Impuls-urbs An Energy System Optimization Model with Life-Cycle Assessment Perspective

Thushara Addanki, Andrea Cadavid Isaza

Prof. Dr. Thomas Hamacher

Chair of Renewable and Sustainable Energy Systems

School of Engineering and Design

Technical University of Munich

Montevideo, 05.09.2024

Agenda

- 1. Problem setting
- Intertemporal urbs 2.
- Methodology of *Impuls-urbs* 3.
- Key challenges 4.
- Case study 5.
- **Results / Observations** 6.
- **Questions & discussion** 7.

Impuls-urbs: Integration of life cycle assessment into energy system models

Thushara Addanki^{*}, Andrea Cadavid Isaza, Cristina de la Rúa, Leonhard Odersky, **Thomas Hamacher**

Technical University of Munich, School of Engineering and Design, Department of Energy and Process Engineering, Chair of Renewable and Sustainable Energy Systems, Arcistraße 21, Munich, 80333, Germany

Renewable and Sustainable Energy Reviews 198 (2024) 114422

Emission-free Energy Technologies

Cheap cost projections Assumed LCOE development (cents/kWh) 70 60 50 40 30 20 10 0 2022 2032 2042 2052 ---- Combined cycle plant ---- PV ----Wind Based on Pietzcker et al. 2018

An exemplary case study

- Energy System Modeling (ESM) urbs
- Goals: Least cost system with zero-carbon by 2052

Are renewable technologies truly Green?

compilation and evaluation of the inputs, outputs and the potential environmental impacts of a product system throughout its life cycle

Production of materials:

- Energy intensive
- Emission intensive

Existing integration strategies with ESM

- Usually done as a post analysis to ESM result
- Carbon tax introduction into objective function
- Introduction of LCA indicators
- Multi-objective optimization model

Integration LCA+ESM

Prognosis

- Hard-coupling is possible
- The optimal solution itself would change

Intertemporal optimization in urbs

- Longer time horizon with multiple years
- Single optimization problem with perfect foresight
- Optimizes the evolution of the system
- End goals along with intermediate goals
- Lifetime of the power plants reflects the capacity

Intertemporal optimization in urbs

An exemplary case study

- Energy System Modeling (ESM) *urbs*
- Goals: Least cost system with zero-carbon by 2052

Problem

 Assumes that the new capacities are readily available to start the operation

Solution

 Have to manufacture them before they can be operated

ESM with Material Production phase (Impuls-urbs)

Key challenges for Impuls-urbs

Addressing Double counting problem:

Challenge	Assumption/Solution
Double counting for emissions	Pre-processed input
Double counting for costs	Pre-defined electricity price
Upstream process operation	Constant demand
Upstream process time period	Only one modelled year ahead
Upstream process supply chain	Same site

5 power plants – Coal plant (phase out), Hydro plant (no expansion), Combined cycle plant, PV, Wind Battery storage

٠

٠

٠

• CO₂ price increases from year to year

4 years - 2022,2032,2042,2052

- 2 options for heat Gas boiler, Heat pump
- 9 most relevant Materials with additional demand for electricity and heat
- Material data: Ecoinvent

Case Study - Setup

Only electricity demand

Loosely based on Germany

Materials & Energy	Unit	Wind	СС	PV	Heat pump	Gas boiler
Aluminium	ton	0.22	1.10	50.14	-	0.03
Cast iron	ton	22.28				4.20
Chromium Steel	ton	1.42	4.50	1.87	-	0.23
Concrete	m3	685.85	15.00	4.06	<u> </u>	-
Copper	ton	9.83	1.10	2.17	2.20	-
Glass fibre	ton	10.17	-	1.45	-	-
Reinforcing steel	ton	11.44	22.00	54.36	7.50	-
Silicon	ton	-		8.70	-	-
Assembly Electricity	MWh	98.94	48.69	316.76	14.00	2.78
Assembly Heat	MWh		97.72	28.89	36.97	6.24
Assembly CO2eq.	ton	5	(7 7)		106.95	π.

Case Study - Reference Energy System

Scenario Definition

Key observations

- In the near future (2032), CC plant is preferred instead of earlier PV expansion.
- In the far future, Wind is more favored than PV.
- Silicon production is emission and energy intensive.
- Overall higher costs & higher emissions due to expanded scope.
- Higher demand for energy in the system
- The impact of upstream processes is significant with higher CO₂ limits.

Summary

- First approach towards hard-coupling learnings from LCA into energy models
- High impact of material production on optimization output
- PV might not be the only solution when indirect emissions are considered
- Type of research questions: Which sector needs to be decarbonized first?

Scope for future work

- Material production for storage systems
- Material production at another site
- Other impacts in addition to GHG emissions
- Material efficiency & circular economy of materials
- End-of-life phase emissions
- Real case simulation

Technology inputs

	Units	2022	2032	2042	2052		
Technology			CAPEX			OPEX %	Life years
CC plant	€/kW	890	890	890	890	3.0	35
Wind	€/kW	1,257	1,137	987	923	3.0	25
PV	€/kW	703	395	340	326	1.0	25
Heat Pump	€/kW	700	560	490	420	1.0	20
Gas boiler	€/kW	250	250	250	250	1.6	25
Hydro plant	€/kW	2,718	2,718	2,718	2,718	2.0	50
Coal plant	€/kW	1,660	1,660	1,660	1,660	3.0	45
Battery	€/kWh	244	129	109	90	1.5	20
	€/kW	226	173	166	159		
Commodity			Price				
Gas	€/MWh	27	34	42	53	-	-
CO ₂	€/ton	25	50	75	100	-	-

Material	Unit	Electricity MWh	Heat MWh	Remaining CO ₂ eq.	
Al		22.450	6.010	2.000	
Aluminium	ton	33.450	6.210	3.880	
Cast iron	ton	1.400	0.130	1.370	
Chromium Steel	ton	7.990	6.860	1.100	
Concrete	m ³	0.118	0.019	0.251	
Copper	ton	19.180	3.180	1.970	
Glass fibre	ton	3.492	1.440	8.120	
Reinforcing steel	ton	1.450	0.620	1.450	
Silicon	ton	200.690	53.380	15.690	

Energy input and emissions for the production of materials [41]

Energy input and rest emissions for the production of the other remaining materials (RM) [41]

Material	Unit	Electricity MWh	Heat MWh	Remaining CO ₂ eq. ton
RM Wind	MW	291.79	65.40	113.72
RM CC	MW	50.80	8.40	48.34
RM PV	MW	1018.30	168.57	365.59
RM Heat pump	MW	31.78	6.12	11.59
RM Gas boiler	MW	3.48	0.33	0.31