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V' Power Series
Z* .
Show that Z %2 converges uniformly for |z| < 1.

k
Show that Z % does not converge uniformly for |z| < 1.

Show that if a sequence of functions {fx(z)} converges uniformly
on Ej; for 1 < j < n, then the sequence converges uniformly on the
union F=F,UFE,U---UE,.

Suppose that F is a bounded subset of a domain D C C at a positive
distance from the boundary of D, that is, there is § > 0 such that
|z—w| >4 for all z € E and w € C\D. Show that E can be covered
by a finite number of closed disks contained in D. Hint. Consider
all closed disks with centers at points (m +n#)d/10 and radius §/10
that meet E.

Let f(z) be analytic on a domain D, and suppose |f(z)| < M for all
z € D. Show that for each 6 > 0 and m > 1, |f™)(2)| < m!M/é™
for all z € D whose distance from 9D is at least 6. Use this to
show that if {fx(2)} is a sequence of analytic functions on D that
converges uniformly to f(z) on D, then for each m the derivatives
f,gm)(z) converge uniformly to f(™(z) on each subset of D at a
positive distance from 0D.

3. Power Series

A power series (centered at zp) is a series of the form Yy ax(z — 20)F.

k

By making a change of variable w = z — 2y, we can always reduce to the
case of power series centered at z = 0. The main result on convergence of
power series is the following.

Theorem. Let ) axz* be a power series. Then thereis R, 0 < R < 400,
such that Y axz® converges absolutely if |z| < R, and Y axz* does not
converge if |z| > R. For each fixed r satisfying r < R, the series }_ ayz*
converges uniformly for |z| <.

-<—— diverges

don’t know

;. converges

converges uniformly

We call R the radius of convergence of the series Y ax2*. The radius
of convergence depends only on the tail of the series. If we alter a finite
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number of coefficients of the series, the radius of convergence remains the
same.

For the general case of a power series Y ax(z — 2)*, the domain of
convergence is a disk |z — zp| < R. The series diverges if |z — 29| > R, and
anything can happen when |z — z| =

For the proof of the theorem, note first that if the sequence |ax|r*
bounded for some value r = rg, then it is bounded for all r satisfying
0 <r <rg. Wedefine R, 0 < R < +00, to be the supremum of the r’s
such that |ax|r® is bounded. Thus |ax|r* is bounded if r < R, while if
7 > R, then there is a sequence of terms with |a, [r¥i — 4oo. In the
borderline case r = R, anything can happen. The sequence |ax|R* might
be bounded and it might not.

If |z| > R, then the terms ax2* do not tend to 0, so that the series does
not converge. On the other hand, suppose r < R. Choose s such that
r < s < R. Then the sequence |a|s* is bounded, say |ax|s* < C for k > 0.
If |2] < r, then

k k
r r
|akzk| < Iaklrk = ]ak|3k<;) < C(;) .

Set My = C(r/s)k. Since Y~ My converges, the Weierstrass M-test applies,
and the series 5 axz* converges uniformly for |z| < r, and also absolutely
for each z. This proves the theorem.

Example. The geometric series ) 2* has radius of convergence R = 1.
The series does not converge on the boundary circle |z| = 1, since the
terms do not tend to 0.

Example. The power series Y 2 /k? converges uniformly for |z| < 1. This
follows from the Weierstrass M-test, with majorants My = 1/k?. On the
other hand, if 7 > 1, then ¥ /k? — 0o as k — oo. Thus the series does not
converge for |z| > 1, and the radius of convergence of the series is R = 1.

Example. The series

( 1)k 22 24 26
(3.1) Z =1-S+m—5+
becomes a geometric series if we set w = —22/2,
(o< x
- St
k=0 k=0

The series converges precisely when |w| < 1, that is, when |2?| < 2. The
radius of convergence is thus R = /2. The series converges to 1/(1 —w) =

2/(2 — 22).



