Df: ord
$$(f) > ord(g)$$
 en $|f| = 0$

$$\lim_{N\to +\infty} \frac{f(x)}{g(x)} = +\infty \iff \lim_{N\to +\infty} \frac{g(x)}{f(n)} = 0^{+}$$

ord
$$(\log(n)) < \operatorname{ord}(n) < \operatorname{ord}(n) = n + \infty$$

Primero vamos a ver que

ord
$$(\log x)$$
 < ord (x) en $+\infty$

Antes de probar esto, vamos a probar que $0 < \frac{\log(n)}{x} < 1$ + x > 1

$$log(n) = \int_{1}^{n} \frac{1}{t} dt$$

$$\frac{1}{t} \leq 1 \quad \forall t \geq 1$$

 $\frac{1}{t} \leq 1 \quad \forall t \geq 1 \quad \Longrightarrow \quad \int_{1}^{u} \frac{1}{t} dt \leq \int_{1}^{u} 1 dt = u + 1 \quad \forall u \neq 1$ $\text{Monotonia} \quad \text{log}(u)$

$$=$$
 $\log(k)$ 1 $+$ μ

 $\frac{1}{|\mathcal{X}|} = \lim_{N \to +\infty} \frac{\log(n)}{2^{N}} = \lim_{N \to +\infty} \frac{\log(n)}{2^{N}}$ $\lim_{A \leftrightarrow (1 \times 10^{\circ})} \lim_{A \to 1} \frac{\log(x)}{2} = 0$ $= \sum_{\alpha \in A} \operatorname{ord}(h_{\alpha}(x)) \subset \operatorname{ord}(\mathcal{H}^{\alpha}) \quad (\alpha > 1)$ CAMBIO DE VARIABLE PARA LÍMITES $\lim_{u\to+\infty} h(u) = +\infty, \quad h \text{ continua}$ $= \int \lim_{u\to+\infty} f(x) = \lim_{u\to+\infty} f(h(u))$

 $\lim_{\mathcal{H}\to 0^+} f(\mathcal{H}) = \lim_{\mathcal{U}\to +\infty} f\left(\frac{1}{n}\right)$

Veamos ahora que ord(log(*)) < ord(*) <>0

 $\lim_{\mathcal{H}\to 1+\infty} \frac{\log(n)}{\mathcal{H}} = \lim_{C,V = 1} \frac{\log(u^{\frac{2}{n}})}{(u^{\frac{2}{n}})^{\frac{2}{n}}} =$

$$h(n) = M^{\alpha}$$

Como $\frac{2}{\alpha} > 0$; him $M^{\frac{2}{\alpha}} = +\infty$
 $M \to +\infty$

$$=\lim_{\Lambda \to +\infty} \frac{2}{\log(n)}$$

$$\int_{(a^{b})^{c}} \log(a) = \int_{(a^{b})^{c}} \log(a)$$

$$\int_{(a^{b})^{c}} \log(a) = \int_{(a^{b})^{c}} \log(a)$$

Veamos que ord
$$(H^{\times})$$
 < ord (e^{H}) er $+\infty$
 $|X| > 0$
 $|X| > 0$
 $|X| = |X| = |X|$

$$= \lim_{n \to +\infty} \frac{\log(n)^{\alpha}}{n} = \lim_{n \to +\infty} \frac{\log(n)^{\alpha}}{n^{\alpha}} = 0$$

$$\frac{\log (u)^{\alpha}}{u} = \left(\frac{\log (u)^{\alpha}}{u}\right)^{\frac{1}{\alpha} \cdot \alpha} = \left(\frac{\log (u)^{\alpha}}{u}\right)^{\frac{1}{\alpha}} = \frac{\log (u)^{\alpha}}{u}$$

$$= \left(\frac{\left(\log \left(n\right)^{2}\right)^{\frac{1}{2}}}{n^{\frac{1}{2}}}\right) = \left(\frac{\log \left(n\right)}{n^{\frac{1}{2}}}\right)^{\infty}$$

RESOLVAMOS OTRA INDETERMINACIÓN

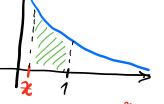
INDETERMINACIÓN O. (-00)

$$\lim_{A\to 0^+} \mathcal{H}^{\alpha} \log(A) = \lim_{N\to +\infty} \left(\frac{1}{N}\right)^{\alpha} \log\left(\frac{1}{N}\right) =$$

=
$$\lim_{n\to+\infty} \frac{1}{n^{\alpha}} (-1) \cdot \log(n) =$$

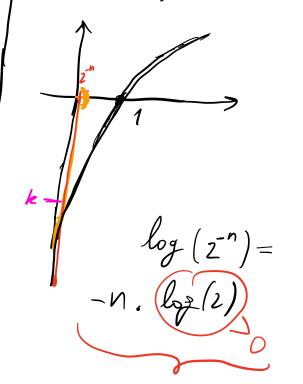
$$= -\lim_{u \to +\infty} \frac{\log(u)}{u^2} = 0$$

$$=) \lim_{y\to 0^+} H^{\infty} \log(x) = 0 \quad \text{for}$$



$$\log (\mathcal{X}) = \int_{1}^{\mathcal{X}} \frac{1}{t} dt =$$

$$= \int_{\mathcal{X}} \frac{1}{t} dt$$



TEOREMA DE BOLZANO

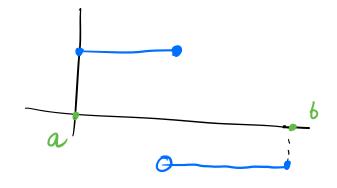
Sea f: [a,b] -> R (ontinua)

suponzamos que f(a).f(b)<0

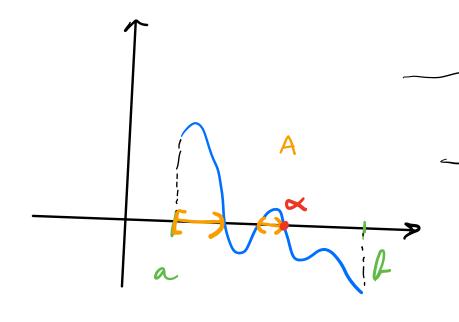
Entonces, $\exists \alpha \in (\alpha, b) / f(\alpha) = 0$

al a 6

La hipotes f continua es necesaria para que Se cumpla la tesis.



Idea de la prueba:



A=
$$\{X \in [a,b]: f(x) > 0\}$$
 $x := \sup(A)$

Vamos a prober $f(x) = 0$
 $\{(o'ao! por absurdo.$

Suponiendo que no, es deair $f(x) \neq 0$

Tenemos dos casos: $f(x) > 0 \longrightarrow Absurdo$
 $f(x) < 0 \longrightarrow Absurdo$