of two distinct problems. The first problem is that of inference, filtering and smoothing, or data-driven solutions of partial 
differential equations [4,8] which states: given fixed model parameters λ what can be said about the unknown hidden state u(t, x)
of the system? The second problem is that of learning, system identification, or data-driven discovery of partial differential 
equations [5,9,14] stating: what are the parameters λ that best describe the observed data?

3. Data-driven solutions of partial differential equations

Let us start by concentrating on the problem of computing data-driven solutions to partial differential equations (i.e., the 
first problem outlined above) of the general form

ut +N [u] = 0, x ∈ �, t ∈ [0, T ], (2)

where u(t, x) denotes the latent (hidden) solution, N [·] is a nonlinear differential operator, and � is a subset of RD . In 
sections 3.1 and 3.2, we put forth two distinct types of algorithms, namely continuous and discrete time models, and 
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highlight their properties and performance through the lens of different benchmark problems. In the second part of our 
study (see section 4), we shift our attention to the problem of data-driven discovery of partial differential equations [5,9,14].

3.1. Continuous time models

We define f (t, x) to be given by the left-hand-side of equation (2); i.e.,

f := ut +N [u], (3)

and proceed by approximating u(t, x) by a deep neural network. This assumption along with equation (3) result in a physics-
informed neural network f (t, x). This network can be derived by applying the chain rule for differentiating compositions of 
functions using automatic differentiation [12], and has the same parameters as the network representing u(t, x), albeit with 
different activation functions due to the action of the differential operator N . The shared parameters between the neural 
networks u(t, x) and f (t, x) can be learned by minimizing the mean squared error loss

M S E = M S Eu + M S E f , (4)

where

M S Eu = 1

Nu

Nu∑
i=1

|u(ti
u, xi

u) − ui|2,

and

M S E f = 1

N f

N f∑
i=1

| f (ti
f , xi

f )|2.

Here, {ti
u, xi

u, ui}Nu
i=1 denote the initial and boundary training data on u(t, x) and {ti

f , x
i
f }

N f

i=1 specify the collocations points 
for f (t, x). The loss M S Eu corresponds to the initial and boundary data while M S E f enforces the structure imposed by 
equation (2) at a finite set of collocation points. Although similar ideas for constraining neural networks using physical laws 
have been explored in previous studies [15,16], here we revisit them using modern computational tools, and apply them to 
more challenging dynamic problems described by time-dependent nonlinear partial differential equations.

Here, we should underline an important distinction between this line of work and existing approaches in the literature 
that elaborate on the use of machine learning in computational physics. The term physics-informed machine learning has 
been also recently used by Wang et al. [17] in the context of turbulence modeling. Other examples of machine learning 
approaches for predictive modeling of physical systems include [18–29]. All these approaches employ machine learning al-
gorithms like support vector machines, random forests, Gaussian processes, and feed-forward/convolutional/recurrent neural 
networks merely as black-box tools. As described above, the proposed work aims to go one step further by revisiting the 
construction of “custom” activation and loss functions that are tailored to the underlying differential operator. This allows 
us to open the black-box by understanding and appreciating the key role played by automatic differentiation within the 
deep learning field. Automatic differentiation in general, and the back-propagation algorithm in particular, is currently the 
dominant approach for training deep models by taking their derivatives with respect to the parameters (e.g., weights and 
biases) of the models. Here, we use the exact same automatic differentiation techniques, employed by the deep learning 
community, to physics-inform neural networks by taking their derivatives with respect to their input coordinates (i.e., space 
and time) where the physics is described by partial differential equations. We have empirically observed that this structured 
approach introduces a regularization mechanism that allows us to use relatively simple feed-forward neural network archi-
tectures and train them with small amounts of data. The effectiveness of this simple idea may be related to the remarks 
put forth by Lin, Tegmark and Rolnick [30] and raises many interesting questions to be quantitatively addressed in future 
research. To this end, the proposed work draws inspiration from the early contributions of Psichogios and Ungar [16], Lagaris 
et al. [15], as well as the contemporary works of Kondor [31,32], Hirn [33], and Mallat [34].

In all cases pertaining to data-driven solution of partial differential equations, the total number of training data Nu is 
relatively small (a few hundred up to a few thousand points), and we chose to optimize all loss functions using L-BFGS, 
a quasi-Newton, full-batch gradient-based optimization algorithm [35]. For larger data-sets, such as the data-driven model 
discovery examples discussed in section 4, a more computationally efficient mini-batch setting can be readily employed 
using stochastic gradient descent and its modern variants [36,37]. Despite the fact that there is no theoretical guarantee 
that this procedure converges to a global minimum, our empirical evidence indicates that, if the given partial differential 
equation is well-posed and its solution is unique, our method is capable of achieving good prediction accuracy given a 
sufficiently expressive neural network architecture and a sufficient number of collocation points N f . This general observation 
deeply relates to the resulting optimization landscape induced by the mean square error loss of equation (4), and defines 
an open question for research that is in sync with recent theoretical developments in deep learning [38,39]. To this end, we 
will test the robustness of the proposed methodology using a series of systematic sensitivity studies that are provided in 
Appendix A and Appendix B.
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3.1.1. Example (Schrodinger equation)
This example aims to highlight the ability of our method to handle periodic boundary conditions, complex-valued so-

lutions, as well as different types of nonlinearities in the governing partial differential equations. The one-dimensional 
nonlinear Schrödinger equation is a classical field equation that is used to study quantum mechanical systems, including 
nonlinear wave propagation in optical fibers and/or waveguides, Bose–Einstein condensates, and plasma waves. In optics, 
the nonlinear term arises from the intensity dependent index of refraction of a given material. Similarly, the nonlinear term 
for Bose–Einstein condensates is a result of the mean-field interactions of an interacting, N-body system. The nonlinear 
Schrödinger equation along with periodic boundary conditions is given by

iht + 0.5hxx + |h|2h = 0, x ∈ [−5,5], t ∈ [0,π/2], (5)

h(0, x) = 2 sech(x),

h(t,−5) = h(t,5),

hx(t,−5) = hx(t,5),

where h(t, x) is the complex-valued solution. Let us define f (t, x) to be given by

f := iht + 0.5hxx + |h|2h,

and proceed by placing a complex-valued neural network prior on h(t, x). In fact, if u denotes the real part of h and v is 
the imaginary part, we are placing a multi-out neural network prior on h(t, x) = [

u(t, x) v(t, x)
]
. This will result in the 

complex-valued (multi-output) physic-informed neural network f (t, x). The shared parameters of the neural networks h(t, x)
and f (t, x) can be learned by minimizing the mean squared error loss

M S E = M S E0 + M S Eb + M S E f , (6)

where

M S E0 = 1

N0

N0∑
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|h(0, xi
0) − hi

0|2,
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and

M S E f = 1

N f
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| f (ti
f , xi

f )|2.

Here, {xi
0, h

i
0}N0

i=1 denotes the initial data, {ti
b}Nb

i=1 corresponds to the collocation points on the boundary, and {ti
f , x

i
f }

N f

i=1
represents the collocation points on f (t, x). Consequently, M S E0 corresponds to the loss on the initial data, M S Eb enforces 
the periodic boundary conditions, and M S E f penalizes the Schrödinger equation not being satisfied on the collocation 
points.

In order to assess the accuracy of our method, we have simulated equation (5) using conventional spectral methods 
to create a high-resolution data set. Specifically, starting from an initial state h(0, x) = 2 sech(x) and assuming periodic 
boundary conditions h(t, −5) = h(t, 5) and hx(t, −5) = hx(t, 5), we have integrated equation (5) up to a final time t = π/2
using the Chebfun package [40] with a spectral Fourier discretization with 256 modes and a fourth-order explicit Runge–
Kutta temporal integrator with time-step �t = π/2 · 10−6. Under our data-driven setting, all we observe are measurements 
{xi

0, h
i
0}N0

i=1 of the latent function h(t, x) at time t = 0. In particular, the training set consists of a total of N0 = 50 data 
points on h(0, x) randomly parsed from the full high-resolution data-set, as well as Nb = 50 randomly sampled collocation 
points {ti

b}Nb
i=1 for enforcing the periodic boundaries. Moreover, we have assumed N f = 20,000 randomly sampled colloca-

tion points used to enforce equation (5) inside the solution domain. All randomly sampled point locations were generated 
using a space filling Latin Hypercube Sampling strategy [41].

Here our goal is to infer the entire spatio-temporal solution h(t, x) of the Schrödinger equation (5). We chose to jointly 
represent the latent function h(t, x) = [u(t, x) v(t, x)] using a 5-layer deep neural network with 100 neurons per layer and 
a hyperbolic tangent activation function. In general, the neural network should be given sufficient approximation capacity 
in order to accommodate the anticipated complexity of u(t, x). Although more systematic procedures such as Bayesian 
optimization [42] can be employed in order to fine-tune the design of the neural network, in the absence of theoretical 
error/convergence estimates, the interplay between the neural architecture/training procedure and the complexity of the 
underlying differential equation is still poorly understood. One viable path towards assessing the accuracy of the predicted 
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Fig. 1. Schrodinger equation: Top: Predicted solution |h(t, x)| along with the initial and boundary training data. In addition we are using 20,000 collocation 
points generated using a Latin Hypercube Sampling strategy. Bottom: Comparison of the predicted and exact solutions corresponding to the three temporal 
snapshots depicted by the dashed vertical lines in the top panel. The relative L2 error for this case is 1.97 · 10−3.

solution could come by adopting a Bayesian approach and monitoring the variance of the predictive posterior distribution, 
but this goes beyond the scope of the present work and will be investigated in future studies.

In this example, our setup aims to highlight the robustness of the proposed method with respect to the well known 
issue of over-fitting. Specifically, the term in M S E f in equation (6) acts as a regularization mechanism that penalizes 
solutions that do not satisfy equation (5). Therefore, a key property of physics-informed neural networks is that they can be 
effectively trained using small data sets; a setting often encountered in the study of physical systems for which the cost 
of data acquisition may be prohibitive. Fig. 1 summarizes the results of our experiment. Specifically, the top panel of Fig. 1
shows the magnitude of the predicted spatio-temporal solution |h(t, x)| = √

u2(t, x) + v2(t, x), along with the locations of 
the initial and boundary training data. The resulting prediction error is validated against the test data for this problem, and 
is measured at 1.97 · 10−3 in the relative L2-norm. A more detailed assessment of the predicted solution is presented in the 
bottom panel of Fig. 1. In particular, we present a comparison between the exact and the predicted solutions at different 
time instants t = 0.59, 0.79, 0.98. Using only a handful of initial data, the physics-informed neural network can accurately 
capture the intricate nonlinear behavior of the Schrödinger equation.

One potential limitation of the continuous time neural network models considered so far stems from the need to use a 
large number of collocation points N f in order to enforce physics-informed constraints in the entire spatio-temporal domain. 
Although this poses no significant issues for problems in one or two spatial dimensions, it may introduce a severe bottleneck 
in higher dimensional problems, as the total number of collocation points needed to globally enforce a physics-informed 
constrain (i.e., in our case a partial differential equation) will increase exponentially. Although this limitation could be 
addressed to some extend using sparse grid or quasi Monte-Carlo sampling schemes [43,44], in the next section, we put 
forth a different approach that circumvents the need for collocation points by introducing a more structured neural network 
representation leveraging the classical Runge–Kutta time-stepping schemes [45].

3.2. Discrete time models

Let us apply the general form of Runge–Kutta methods with q stages [45] to equation (2) and obtain

un+ci = un − �t
∑q

j=1 aijN [un+c j ], i = 1, . . . ,q,

un+1 = un − �t
∑q

j=1 b jN [un+c j ]. (7)

Here, un+c j (x) = u(tn + c j�t, x) for j = 1, . . . , q. This general form encapsulates both implicit and explicit time-stepping 
schemes, depending on the choice of the parameters {aij, b j, c j}. Equations (7) can be equivalently expressed as

un = un
i , i = 1, . . . ,q,

un = un
q+1,

(8)

where

un
i := un+ci + �t

∑q
j=1 aijN [un+c j ], i = 1, . . . ,q,

un := un+1 + �t
∑q b jN [un+c j ]. (9)
q+1 j=1
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We proceed by placing a multi-output neural network prior on
[

un+c1(x), . . . , un+cq (x), un+1(x)
]
. (10)

This prior assumption along with equations (9) result in a physics-informed neural network that takes x as an input and 
outputs

[
un

1(x), . . . , un
q(x), un

q+1(x)
]
. (11)

3.2.1. Example (Allen–Cahn equation)
This example aims to highlight the ability of the proposed discrete time models to handle different types of nonlinearity 

in the governing partial differential equation. To this end, let us consider the Allen–Cahn equation along with periodic 
boundary conditions

ut − 0.0001uxx + 5u3 − 5u = 0, x ∈ [−1,1], t ∈ [0,1], (12)

u(0, x) = x2 cos(πx),

u(t,−1) = u(t,1),

ux(t,−1) = ux(t,1).

The Allen–Cahn equation is a well-known equation from the area of reaction–diffusion systems. It describes the process of 
phase separation in multi-component alloy systems, including order-disorder transitions. For the Allen–Cahn equation, the 
nonlinear operator in equation (9) is given by

N [un+c j ] = −0.0001u
n+c j
xx + 5

(
un+c j

)3 − 5un+c j ,

and the shared parameters of the neural networks (10) and (11) can be learned by minimizing the sum of squared errors

S S E = S S En + S S Eb, (13)

where

S S En =
q+1∑
j=1

Nn∑
i=1

|un
j (xn,i) − un,i|2,

and

S S Eb =
q∑

i=1

|un+ci (−1) − un+ci (1)|2 + |un+1(−1) − un+1(1)|2

+
q∑

i=1

|un+ci
x (−1) − un+ci

x (1)|2 + |un+1
x (−1) − un+1

x (1)|2.

Here, {xn,i, un,i}Nn
i=1 corresponds to the data at time-step tn . In classical numerical analysis, these time-steps are usually 

confined to be small due to stability constraints for explicit schemes or computational complexity constrains for implicit 
formulations [45]. These constraints become more severe as the total number of Runge–Kutta stages q is increased, and, for 
most problems of practical interest, one needs to take thousands to millions of such steps until the solution is resolved up 
to a desired final time. In sharp contrast to classical methods, here we can employ implicit Runge–Kutta schemes with an 
arbitrarily large number of stages at effectively very little extra cost.1 This enables us to take very large time steps while 
retaining stability and high predictive accuracy, therefore allowing us to resolve the entire spatio-temporal solution in a 
single step.

In this example, we have generated a training and test data-set set by simulating the Allen–Cahn equation (12) using 
conventional spectral methods. Specifically, starting from an initial condition u(0, x) = x2 cos(πx) and assuming periodic 
boundary conditions u(t, −1) = u(t, 1) and ux(t, −1) = ux(t, 1), we have integrated equation (12) up to a final time t = 1.0
using the Chebfun package [40] with a spectral Fourier discretization with 512 modes and a fourth-order explicit Runge–
Kutta temporal integrator with time-step �t = 10−5.

Our training data-set consists of Nn = 200 initial data points that are randomly sub-sampled from the exact solution at 
time t = 0.1, and our goal is to predict the solution at time t = 0.9 using a single time-step with size �t = 0.8. To this 
end, we employ a discrete time physics-informed neural network with 4 hidden layers and 200 neurons per layer, while the 

1 To be precise, it is only the number of parameters in the last layer of the neural network that increases linearly with the total number of stages.
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Fig. 2. Allen–Cahn equation: Top: Solution u(t, x) along with the location of the initial training snapshot at t = 0.1 and the final prediction snapshot at 
t = 0.9. Bottom: Initial training data and final prediction at the snapshots depicted by the white vertical lines in the top panel. The relative L2 error for this 
case is 6.99 · 10−3. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

output layer predicts 101 quantities of interest corresponding to the q = 100 Runge–Kutta stages un+ci (x), i = 1, . . . , q, and 
the solution at final time un+1(x). The theoretical error estimates for this scheme predict a temporal error accumulation of 
O(�t2q) [45], which in our case translates into an error way below machine precision, i.e., �t2q = 0.8200 ≈ 10−20. To our 
knowledge, this is the first time that an implicit Runge–Kutta scheme of that high-order has ever been used. Remarkably, 
starting from smooth initial data at t = 0.1 we can predict the nearly discontinuous solution at t = 0.9 in a single time-step 
with a relative L2 error of 6.99 ·10−3, as illustrated in Fig. 2. This error is entirely attributed to the neural network’s capacity 
to approximate u(t, x), as well as to the degree that the sum of squared errors loss allows interpolation of the training data.

The key parameters controlling the performance of our discrete time algorithm are the total number of Runge–Kutta 
stages q and the time-step size �t . As we demonstrate in the systematic studies provided in Appendix A and Appendix B, 
low-order methods, such as the case q = 1 corresponding to the classical trapezoidal rule, and the case q = 2 corresponding 
to the 4th-order Gauss–Legendre method, cannot retain their predictive accuracy for large time-steps, thus mandating a 
solution strategy with multiple time-steps of small size. On the other hand, the ability to push the number of Runge–Kutta 
stages to 32 and even higher allows us to take very large time steps, and effectively resolve the solution in a single step 
without sacrificing the accuracy of our predictions. Moreover, numerical stability is not sacrificed either as implicit Gauss–
Legendre is the only family of time-stepping schemes that remain A-stable regardless of their order, thus making them 
ideal for stiff problems [45]. These properties are unprecedented for an algorithm of such implementation simplicity, and 
illustrate one of the key highlights of our discrete time approach.

4. Data-driven discovery of partial differential equations

In the current part of our study, we shift our attention to the problem of data-driven discovery of partial differential 
equations [5,9,14]. In sections 4.1 and 4.2, we put forth two distinct types of algorithms, namely continuous and discrete 
time models, and highlight their properties and performance through the lens of various canonical problems.

4.1. Continuous time models

Let us recall equation (1) and similar to section 3.1 define f (t, x) to be given by the left-hand-side of equation (1); i.e.,

f := ut +N [u;λ]. (14)

We proceed by approximating u(t, x) by a deep neural network. This assumption along with equation (14) result in a physics-
informed neural network f (t, x). This network can be derived by applying the chain rule for differentiating compositions of 
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functions using automatic differentiation [12]. It is worth highlighting that the parameters of the differential operator λ turn 
into parameters of the physics-informed neural network f (t, x).

4.1.1. Example (Navier–Stokes equation)
Our next example involves a realistic scenario of incompressible fluid flow described by the ubiquitous Navier–Stokes 

equations. Navier–Stokes equations describe the physics of many phenomena of scientific and engineering interest. They 
may be used to model the weather, ocean currents, water flow in a pipe and air flow around a wing. The Navier–Stokes 
equations in their full and simplified forms help with the design of aircrafts and cars, the study of blood flow, the design of 
power stations, the analysis of the dispersion of pollutants, and many other applications. Let us consider the Navier–Stokes 
equations in two dimensions2 (2D) given explicitly by

ut + λ1(uux + vu y) = −px + λ2(uxx + u yy),

vt + λ1(uvx + v v y) = −p y + λ2(vxx + v yy),
(15)

where u(t, x, y) denotes the x-component of the velocity field, v(t, x, y) the y-component, and p(t, x, y) the pressure. Here, 
λ = (λ1, λ2) are the unknown parameters. Solutions to the Navier–Stokes equations are searched in the set of divergence-free 
functions; i.e.,

ux + v y = 0. (16)

This extra equation is the continuity equation for incompressible fluids that describes the conservation of mass of the fluid. 
We make the assumption that

u = ψy, v = −ψx, (17)

for some latent function ψ(t, x, y).3 Under this assumption, the continuity equation (16) will be automatically satisfied. 
Given noisy measurements

{ti, xi, yi, ui, vi}N
i=1

of the velocity field, we are interested in learning the parameters λ as well as the pressure p(t, x, y). We define f (t, x, y)

and g(t, x, y) to be given by

f := ut + λ1(uux + vu y) + px − λ2(uxx + u yy),

g := vt + λ1(uvx + v v y) + p y − λ2(vxx + v yy),
(18)

and proceed by jointly approximating 
[
ψ(t, x, y) p(t, x, y)

]
using a single neural network with two outputs. This prior 

assumption along with equations (17) and (18) results into a physics-informed neural network
[

f (t, x, y) g(t, x, y)
]
. The 

parameters λ of the Navier–Stokes operator as well as the parameters of the neural networks 
[
ψ(t, x, y) p(t, x, y)

]
and [

f (t, x, y) g(t, x, y)
]

can be trained by minimizing the mean squared error loss

M S E := 1

N

N∑
i=1

(
|u(ti, xi, yi) − ui|2 + |v(ti, xi, yi) − vi |2

)
+ 1

N

N∑
i=1

(
| f (ti, xi, yi)|2 + |g(ti, xi, yi)|2

)
. (19)

Here we consider the prototype problem of incompressible flow past a circular cylinder; a problem known to exhibit rich 
dynamic behavior and transitions for different regimes of the Reynolds number Re = u∞D/ν . Assuming a non-dimensional 
free stream velocity u∞ = 1, cylinder diameter D = 1, and kinematic viscosity ν = 0.01, the system exhibits a periodic 
steady state behavior characterized by a asymmetrical vortex shedding pattern in the cylinder wake, known as the Kármán 
vortex street [46].

To generate a high-resolution data set for this problem we have employed the spectral/hp-element solver NekTar [47]. 
Specifically, the solution domain is discretized in space by a tessellation consisting of 412 triangular elements, and within 
each element the solution is approximated as a linear combination of a tenth-order hierarchical, semi-orthogonal Jacobi 
polynomial expansion [47]. We have assumed a uniform free stream velocity profile imposed at the left boundary, a zero 
pressure outflow condition imposed at the right boundary located 25 diameters downstream of the cylinder, and periodicity 
for the top and bottom boundaries of the [−15, 25] × [−8, 8] domain. We integrate equation (15) using a third-order stiffly 
stable scheme [47] until the system reaches a periodic steady state, as depicted in Fig. 3(a). In what follows, a small portion 
of the resulting data-set corresponding to this steady state solution will be used for model training, while the remaining 
data will be used to validate our predictions. For simplicity, we have chosen to confine our sampling in a rectangular region 
downstream of cylinder as shown in Fig. 3(a).

2 It is straightforward to generalize the proposed framework to the Navier–Stokes equations in three dimensions (3D).
3 This construction can be generalized to three dimensional problems by employing the notion of vector potentials.
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Fig. 3. Navier–Stokes equation: Top: Incompressible flow and dynamic vortex shedding past a circular cylinder at Re = 100. The spatio-temporal training data 
correspond to the depicted rectangular region in the cylinder wake. Bottom: Locations of training data-points for the stream-wise and transverse velocity 
components, u(t, x, y) and v(t, x, t), respectively.

Given scattered and potentially noisy data on the stream-wise u(t, x, y) and transverse v(t, x, y) velocity components, 
our goal is to identify the unknown parameters λ1 and λ2, as well as to obtain a qualitatively accurate reconstruction of the 
entire pressure field p(t, x, y) in the cylinder wake, which by definition can only be identified up to a constant. To this end, 
we have created a training data-set by randomly sub-sampling the full high-resolution data-set. To highlight the ability of 
our method to learn from scattered and scarce training data, we have chosen N = 5,000, corresponding to a mere 1% of the 
total available data as illustrated in Fig. 3(b). Also plotted are representative snapshots of the predicted velocity components 
u(t, x, y) and v(t, x, y) after the model was trained. The neural network architecture used here consists of 9 layers with 20 
neurons in each layer.

A summary of our results for this example is presented in Fig. 4. We observe that the physics-informed neural network
is able to correctly identify the unknown parameters λ1 and λ2 with very high accuracy even when the training data was 
corrupted with noise. Specifically, for the case of noise-free training data, the error in estimating λ1 and λ2 is 0.078%, and 
4.67%, respectively. The predictions remain robust even when the training data are corrupted with 1% uncorrelated Gaussian 
noise, returning an error of 0.17%, and 5.70%, for λ1 and λ2, respectively.

A more intriguing result stems from the network’s ability to provide a qualitatively accurate prediction of the entire 
pressure field p(t, x, y) in the absence of any training data on the pressure itself. A visual comparison against the exact 
pressure solution is presented in Fig. 4 for a representative pressure snapshot. Notice that the difference in magnitude 
between the exact and the predicted pressure is justified by the very nature of the incompressible Navier–Stokes system, as 
the pressure field is only identifiable up to a constant. This result of inferring a continuous quantity of interest from auxiliary 
measurements by leveraging the underlying physics is a great example of the enhanced capabilities that physics-informed 
neural networks have to offer, and highlights their potential in solving high-dimensional inverse problems.

Our approach so far assumes availability of scattered data throughout the entire spatio-temporal domain. However, in 
many cases of practical interest, one may only be able to observe the system at distinct time instants. In the next section, 
we introduce a different approach that tackles the data-driven discovery problem using only two data snapshots. We will 
see how, by leveraging the classical Runge–Kutta time-stepping schemes, one can construct discrete time physics-informed 
neural networks that can retain high predictive accuracy even when the temporal gap between the data snapshots is very 
large.

4.2. Discrete time models

We begin by applying the general form of Runge–Kutta methods [45] with q stages to equation (1) and obtain

un+ci = un − �t
∑q

j=1 aijN [un+c j ;λ], i = 1, . . . ,q,

un+1 = un − �t
∑q b jN [un+c j ;λ]. (20)
j=1
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Fig. 4. Navier–Stokes equation: Top: Predicted versus exact instantaneous pressure field p(t, x, y) at a representative time instant. By definition, the pressure 
can be recovered up to a constant, hence justifying the different magnitude between the two plots. This remarkable qualitative agreement highlights the 
ability of physics-informed neural networks to identify the entire pressure field, despite the fact that no data on the pressure are used during model training. 
Bottom: Correct partial differential equation along with the identified one obtained by learning λ1, λ2 and p(t, x, y).

Here, un+c j (x) = u(tn + c j�t, x) is the hidden state of the system at time tn + c j�t for j = 1, . . . , q. This general form encap-
sulates both implicit and explicit time-stepping schemes, depending on the choice of the parameters {aij , b j, c j}. Equations 
(20) can be equivalently expressed as

un = un
i , i = 1, . . . ,q,

un+1 = un+1
i , i = 1, . . . ,q,

(21)

where

un
i := un+ci + �t

∑q
j=1 aijN [un+c j ;λ], i = 1, . . . ,q,

un+1
i := un+ci + �t

∑q
j=1(aij − b j)N [un+c j ;λ], i = 1, . . . ,q.

(22)

We proceed by placing a multi-output neural network prior on

[
un+c1(x), . . . , un+cq (x)

]
. (23)

This prior assumption along with equations (22) result in two physics-informed neural networks

[
un

1(x), . . . , un
q(x), un

q+1(x)
]
, (24)

and

[
un+1

1 (x), . . . , un+1
q (x), un+1

q+1(x)
]
. (25)

Given noisy measurements at two distinct temporal snapshots {xn, un} and {xn+1, un+1} of the system at times tn and 
tn+1, respectively, the shared parameters of the neural networks (23), (24), and (25) along with the parameters λ of the 
differential operator can be trained by minimizing the sum of squared errors

S S E = S S En + S S En+1, (26)

where

S S En :=
q∑

j=1

Nn∑
i=1

|un
j (xn,i) − un,i |2,

and

S S En+1 :=
q∑

j=1

Nn+1∑
i=1

|un+1
j (xn+1,i) − un+1,i|2.

Here, xn = {
xn,i

}Nn , un = {
un,i

}Nn , xn+1 = {
xn+1,i

}Nn+1 , and un+1 = {
un+1,i

}Nn+1 .
i=1 i=1 i=1 i=1
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4.2.1. Example (Korteweg–de Vries equation)
Our final example aims to highlight the ability of the proposed framework to handle governing partial differential equa-

tions involving higher order derivatives. Here, we consider a mathematical model of waves on shallow water surfaces; the 
Korteweg–de Vries (KdV) equation. This equation can also be viewed as Burgers equation with an added dispersive term. 
The KdV equation has several connections to physical problems. It describes the evolution of long one-dimensional waves in 
many physical settings. Such physical settings include shallow-water waves with weakly non-linear restoring forces, long in-
ternal waves in a density-stratified ocean, ion acoustic waves in a plasma, and acoustic waves on a crystal lattice. Moreover, 
the KdV equation is the governing equation of the string in the Fermi–Pasta–Ulam problem [48] in the continuum limit. The 
KdV equation reads as

ut + λ1uux + λ2uxxx = 0, (27)

with (λ1, λ2) being the unknown parameters. For the KdV equation, the nonlinear operator in equations (22) is given by

N [un+c j ] = λ1un+c j u
n+c j
x − λ2u

n+c j
xxx

and the shared parameters of the neural networks (23), (24), and (25) along with the parameters λ = (λ1, λ2) of the KdV 
equation can be learned by minimizing the sum of squared errors (26).

To obtain a set of training and test data we simulated (27) using conventional spectral methods. Specifically, starting 
from an initial condition u(0, x) = cos(πx) and assuming periodic boundary conditions, we have integrated equation (27)
up to a final time t = 1.0 using the Chebfun package [40] with a spectral Fourier discretization with 512 modes and a 
fourth-order explicit Runge–Kutta temporal integrator with time-step �t = 10−6. Using this data-set, we then extract two 
solution snapshots at time tn = 0.2 and tn+1 = 0.8, and randomly sub-sample them using Nn = 199 and Nn+1 = 201 to 
generate a training data-set. We then use these data to train a discrete time physics-informed neural network by minimizing 
the sum of squared error loss of equation (26) using L-BFGS [35]. The network architecture used here comprises of 4 
hidden layers, 50 neurons per layer, and an output layer predicting the solution at the q Runge–Kutta stages, i.e., un+c j (x), 
j = 1, . . . , q, where q is empirically chosen to yield a temporal error accumulation of the order of machine precision ε by 
setting4

q = 0.5 logε/ log(�t), (28)

where the time-step for this example is �t = 0.6.
The results of this experiment are summarized in Fig. 5. In the top panel, we present the exact solution u(t, x), along 

with the locations of the two data snapshots used for training. A more detailed overview of the exact solution and the 
training data is given in the middle panel. It is worth noticing how the complex nonlinear dynamics of equation (27) causes 
dramatic differences in the form of the solution between the two reported snapshots. Despite these differences, and the 
large temporal gap between the two training snapshots, our method is able to correctly identify the unknown parameters 
regardless of whether the training data is corrupted with noise or not. Specifically, for the case of noise-free training data, 
the error in estimating λ1 and λ2 is 0.023%, and 0.006%, respectively, while the case with 1% noise in the training data 
returns errors of 0.057%, and 0.017%, respectively.

5. Conclusions

We have introduced physics-informed neural networks, a new class of universal function approximators that is capable of 
encoding any underlying physical laws that govern a given data-set, and can be described by partial differential equations. 
In this work, we design data-driven algorithms for inferring solutions to general nonlinear partial differential equations, 
and constructing computationally efficient physics-informed surrogate models. The resulting methods showcase a series of 
promising results for a diverse collection of problems in computational science, and open the path for endowing deep 
learning with the powerful capacity of mathematical physics to model the world around us. As deep learning technology is 
continuing to grow rapidly both in terms of methodological and algorithmic developments, we believe that this is a timely 
contribution that can benefit practitioners across a wide range of scientific domains. Specific applications that can readily 
enjoy these benefits include, but are not limited to, data-driven forecasting of physical processes, model predictive control, 
multi-physics/multi-scale modeling and simulation.

We must note however that the proposed methods should not be viewed as replacements of classical numerical methods 
for solving partial differential equations (e.g., finite elements, spectral methods, etc.). Such methods have matured over 
the last 50 years and, in many cases, meet the robustness and computational efficiency standards required in practice. 
Our message here, as advocated in Section 3.2, is that classical methods such as the Runge–Kutta time-stepping schemes 
can coexist in harmony with deep neural networks, and offer invaluable intuition in constructing structured predictive 

4 This is motivated by the theoretical error estimates for implicit Runge–Kutta schemes suggesting a truncation error of O(�t2q) [45].
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Fig. 5. KdV equation: Top: Solution u(t, x) along with the temporal locations of the two training snapshots. Middle: Training data and exact solution corre-
sponding to the two temporal snapshots depicted by the dashed vertical lines in the top panel. Bottom: Correct partial differential equation along with the 
identified one obtained by learning λ1, λ2.

algorithms. Moreover, the implementation simplicity of the latter greatly favors rapid development and testing of new 
ideas, potentially opening the path for a new era in data-driven scientific computing.

Although a series of promising results was presented, the reader may perhaps agree this work creates more questions 
than it answers. How deep/wide should the neural network be? How much data is really needed? Why does the algorithm 
converge to unique values for the parameters of the differential operators, i.e., why is the algorithm not suffering from 
local optima for the parameters of the differential operator? Does the network suffer from vanishing gradients for deeper 
architectures and higher order differential operators? Could this be mitigated by using different activation functions? Can we 
improve on initializing the network weights or normalizing the data? Are the mean square error and the sum of squared 
errors the appropriate loss functions? Why are these methods seemingly so robust to noise in the data? How can we 
quantify the uncertainty associated with our predictions? Throughout this work, we have attempted to answer some of 
these questions, but we have observed that specific settings that yielded impressive results for one equation could fail for 
another. Admittedly, more work is needed collectively to set the foundations in this field.

In a broader context, and along the way of seeking answers to those questions, we believe that this work advocates a 
fruitful synergy between machine learning and classical computational physics that has the potential to enrich both fields 
and lead to high-impact developments.
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Appendix A. Data-driven solution of partial differential equations

This Appendix accompanies the main manuscript, and contains a series of systematic studies that aim to demonstrate 
the performance of the proposed algorithms for problems pertaining to data-driven solution of partial differential equations. 
Throughout this document, we will use the Burgers’ equation as a canonical example.
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A.1. Continuous time models

In one space dimension, the Burger’s equation along with Dirichlet boundary conditions reads as

ut + uux − (0.01/π)uxx = 0, x ∈ [−1,1], t ∈ [0,1], (A.1)

u(0, x) = − sin(πx),

u(t,−1) = u(t,1) = 0.

Let us define f (t, x) to be given by

f := ut + uux − (0.01/π)uxx,

and proceed by approximating u(t, x) by a deep neural network. To highlight the simplicity in implementing this idea we 
have included a Python code snippet using Tensorflow [49]; currently one of the most popular and well documented open 
source libraries for machine learning computations. To this end, u(t, x) can be simply defined as

def u( t , x ) :
u = neural_net ( t f . concat ( [ t , x ] , 1 ) , weights , biases )
return u

Correspondingly, the physics-informed neural network f (t, x) takes the form

def f ( t , x ) :
u = u( t , x )
u_t = t f . gradients (u , t ) [ 0 ]
u_x = t f . gradients (u , x ) [ 0 ]
u_xx = t f . gradients ( u_x , x ) [ 0 ]
f = u_t + u∗u_x − ( 0 . 0 1 / t f . pi )∗u_xx
return f

The shared parameters between the neural networks u(t, x) and f (t, x) can be learned by minimizing the mean squared 
error loss

M S E = M S Eu + M S E f , (A.2)

where

M S Eu = 1

Nu

Nu∑
i=1

|u(ti
u, xi

u) − ui|2,

and

M S E f = 1

N f

N f∑
i=1

| f (ti
f , xi

f )|2.

Here, {ti
u, xi

u, ui}Nu
i=1 denote the initial and boundary training data on u(t, x) and {ti

f , x
i
f }

N f

i=1 specify the collocations points 
for f (t, x). The loss M S Eu corresponds to the initial and boundary data while M S E f enforces the structure imposed by 
equation (A.1) at a finite set of collocation points. Although similar ideas for constraining neural networks using physical 
laws have been explored in previous studies [15,16], here we revisit them using modern computational tools, and apply 
them to more challenging dynamic problems described by time-dependent nonlinear partial differential equations.

The Burgers equation is often considered as a prototype example of a hyperbolic conservation law (as ν → 0). Notice that 
if we want to “fabricate” an “exact” solution to this equation we would select a solution u(t, x) (e.g., e−t sin(πx)) and obtain 
the corresponding right hand side f (t, x) by differentiation. The resulting u(t, x) and f (t, x) are “guaranteed” to satisfy 
the Burgers equation and conserve all associated invariances by construction. In our work, we replace u(t, x) by a neural 
network u(t, x; W , b) and obtain a physics-informed neural network f (t, x; W , b) by automatic differentiation. Consequently, 
the resulting pair u(t, x; W , b) and f (t, x; W , b) must satisfy the Burgers equation regardless of the choice of the weights 
W and bias b parameters. Hence, at this “prior” level, i.e. before we train the networks on a given set of data, our model 
should exactly preserves the continuity and momentum equations by construction. During training, given a data-set ti , xi, ui
and t j, x j, f j , we then try to find the “correct” parameters W ∗ and b∗ such that we get as good a fit as possible to both 
the observed data and the differential equation residual. During this process the residual, albeit small, will not be exactly 
zero, and therefore our approximation will conserve mass and momentum within the accuracy of the residual loss. Similar 
behavior is observed in classical Galerkin finite element methods, while the only numerical methods that are known to have 
exact conservation properties in this setting are discontinuous Galerkin and finite volumes.
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Fig. A.6. Burgers’ equation: Top: Predicted solution u(t, x) along with the initial and boundary training data. In addition we are using 10,000 collocation 
points generated using a Latin Hypercube Sampling strategy. Bottom: Comparison of the predicted and exact solutions corresponding to the three temporal 
snapshots depicted by the white vertical lines in the top panel. The relative L2 error for this case is 6.7 ·10−4. Model training took approximately 60 seconds 
on a single NVIDIA Titan X GPU card.

In all benchmarks considered in this work, the total number of training data Nu is relatively small (a few hundred up 
to a few thousand points), and we chose to optimize all loss functions using L-BFGS a quasi-Newton, full-batch gradient-
based optimization algorithm [35]. For larger data-sets a more computationally efficient mini-batch setting can be readily 
employed using stochastic gradient descent and its modern variants [36,37]. Despite the fact that there is no theoretical 
guarantee that this procedure converges to a global minimum, our empirical evidence indicates that, if the given partial 
differential equation is well-posed and its solution is unique, our method is capable of achieving good prediction accuracy 
given a sufficiently expressive neural network architecture and a sufficient number of collocation points N f . This general ob-
servation deeply relates to the resulting optimization landscape induced by the mean square error loss of equation (4), and 
defines an open question for research that is in sync with recent theoretical developments in deep learning [38,39]. Here, 
we will test the robustness of the proposed methodology using a series of systematic sensitivity studies that accompany the 
numerical results presented in the following.

Fig. A.6 summarizes our results for the data-driven solution of the Burgers equation. Specifically, given a set of Nu = 100
randomly distributed initial and boundary data, we learn the latent solution u(t, x) by training all 3021 parameters of a 
9-layer deep neural network using the mean squared error loss of (A.2). Each hidden layer contained 20 neurons and a 
hyperbolic tangent activation function. The top panel of Fig. A.6 shows the predicted spatio-temporal solution u(t, x), along 
with the locations of the initial and boundary training data. We must underline that, unlike any classical numerical method 
for solving partial differential equations, this prediction is obtained without any sort of discretization of the spatio-temporal 
domain. The exact solution for this problem is analytically available [13], and the resulting prediction error is measured 
at 6.7 · 10−4 in the relative L2-norm. Note that this error is about two orders of magnitude lower than the one reported 
in our previous work on data-driven solution of partial differential equation using Gaussian processes [8]. A more detailed 
assessment of the predicted solution is presented in the bottom panel of Fig. A.6. In particular, we present a comparison be-
tween the exact and the predicted solutions at different time instants t = 0.25, 0.50, 0.75. Using only a handful of initial and 
boundary data, the physics-informed neural network can accurately capture the intricate nonlinear behavior of the Burgers’ 
equation that leads to the development of a sharp internal layer around t = 0.4. The latter is notoriously hard to accurately 
resolve with classical numerical methods and requires a laborious spatio-temporal discretization of equation (A.1).

To further analyze the performance of our method, we have performed the following systematic studies to quantify its 
predictive accuracy for different number of training and collocation points, as well as for different neural network archi-
tectures. In Table A.1 we report the resulting relative L2 error for different number of initial and boundary training data 
Nu and different number of collocation points N f , while keeping the 9-layer network architecture fixed. The general trend 
shows increased prediction accuracy as the total number of training data Nu is increased, given a sufficient number of col-
location points N f . This observation highlights a key strength of physics-informed neural networks: by encoding the structure 
of the underlying physical law through the collocation points N f , one can obtain a more accurate and data-efficient learning 
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Table A.1
Burgers’ equation: Relative L2 error between the predicted and the exact solution u(t, x) for 
different number of initial and boundary training data Nu , and different number of collocation 
points N f . Here, the network architecture is fixed to 9 layers with 20 neurons per hidden 
layer.

Nu

N f 2000 4000 6000 7000 8000 10000

20 2.9e−01 4.4e−01 8.9e−01 1.2e+00 9.9e−02 4.2e−02
40 6.5e−02 1.1e−02 5.0e−01 9.6e−03 4.6e−01 7.5e−02
60 3.6e−01 1.2e−02 1.7e−01 5.9e−03 1.9e−03 8.2e−03
80 5.5e−03 1.0e−03 3.2e−03 7.8e−03 4.9e−02 4.5e−03
100 6.6e−02 2.7e−01 7.2e−03 6.8e−04 2.2e−03 6.7e−04
200 1.5e−01 2.3e−03 8.2e−04 8.9e−04 6.1e−04 4.9e−04

Table A.2
Burgers’ equation: Relative L2 error between the predicted and the ex-
act solution u(t, x) for different number of hidden layers and different 
number of neurons per layer. Here, the total number of training and 
collocation points is fixed to Nu = 100 and N f = 10,000, respectively.

Layers
Neurons

10 20 40

2 7.4e−02 5.3e−02 1.0e−01
4 3.0e−03 9.4e−04 6.4e−04
6 9.6e−03 1.3e−03 6.1e−04
8 2.5e−03 9.6e−04 5.6e−04

algorithm.5 Finally, Table A.2 shows the resulting relative L2 for different number of hidden layers, and different number 
of neurons per layer, while the total number of training and collocation points is kept fixed to Nu = 100 and N f = 10,000, 
respectively. As expected, we observe that as the number of layers and neurons is increased (hence the capacity of the 
neural network to approximate more complex functions), the predictive accuracy is increased.

A.2. Discrete time models

Let us apply the general form of Runge–Kutta methods with q stages [45] to a general equation of the form

ut +N [u] = 0, x ∈ �, t ∈ [0, T ], (A.3)

and obtain

un+ci = un − �t
∑q

j=1 aijN [un+c j ], i = 1, . . . ,q,

un+1 = un − �t
∑q

j=1 b jN [un+c j ]. (A.4)

Here, un+c j (x) = u(tn + c j�t, x) for j = 1, . . . , q. This general form encapsulates both implicit and explicit time-stepping 
schemes, depending on the choice of the parameters {aij, b j, c j}. Equations (7) can be equivalently expressed as

un = un
i , i = 1, . . . ,q,

un = un
q+1,

(A.5)

where

un
i := un+ci + �t

∑q
j=1 aijN [un+c j ], i = 1, . . . ,q,

un
q+1 := un+1 + �t

∑q
j=1 b jN [un+c j ]. (A.6)

We proceed by placing a multi-output neural network prior on

[
un+c1(x), . . . , un+cq (x), un+1(x)

]
. (A.7)

This prior assumption along with equations (A.6) result in a physics-informed neural network that takes x as an input and 
outputs

[
un

1(x), . . . , un
q(x), un

q+1(x)
]
. (A.8)

5 Note that the case N f = 0 corresponds to a standard neural network model, i.e., a neural network that does not take into account the underlying 
governing equation.
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Table A.3
Burgers’ equation: Relative final prediction error measure in the L2

norm for different number of hidden layers and neurons in each layer. 
Here, the number of Runge–Kutta stages is fixed to 500 and the time-
step size to �t = 0.8.

Layers
Neurons

10 25 50

1 4.1e−02 4.1e−02 1.5e−01
2 2.7e−03 5.0e−03 2.4e−03
3 3.6e−03 1.9e−03 9.5e−04

To highlight the key features of the discrete time representation we revisit the problem of data-driven solution of the 
Burgers’ equation. For this case, the nonlinear operator in equation (A.6) is given by

N [un+c j ] = un+c j u
n+c j
x − (0.01/π)u

n+c j
xx ,

and the shared parameters of the neural networks (A.7) and (A.8) can be learned by minimizing the sum of squared errors

S S E = S S En + S S Eb, (A.9)

where

S S En =
q+1∑
j=1

Nn∑
i=1

|un
j (xn,i) − un,i|2,

and

S S Eb =
q∑

i=1

(
|un+ci (−1)|2 + |un+ci (1)|2

)
+ |un+1(−1)|2 + |un+1(1)|2.

Here, {xn,i, un,i}Nn
i=1 corresponds to the data at time tn . The Runge–Kutta scheme now allows us to infer the latent solution 

u(t, x) in a sequential fashion. Starting from initial data {xn,i , un,i}Nn
i=1 at time tn and data at the domain boundaries x = −1

and x = 1, we can use the aforementioned loss function (A.9) to train the networks of (A.7), (A.8), and predict the solution 
at time tn+1. A Runge–Kutta time-stepping scheme would then use this prediction as initial data for the next step and 
proceed to train again and predict u(tn+2, x), u(tn+3, x), etc., one step at a time.

The result of applying this process to the Burgers’ equation is presented in Fig. A.7. For illustration purposes, we start 
with a set of Nn = 250 initial data at t = 0.1, and employ a physics-informed neural network induced by an implicit Runge–
Kutta scheme with 500 stages to predict the solution at time t = 0.9 in a single step. The theoretical error estimates for 
this scheme predict a temporal error accumulation of O(�t2q) [45], which in our case translates into an error way below 
machine precision, i.e., �t2q = 0.81000 ≈ 10−97. To our knowledge, this is the first time that an implicit Runge–Kutta scheme 
of that high-order has ever been used. Remarkably, starting from smooth initial data at t = 0.1 we can predict the nearly 
discontinuous solution at t = 0.9 in a single time-step with a relative L2 error of 8.2 · 10−4. This error is two orders of 
magnitude lower that the one reported in [8], and it is entirely attributed to the neural network’s capacity to approximate 
u(t, x), as well as to the degree that the sum of squared errors loss allows interpolation of the training data. The network 
architecture used here consists of 4 layers with 50 neurons in each hidden layer.

A detailed systematic study to quantify the effect of different network architectures is presented in Table A.3. By keeping 
the number of Runge–Kutta stages fixed to q = 500 and the time-step size to �t = 0.8, we have varied the number of 
hidden layers and the number of neurons per layer, and monitored the resulting relative L2 error for the predicted solution 
at time t = 0.9. Evidently, as the neural network capacity is increased the predictive accuracy is enhanced.

The key parameters controlling the performance of our discrete time algorithm are the total number of Runge–Kutta 
stages q and the time-step size �t . In Table A.4 we summarize the results of an extensive systematic study where we 
fix the network architecture to 4 hidden layers with 50 neurons per layer, and vary the number of Runge–Kutta stages q
and the time-step size �t . Specifically, we see how cases with low numbers of stages fail to yield accurate results when 
the time-step size is large. For instance, the case q = 1 corresponding to the classical trapezoidal rule, and the case q = 2
corresponding to the 4th-order Gauss–Legendre method, cannot retain their predictive accuracy for time-steps larger than 
0.2, thus mandating a solution strategy with multiple time-steps of small size. On the other hand, the ability to push the 
number of Runge–Kutta stages to 32 and even higher allows us to take very large time steps, and effectively resolve the 
solution in a single step without sacrificing the accuracy of our predictions. Moreover, numerical stability is not sacrificed 
either as implicit Gauss–Legendre is the only family of time-stepping schemes that remain A-stable regardless of their order, 
thus making them ideal for stiff problems [45]. These properties are unprecedented for an algorithm of such implementation 
simplicity, and illustrate one of the key highlights of our discrete time approach.
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Fig. A.7. Burgers equation: Top: Solution u(t, x) along with the location of the initial training snapshot at t = 0.1 and the final prediction snapshot at t = 0.9. 
Bottom: Initial training data and final prediction at the snapshots depicted by the white vertical lines in the top panel. The relative L2 error for this case is 
8.2 · 10−4.

Table A.4
Burgers’ equation: Relative final prediction error measured in the L2

norm for different number of Runge–Kutta stages q and time-step sizes 
�t . Here, the network architecture is fixed to 4 hidden layers with 50 
neurons in each layer.

q
�t

0.2 0.4 0.6 0.8

1 3.5e−02 1.1e−01 2.3e−01 3.8e−01
2 5.4e−03 5.1e−02 9.3e−02 2.2e−01
4 1.2e−03 1.5e−02 3.6e−02 5.4e−02
8 6.7e−04 1.8e−03 8.7e−03 5.8e−02
16 5.1e−04 7.6e−02 8.4e−04 1.1e−03
32 7.4e−04 5.2e−04 4.2e−04 7.0e−04
64 4.5e−04 4.8e−04 1.2e−03 7.8e−04
100 5.1e−04 5.7e−04 1.8e−02 1.2e−03
500 4.1e−04 3.8e−04 4.2e−04 8.2e−04

Table A.5
Burgers equation: Relative L2 error between the predicted and the exact solution 
u(t, x) for different number of training data Nn . Here, we have fixed q = 500, and 
used a neural network architecture with 3 hidden layers and 50 neurons per hidden 
layer.

N 250 200 150 100 50 10

Error 4.02e−4 2.93e−3 9.39e−3 5.54e−2 1.77e−2 7.58e−1

Finally, in Table A.5 we provide a systematic study to quantify the accuracy of the predicted solution as we vary the 
spatial resolution of the input data. As expected, increasing the total number of training data results in enhanced prediction 
accuracy.

Appendix B. Data-driven discovery of partial differential equations

This Appendix accompanies the main manuscript, and contains a series of systematic studies that aim to demonstrate 
the performance of the proposed algorithms for problems pertaining to data-driven discovery of partial differential equations. 
Throughout this document, we will use the Burgers’ equation as a canonical example.
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B.1. Continuous time models

As a first example, let us consider the Burgers’ equation. This equation arises in various areas of applied mathematics, 
including fluid mechanics, nonlinear acoustics, gas dynamics, and traffic flow [13]. It is a fundamental partial differential 
equation and can be derived from the Navier–Stokes equations for the velocity field by dropping the pressure gradient 
term. For small values of the viscosity parameters, Burgers’ equation can lead to shock formation that is notoriously hard to 
resolve by classical numerical methods. In one space dimension the equation reads as

ut + λ1uux − λ2uxx = 0. (B.1)

Let us define f (t, x) to be given by

f := ut + λ1uux − λ2uxx, (B.2)

and proceed by approximating u(t, x) by a deep neural network. This will result in the physics-informed neural network
f (t, x). The shared parameters of the neural networks u(t, x) and f (t, x) along with the parameters λ = (λ1, λ2) of the 
differential operator can be learned by minimizing the mean squared error loss

M S E = M S Eu + M S E f , (B.3)

where

M S Eu = 1

N

N∑
i=1

|u(ti
u, xi

u) − ui |2,

and

M S E f = 1

N

N∑
i=1

| f (ti
u, xi

u)|2.

Here, {ti
u, xi

u, ui}N
i=1 denote the training data on u(t, x). The loss M S Eu corresponds to the training data on u(t, x) while 

M S E f enforces the structure imposed by equation (B.1) at a finite set of collocation points, whose number and location is 
taken to be the same as the training data.

To illustrate the effectiveness of our approach, we have created a training data-set by randomly generating N = 2,000
points across the entire spatio-temporal domain from the exact solution corresponding to λ1 = 1.0 and λ2 = 0.01/π . The 
locations of the training points are illustrated in the top panel of Fig. B.8. This data-set is then used to train a 9-layer 
deep neural network with 20 neurons per hidden layer by minimizing the mean square error loss of (B.3) using the L-
BFGS optimizer [35]. Upon training, the network is calibrated to predict the entire solution u(t, x), as well as the unknown 
parameters λ = (λ1, λ2) that define the underlying dynamics. A visual assessment of the predictive accuracy of the physics-
informed neural network is given in the middle and bottom panels of Fig. B.8. The network is able to identify the underlying 
partial differential equation with remarkable accuracy, even in the case where the scattered training data is corrupted with 
1% uncorrelated noise.

To further scrutinize the performance of our algorithm, we have performed a systematic study with respect to the total 
number of training data, the noise corruption levels, and the neural network architecture. The results are summarized in 
Tables B.6 and B.7. The key observation here is that the proposed methodology appears to be very robust with respect to 
noise levels in the data, and yields a reasonable identification accuracy even for noise corruption up to 10%. This enhanced 
robustness seems to greatly outperform competing approaches using Gaussian process regression as previously reported in 
[9] as well as approaches relying on sparse regression that require relatively clean data for accurately computing numerical 
gradients [50]. We also observe some variability and non monotonic trends in Tables B.6 and B.7 as the network architecture 
and total number of training points are changed. This variability could be potentially attributed to different factors pertaining 
to the equation itself as well as the particular neural network setup, and gives rise to a series of questions that require 
further investigation, as discussed in the concluding remarks section of this paper.

B.2. Discrete time models

Our starting point here is similar to as described in section 3.2. Now equations (7) can be equivalently expressed as

un = un
i , i = 1, . . . ,q,

un+1 = un+1
i , i = 1, . . . ,q,

(B.4)

where
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Fig. B.8. Burgers equation: Top: Predicted solution u(t, x) along with the training data. Middle: Comparison of the predicted and exact solutions corresponding 
to the three temporal snapshots depicted by the dashed vertical lines in the top panel. Bottom: Correct partial differential equation along with the identified 
one obtained by learning λ1 and λ2.

Table B.6
Burgers’ equation: Percentage error in the identified parameters λ1 and λ2 for different number of 
training data N corrupted by different noise levels. Here, the neural network architecture is kept fixed 
to 9 layers and 20 neurons per layer.

% error in λ1 % error in λ2

Nu

Noise
0% 1% 5% 10% 0% 1% 5% 10%

500 0.131 0.518 0.118 1.319 13.885 0.483 1.708 4.058
1000 0.186 0.533 0.157 1.869 3.719 8.262 3.481 14.544
1500 0.432 0.033 0.706 0.725 3.093 1.423 0.502 3.156
2000 0.096 0.039 0.190 0.101 0.469 0.008 6.216 6.391

Table B.7
Burgers’ equation: Percentage error in the identified parameters λ1 and λ2 for different num-
ber of hidden layers and neurons per layer. Here, the training data is considered to be 
noise-free and fixed to N = 2,000.

% error in λ1 % error in λ2

Layers
Neurons

10 20 40 10 20 40

2 11.696 2.837 1.679 103.919 67.055 49.186
4 0.332 0.109 0.428 4.721 1.234 6.170
6 0.668 0.629 0.118 3.144 3.123 1.158
8 0.414 0.141 0.266 8.459 1.902 1.552

un
i := un+ci + �t

∑q
j=1 aijN [un+c j ;λ], i = 1, . . . ,q,

un+1
i := un+ci + �t

∑q
j=1(aij − b j)N [un+c j ;λ], i = 1, . . . ,q.

(B.5)

We proceed by placing a multi-output neural network prior on

[
un+c1(x), . . . , un+cq (x)

]
. (B.6)

This prior assumption along with equations (22) result in two physics-informed neural networks
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[
un

1(x), . . . , un
q(x), un

q+1(x)
]
, (B.7)

and
[

un+1
1 (x), . . . , un+1

q (x), un+1
q+1(x)

]
. (B.8)

Given noisy measurements at two distinct temporal snapshots {xn, un} and {xn+1, un+1} of the system at times tn and 
tn+1, respectively, the shared parameters of the neural networks (B.6), (B.7), and (B.8) along with the parameters λ of the 
differential operator can be trained by minimizing the sum of squared errors

S S E = S S En + S S En+1, (B.9)

where

S S En :=
q∑

j=1

Nn∑
i=1

|un
j (xn,i) − un,i |2,

and

S S En+1 :=
q∑

j=1

Nn+1∑
i=1

|un+1
j (xn+1,i) − un+1,i|2.

Here, xn = {
xn,i

}Nn

i=1, un = {
un,i

}Nn

i=1, xn+1 = {
xn+1,i

}Nn+1

i=1 , and un+1 = {
un+1,i

}Nn+1

i=1 .

B.3. Example (Burgers’ equation)

Let us illustrate the key features of this method through the lens of the Burgers’ equation. Recall the equation’s form

ut + λ1uux − λ2uxx = 0, (B.10)

and notice that the nonlinear spatial operator in equation (B.5) is given by

N [un+c j ] = λ1un+c j u
n+c j
x − λ2u

n+c j
xx .

Given merely two training data snapshots, the shared parameters of the neural networks (B.6), (B.7), and (B.8) along with the 
parameters λ = (λ1, λ2) of the Burgers’ equation can be learned by minimizing the sum of squared errors in equation (B.9). 
Here, we have created a training data-set comprising of Nn = 199 and Nn+1 = 201 spatial points by randomly sampling the 
exact solution at time instants tn = 0.1 and tn+1 = 0.9, respectively. The training data are shown in the top and middle panel 
of Fig. B.9. The neural network architecture used here consists of 4 hidden layers with 50 neurons each, while the number 
of Runge–Kutta stages is empirically chosen to yield a temporal error accumulation of the order of machine precision ε by 
setting6

q = 0.5 logε/ log(�t), (B.11)

where the time-step for this example is �t = 0.8. The bottom panel of Fig. B.9 summarizes the identified parameters 
λ = (λ1, λ2) for the cases of noise-free data, as well as noisy data with 1% of Gaussian uncorrelated noise corruption. For 
both cases, the proposed algorithm is able to learn the correct parameter values λ1 = 1.0 and λ2 = 0.01/π with remarkable 
accuracy, despite the fact that the two data snapshots used for training are very far apart, and potentially describe different 
regimes of the underlying dynamics.

A sensitivity analysis is performed to quantify the accuracy of our predictions with respect to the gap between the 
training snapshots �t , the noise levels in the training data, and the physics-informed neural network architecture. As shown 
in Table B.8, the proposed algorithm is quite robust to both �t and the noise corruption levels, and it returns reasonable 
estimates for the unknown parameters. This robustness is mainly attributed to the flexibility of the underlying implicit 
Runge–Kutta scheme to admit an arbitrarily high number of stages, allowing the data snapshots to be very far apart in time, 
while not compromising the accuracy with which the nonlinear dynamics of equation (B.10) are resolved. This is the key 
highlight of our discrete time formulation for identification problems, setting it apart from competing approaches [9,50]. 
Lastly, Table B.9 presents the percentage error in the identified parameters, demonstrating the robustness of our estimates 
with respect to the underlying neural network architecture. Despite the overall positive results, the variability observed 
in Tables B.8 and B.9 is still largely unexplained and naturally motivates a series of questions provided in the concluding 
remarks section of this paper.

6 This is motivated by the theoretical error estimates for implicit Runge–Kutta schemes suggesting a truncation error of O(�t2q) [45].
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Fig. B.9. Burgers equation: Top: Solution u(t, x) along with the temporal locations of the two training snapshots. Middle: Training data and exact solution 
corresponding to the two temporal snapshots depicted by the dashed vertical lines in the top panel. Bottom: Correct partial differential equation along with 
the identified one obtained by learning λ1, λ2.

Table B.8
Burgers’ equation: Percentage error in the identified parameters λ1 and λ2 for different gap size �t
between two different snapshots and for different noise levels.

% error in λ1 % error in λ2

�t
Noise

0% 1% 5% 10% 0% 1% 5% 10%

0.2 0.002 0.435 6.073 3.273 0.151 4.982 59.314 83.969
0.4 0.001 0.119 1.679 2.985 0.088 2.816 8.396 8.377
0.6 0.002 0.064 2.096 1.383 0.090 0.068 3.493 24.321
0.8 0.010 0.221 0.097 1.233 1.918 3.215 13.479 1.621

Table B.9
Burgers’ equation: Percentage error in the identified parameters λ1 and λ2 for different number 
of hidden layers and neurons in each layer.

% error in λ1 % error in λ2

Layers
Neurons

10 25 50 10 25 50

1 1.868 4.868 1.960 180.373 237.463 123.539
2 0.443 0.037 0.015 29.474 2.676 1.561
3 0.123 0.012 0.004 7.991 1.906 0.586
4 0.012 0.020 0.011 1.125 4.448 2.014

Appendix C. Supplementary material

Supplementary material related to this article can be found online at https://doi .org /10 .1016 /j .jcp .2018 .10 .045.
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