Comunicaciones Inalámbricas Laboratorio 3 Alineación de fase

1. Introducción

En este laboratorio empezaremos a preparar nuestro receptor para trabajar en un entorno un poco mas realista. En particular, atacaremos el problema de la alineación en fase y experimentaremos con los métodos disponibles con ese fin dentro de GNU Radio. Partiremos de lo realizado en el laboratorio anterior e implementaremos dos técnicas distintas de alineación en fase. De aquí en más utilizaremos el pulso SRRC por sus características espectrales.

2. Transmisor

Tal como fue discutido en el teórico, todos los métodos de alineación en fase tienen algún grado de ambigüedad en el valor de la propia fase, por lo que es necesario algún método para subsanar este problema. En este laboratorio utilizaremos la técnica de codificación diferencial fundamentalmente debido a su sencillez y eficacia, implementada mediante el bloque Differential Encoder. Lea la documentación de este bloque y sobre todo observe que tanto la salida como la entrada son del tipo Byte. Asuma un valor de Modulus de 4.

- 1. Escriba una tabla con la salida para cada posible pareja de entrada y salida anterior. La figura 1 muestra un diagrama del codificador, siendo δ_k y s_k la salida del bloque y el símbolo de entrada (par de bits en este caso), respectivamente.
- 2. Utilizando la tabla realizada en la parte anterior, verifique que con un bloque Chunks to Symbols a la salida del bloque Differential Encoder y con una constelación como la de la figura 2, se consigue codificar la pareja de bits en la diferencia de fase entre símbolos complejos sucesivos como lo muestra la tabla en la mencionada figura.
- 3. Haga los cambios necesarios en el transmisor realizado en el laboratorio anterior para implementar el modulador DQPSK resultante.

3. Canal

El canal ahora no sera un mero "pasa-todo", sino que distorsionará la fase de la señal. Por el momento, generaremos un cambio de fase constante.

4. Agregue un bloque QT GUI Range que varie entre $-\pi$ y π , cuyo valor por defecto sea 0 y cuyo ID sea fase. Este bloque agrega un control deslizante a la interfaz gráfica que asigna (en

Figura 1: Codificador Diferencial incluyendo algunos valores de entrada.

Figura 2: Especificación de la codificación diferencial.

tiempo de ejecución) un valor a la variable indicada en ID. Es decir, muy similar al bloque Variable, pero con la posibilidad de cambiar el valor en tiempo de ejecución.

5. Modifique el parámetro Taps del bloque Channel Model de tal manera que genere un cambio de fase igual a fase. Recuerde que puede utilizar el modulo math de Python mediante un bloque Import con la línea import math.

4. Receptor

Lo primero que haremos en recepción es verificar el efecto del cambio en fase sobre la señal recibida.

6. Agregue un bloque QT GUI Constellation Sink a la salida del sub-sistema de muestreado implementado en el laboratorio anterior. Verifique que ahora obtiene los símbolos complejos girados un ángulo igual a fase.

Exploraremos ahora dos posibles maneras de implementar un decodificador diferencial: mediante un bloque Costas Loop y un bloque Differential Phasor.

Figura 3: Decodificador diferencial incluyendo algunos valores de entrada.

4.1. Costas Loop

- 7. Coloque un bloque Costas Loop entre el muestreador y el Constellation Decoder. Observe qué efecto tiene esto sobre los símbolos complejos mediante otro bloque QT GUI Constellation Sink. Verifique que el bloque asume implícitamente una constelación con la misma forma que la que consideramos en la figura 2. Lea atentamente la documentación del bloque para definir adecuadamente los dos parámetros del Costas Loop.
- 8. Para pasar de complejos a símbolos en este caso tendremos que recurrir a la construcción un poco mas general del bloque Constellation Decoder. El argumento que requiere el bloque será digital.constellation.calcdist(<constellacion>,[], 4, 1).base(). Busque la documentación del método digital.constellation.calcdist para mas ayuda sobre los parámetros.

Lo que estará restando implementar es el Decodicador Diferencial. Para ello utilizaremos el bloque Differential Decoder.

9. Lea la documentación del bloque. Verifique que un valor de 4 para el parámetro Modulus revierte la codificación diferencial realizada en el transmisor. Quizá le ayude realizar una tabla como la de la figura 3.

4.2. Fasor Diferencial

Ahora exploraremos un método que en vez de realizar la codificación diferencial a nivel de bits (o pares de bits en este caso), lo aplica a nivel de los símbolos complejos. Guardar una segunda versión de su flow-graph para explorar este método, alternativo al Costas Loop.

- 10. Agregue un bloque Differential Phasor. Lea atentamente la documentación del mismo y conéctelo entre el canal y Constellation Decoder. ¿Qué obtiene a la salida de este bloque? Verifique entonces que con la constelación que estábamos utilizando en recepción hasta ahora y el Differential Decoder tenemos una gran tasa de error.
- 11. ¿Qué constelación tenemos que utilizar ahora en recepción? ¿Hace falta el bloque Differential Decoder?

4.3. ¿Se necesita alineamiento en fase?

En esta parte verificaremos para qué se necesita alinear en fase y no basta con la codificación diferencial a nivel de bits. Para ello, tomaremos la versión del flow-graph que utiliza un Costas Loop y el bloque Differential Decoder.

- 12. Quite el bloque Costas Loop (recuerde que puede deshabilitar un bloque seleccionándolo y presionando la letra 'd' o con botón derecho y seleccionando 'Disable'). Pruebe distintos valores de fase y verifique que el sistema sigue funcionando correctamente.
- 13. Ahora pruebe con un error de fase igual a $\pi/4$. ¿Por qué el sistema dejó de funcionar? Verifique que si el ruido es moderado este efecto se da incluso cuando el error en fase no es exactamente igual a $\pi/4$.
- 14. Discuta por qué el método de alineamiento en fase que utiliza el bloque Differential Phasor o agregar el Costas Loop hace que el sistema sea inmune a este problema.

4.4. Efectos de un corrimiento en frecuencia

Tome valores pequeños (no más de 0.02) para el parámetro Frequency Offset del bloque Channel Model. Puede agregar un QT GUI Range para corroborar su efecto en tiempo de ejecución.

- 15. ¿Qué efecto tiene esto sobre el espectro de la señal que entra al receptor?
- 16. ¿Qué efecto tiene sobre los símbolos complejos que salen del filtro apareado?
- 17. Encuentre experimentalmente qué corrimiento en frecuencia soportan los métodos de alineamiento en fase implementados. En el caso del Costas Loop encuentre un valor razonable para el parámetro Loop Bandwidth.
- 18. Argumente por qué, si el corrimiento en frecuencia es demasiado grande, es necesario corregirlo antes del filtro apareado.

5. Algunos comentarios finales

- Dependiendo del tamaño de los filtros puede ser que el sistema completo comience a ser demasiado para su PC. Le recomendamos que no se exceda en el valor de muestras por símbolos (samp_per_sym en la nomenclatura del laboratorio pasado) ni en el largo del filtro SRRC (len_sym_srrc). Con un valor de 3 para el primero y de mas de 5 para el segundo sera suficiente a priori.
- También es importante notar que el audio puede no escucharse bien por varios motivos, siendo algunos ejemplos: satura la tarjeta de audio (si los valores que entran al bloque Audio Sink son muy grandes), la tasa de muestras es menor o mayor a lo indicado o el proceso es muy demandante a nivel de CPU (como se discutió en el punto anterior).